首页 > 最新文献

Cellular & Molecular Biology Letters最新文献

英文 中文
Heterogeneity of glucose metabolism and uptake identifies distinct cancer cell and cancer stem cell phenotypes. 糖代谢和摄取的异质性确定了不同的癌细胞和癌症干细胞表型。
IF 10.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-17 DOI: 10.1186/s11658-025-00837-0
Zuzana Tylichova, Martin Krkoska, Vaclav Hrabal, Michaela Stenckova, Borivoj Vojtesek, Philip J Coates
{"title":"Heterogeneity of glucose metabolism and uptake identifies distinct cancer cell and cancer stem cell phenotypes.","authors":"Zuzana Tylichova, Martin Krkoska, Vaclav Hrabal, Michaela Stenckova, Borivoj Vojtesek, Philip J Coates","doi":"10.1186/s11658-025-00837-0","DOIUrl":"10.1186/s11658-025-00837-0","url":null,"abstract":"","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":" ","pages":"8"},"PeriodicalIF":10.2,"publicationDate":"2026-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12829025/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145994345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TGFβ pathway represses hepatic ribosome biogenesis and protein synthesis by regulating p70S6K-S6RP proteins. TGFβ途径通过调节p70S6K-S6RP蛋白抑制肝核糖体生物发生和蛋白质合成。
IF 10.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-16 DOI: 10.1186/s11658-025-00853-0
Athanasios Stavropoulos, Vassiliki Stamatopoulou, Eleftherios Pavlos, Maria Manioudaki, Stratigoula Sakellariou, Constantinos Stathopoulos, Maria Xilouri

Background: Transforming growth factor-beta (TGFβ)-superfamily signaling has been implicated in the regulation of hepatocyte growth and regeneration after acute or chronic liver injury. However, the precise mechanisms underlying TGFβ signaling in the distinct hepatic cell types during the progression of liver fibrosis remain largely unknown. We aim to identify the downstream molecular mechanisms of TGFβ-signaling modulation on hepatocytes.

Methods: To modulate TGFβ-superfamily signaling in vivo, Smad3 or Smad7 were adenovirally overexpressed in mouse liver. Parallelly, hepatosphere cultures were treated with recombinant TGFβ1 and subjected to transcriptomic analysis. These data were compared with transcriptomes from Smad7-overexpressing livers. To broaden the analysis, publicly available RNA-seq datasets from TGFβ-treated hepatic stellate cells and hepatocellular carcinoma lines were meta-analyzed. Finally, human liver tissues from cirrhotic and healthy individuals were examined for fibrosis and ribosome biogenesis markers to validate murine findings.

Results: Acute hepatic overexpression of Smad3 induced a transient fibrotic phenotype in the mouse liver. In hepatosphere cultures, TGFβ1 treatment suppressed key components of ribosomal assembly, whereas Smad7 overexpression exerted the opposite effect in the mouse liver, thus highlighting ribosome biogenesis as a major cellular process negatively regulated by the TGFβ superfamily. Inhibition of TGFβ signaling via Smad7 increased hepatic protein content (a critical parameter for restoring hepatic homeostasis upon liver damage), activated the nucleolus, and prompted the production of ribosomal pre-mRNAs without affecting p53 levels. Mechanistically, SMAD7-mediated inactivation of TGFβ signaling triggered selectively the p70S6K-S6RP regulatory axis, independently of cellular myelocytomatosis oncogene (c-MYC), mechanistic target of rapamycin (mTOR), and mitogen-activated protein kinase (MAPK) pathways. Importantly, analysis of hepatic tissue from cirrhotic patients and controls unveiled a negative association between TGFβ signaling and ribosome biogenesis in fibrotic livers. Complementary meta-analysis of RNA-seq data demonstrated that TGFβ regulates ribosome biogenesis in a cell type-specific manner, suppressing it in hepatocytes while enhancing it in hepatic stellate cells, consistent with their distinct functional states and transcriptional landscapes.

Conclusions: Collectively, our data reveal a SMAD-dependent regulatory role of TGFβ-superfamily signaling on hepatocytes that is tightly connected with hepatic growth to ensure proper energy homeostasis and metabolism. This is a critical regeneration parameter, which is closely related to the restoration of hepatic mass, especially following liver injury and fibrosis.

背景:转化生长因子- β (tgf - β)-超家族信号被认为与急性或慢性肝损伤后肝细胞生长和再生的调控有关。然而,在肝纤维化进展过程中,不同肝细胞类型中tgf - β信号传导的确切机制在很大程度上仍然未知。我们的目标是确定tgf - β信号调节肝细胞的下游分子机制。方法:通过在小鼠肝脏中腺病毒过表达Smad3或Smad7来调节tgf - β超家族信号。同时,用重组tgf - β1处理肝细胞培养物并进行转录组学分析。将这些数据与来自过表达smad7的肝脏的转录组进行比较。为了扩大分析范围,我们对tgf β处理的肝星状细胞和肝细胞癌系的公开RNA-seq数据集进行了荟萃分析。最后,对来自肝硬化和健康个体的人肝组织进行纤维化和核糖体生物发生标志物的检测,以验证小鼠的发现。结果:Smad3的急性肝脏过表达诱导小鼠肝脏出现短暂纤维化表型。在肝圈培养中,TGFβ1处理抑制了核糖体组装的关键成分,而Smad7过表达在小鼠肝脏中发挥相反的作用,从而突出了核糖体生物发生是由TGFβ超家族负调控的主要细胞过程。通过Smad7抑制tgf - β信号可以增加肝脏蛋白含量(肝损伤后恢复肝脏稳态的关键参数),激活核核,并促进核糖体前mrna的产生,而不影响p53水平。在机制上,smad7介导的TGFβ信号失活选择性地触发了p70S6K-S6RP调控轴,独立于细胞髓细胞瘤癌基因(c-MYC)、雷帕霉素(mTOR)的机制靶点和丝裂原活化蛋白激酶(MAPK)途径。重要的是,来自肝硬化患者和对照组的肝组织分析揭示了纤维化肝脏中TGFβ信号和核糖体生物发生之间的负相关。RNA-seq数据的补充荟萃分析表明,TGFβ以细胞类型特异性的方式调节核糖体的生物发生,在肝细胞中抑制核糖体,而在肝星状细胞中增强核糖体,这与肝星状细胞独特的功能状态和转录景观相一致。结论:总的来说,我们的数据揭示了tgf β超家族信号对肝细胞的smad依赖性调节作用,该信号与肝脏生长密切相关,以确保适当的能量稳态和代谢。这是一个关键的再生参数,与肝肿块的恢复密切相关,尤其是肝损伤和纤维化后。
{"title":"TGFβ pathway represses hepatic ribosome biogenesis and protein synthesis by regulating p70S6K-S6RP proteins.","authors":"Athanasios Stavropoulos, Vassiliki Stamatopoulou, Eleftherios Pavlos, Maria Manioudaki, Stratigoula Sakellariou, Constantinos Stathopoulos, Maria Xilouri","doi":"10.1186/s11658-025-00853-0","DOIUrl":"https://doi.org/10.1186/s11658-025-00853-0","url":null,"abstract":"<p><strong>Background: </strong>Transforming growth factor-beta (TGFβ)-superfamily signaling has been implicated in the regulation of hepatocyte growth and regeneration after acute or chronic liver injury. However, the precise mechanisms underlying TGFβ signaling in the distinct hepatic cell types during the progression of liver fibrosis remain largely unknown. We aim to identify the downstream molecular mechanisms of TGFβ-signaling modulation on hepatocytes.</p><p><strong>Methods: </strong>To modulate TGFβ-superfamily signaling in vivo, Smad3 or Smad7 were adenovirally overexpressed in mouse liver. Parallelly, hepatosphere cultures were treated with recombinant TGFβ1 and subjected to transcriptomic analysis. These data were compared with transcriptomes from Smad7-overexpressing livers. To broaden the analysis, publicly available RNA-seq datasets from TGFβ-treated hepatic stellate cells and hepatocellular carcinoma lines were meta-analyzed. Finally, human liver tissues from cirrhotic and healthy individuals were examined for fibrosis and ribosome biogenesis markers to validate murine findings.</p><p><strong>Results: </strong>Acute hepatic overexpression of Smad3 induced a transient fibrotic phenotype in the mouse liver. In hepatosphere cultures, TGFβ1 treatment suppressed key components of ribosomal assembly, whereas Smad7 overexpression exerted the opposite effect in the mouse liver, thus highlighting ribosome biogenesis as a major cellular process negatively regulated by the TGFβ superfamily. Inhibition of TGFβ signaling via Smad7 increased hepatic protein content (a critical parameter for restoring hepatic homeostasis upon liver damage), activated the nucleolus, and prompted the production of ribosomal pre-mRNAs without affecting p53 levels. Mechanistically, SMAD7-mediated inactivation of TGFβ signaling triggered selectively the p70S6K-S6RP regulatory axis, independently of cellular myelocytomatosis oncogene (c-MYC), mechanistic target of rapamycin (mTOR), and mitogen-activated protein kinase (MAPK) pathways. Importantly, analysis of hepatic tissue from cirrhotic patients and controls unveiled a negative association between TGFβ signaling and ribosome biogenesis in fibrotic livers. Complementary meta-analysis of RNA-seq data demonstrated that TGFβ regulates ribosome biogenesis in a cell type-specific manner, suppressing it in hepatocytes while enhancing it in hepatic stellate cells, consistent with their distinct functional states and transcriptional landscapes.</p><p><strong>Conclusions: </strong>Collectively, our data reveal a SMAD-dependent regulatory role of TGFβ-superfamily signaling on hepatocytes that is tightly connected with hepatic growth to ensure proper energy homeostasis and metabolism. This is a critical regeneration parameter, which is closely related to the restoration of hepatic mass, especially following liver injury and fibrosis.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2026-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145988331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Methylation-induced silencing of AZGP1 enhances prostate cancer metastasis by stimulating tumoral glycolysis. 甲基化诱导的AZGP1沉默通过刺激肿瘤糖酵解促进前列腺癌转移。
IF 10.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-14 DOI: 10.1186/s11658-025-00818-3
Lu Li, Jinguang Luo, Linyue Zhao, Lu Tian, Jianfeng Wang, Yifei Cheng, Xiao Li
{"title":"Methylation-induced silencing of AZGP1 enhances prostate cancer metastasis by stimulating tumoral glycolysis.","authors":"Lu Li, Jinguang Luo, Linyue Zhao, Lu Tian, Jianfeng Wang, Yifei Cheng, Xiao Li","doi":"10.1186/s11658-025-00818-3","DOIUrl":"10.1186/s11658-025-00818-3","url":null,"abstract":"","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"31 1","pages":"5"},"PeriodicalIF":10.2,"publicationDate":"2026-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12801908/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145970654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondria-endoplasmic reticulum contact sites in hepatocytic senescence. 肝细胞衰老中的线粒体-内质网接触部位。
IF 10.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-11 DOI: 10.1186/s11658-025-00809-4
Pavitra Kumar, Mohsin Hassan, Frank Tacke, Cornelius Engelmann

Inter-organelle communication via membrane contact sites (MCSs) is essential for the efficient functioning of eukaryotic cells, facilitating coordination among approximately 20 distinct organelles, each with unique metabolic profiles. Among these interactions, mitochondria-endoplasmic reticulum (ER) contacts (MERCs) are particularly significant, encompassing about 5% of the mitochondrial surface. Key proteins involved in MERCs include inositol 1,4,5-trisphosphate receptor (IP3R), voltage-dependent anion channel (VDAC), glucose-regulated protein 75 (GRP75), Sigma1 receptor (Sig-1R), vesicle-associated membrane protein (VAMP)-associated protein B (VAPB), protein deglycase DJ-1, and protein tyrosine phosphatase interacting protein 51 (PTPIP51), with new proteins continually being identified for their roles in these structures. At these contact sites, metabolic exchanges involve calcium (Ca2+), lipids, reactive oxygen species (ROS), and proteins. MERCs enable efficient molecular exchanges through temporary bridges mainly formed by the ER, the organelle with the largest surface area. These contacts are crucial for maintaining mitochondrial dynamics, which is essential for cellular homeostasis, and they are notably impacted in pathological states such as metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-related liver diseases (ALD), and viral hepatitis. Dysfunctional MERCs can lead to mitochondrial fragmentation, increased ROS production, impaired autophagy, and disrupted protein trafficking, thereby exacerbating senescence and cellular aging. Senescence is a cell fate initiated by stress, characterized by stable cell-cycle arrest and a hypersecretory state, and is an underlying cause of aging and many chronic conditions, including liver diseases. The hallmarks of senescence-such as macromolecular damage, cell cycle withdrawal, deregulated metabolism, and a secretory phenotype-are well established. However, recent studies have demonstrated that senescence is a heterogeneous process, with molecular markers varying according to the stressors that induce it. This review focuses on the functional aspects of MERCs in hepatic senescence and their impact on liver diseases, and explores the potential of targeting MERCs to address hepatocytic senescence.

通过膜接触位点(MCSs)的细胞器间通信对于真核细胞的有效运作至关重要,促进了大约20个不同细胞器之间的协调,每个细胞器都有独特的代谢谱。在这些相互作用中,线粒体-内质网(ER)接触(merc)尤为重要,约占线粒体表面的5%。merc中涉及的关键蛋白包括肌醇1,4,5-三磷酸受体(IP3R)、电压依赖性阴离子通道(VDAC)、葡萄糖调节蛋白75 (GRP75)、Sigma1受体(Sig-1R)、囊泡相关膜蛋白(VAMP)相关蛋白B (VAPB)、蛋白脱糖苷基dj1和蛋白酪氨酸磷酸酶相互作用蛋白51 (PTPIP51),新的蛋白在这些结构中的作用不断被发现。在这些接触部位,代谢交换包括钙(Ca2+)、脂质、活性氧(ROS)和蛋白质。merc通过主要由ER(表面积最大的细胞器)形成的临时桥来实现有效的分子交换。这些接触对于维持线粒体动力学至关重要,这对于细胞稳态至关重要,并且在代谢功能障碍相关的脂肪变性肝病(MASLD)、酒精相关肝病(ALD)和病毒性肝炎等病理状态下,它们会受到显著影响。功能失调的merc可导致线粒体断裂、ROS产生增加、自噬受损和蛋白质运输中断,从而加剧衰老和细胞老化。衰老是一种由压力引发的细胞命运,其特征是细胞周期稳定停滞和高分泌状态,是衰老和许多慢性疾病(包括肝病)的潜在原因。衰老的特征——如大分子损伤、细胞周期停止、代谢失调和分泌表型——已经得到了很好的证实。然而,最近的研究表明,衰老是一个异质性的过程,其分子标记根据诱导衰老的应激源而变化。本文综述了merc在肝衰老中的功能及其对肝脏疾病的影响,并探讨了靶向merc治疗肝细胞衰老的潜力。
{"title":"Mitochondria-endoplasmic reticulum contact sites in hepatocytic senescence.","authors":"Pavitra Kumar, Mohsin Hassan, Frank Tacke, Cornelius Engelmann","doi":"10.1186/s11658-025-00809-4","DOIUrl":"10.1186/s11658-025-00809-4","url":null,"abstract":"<p><p>Inter-organelle communication via membrane contact sites (MCSs) is essential for the efficient functioning of eukaryotic cells, facilitating coordination among approximately 20 distinct organelles, each with unique metabolic profiles. Among these interactions, mitochondria-endoplasmic reticulum (ER) contacts (MERCs) are particularly significant, encompassing about 5% of the mitochondrial surface. Key proteins involved in MERCs include inositol 1,4,5-trisphosphate receptor (IP3R), voltage-dependent anion channel (VDAC), glucose-regulated protein 75 (GRP75), Sigma1 receptor (Sig-1R), vesicle-associated membrane protein (VAMP)-associated protein B (VAPB), protein deglycase DJ-1, and protein tyrosine phosphatase interacting protein 51 (PTPIP51), with new proteins continually being identified for their roles in these structures. At these contact sites, metabolic exchanges involve calcium (Ca<sup>2+</sup>), lipids, reactive oxygen species (ROS), and proteins. MERCs enable efficient molecular exchanges through temporary bridges mainly formed by the ER, the organelle with the largest surface area. These contacts are crucial for maintaining mitochondrial dynamics, which is essential for cellular homeostasis, and they are notably impacted in pathological states such as metabolic dysfunction-associated steatotic liver disease (MASLD), alcohol-related liver diseases (ALD), and viral hepatitis. Dysfunctional MERCs can lead to mitochondrial fragmentation, increased ROS production, impaired autophagy, and disrupted protein trafficking, thereby exacerbating senescence and cellular aging. Senescence is a cell fate initiated by stress, characterized by stable cell-cycle arrest and a hypersecretory state, and is an underlying cause of aging and many chronic conditions, including liver diseases. The hallmarks of senescence-such as macromolecular damage, cell cycle withdrawal, deregulated metabolism, and a secretory phenotype-are well established. However, recent studies have demonstrated that senescence is a heterogeneous process, with molecular markers varying according to the stressors that induce it. This review focuses on the functional aspects of MERCs in hepatic senescence and their impact on liver diseases, and explores the potential of targeting MERCs to address hepatocytic senescence.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":" ","pages":"13"},"PeriodicalIF":10.2,"publicationDate":"2026-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12849628/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145951419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SLC25A11-mediated reprogramming of mitochondrial redox state and lipid peroxidation confers NRF2-dependent ferroptosis resistance in biliary tract cancer. slc25a11介导的线粒体氧化还原状态和脂质过氧化重编程赋予nrf2依赖性胆道癌铁上睑下降抗性。
IF 10.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-09 DOI: 10.1186/s11658-025-00843-2
Yu-Yu Lin, Han-Hsi Kuo, Zhao-Jing He, Hsin-Yi Chung, Cheorl-Ho Kim, Yi-Ru Pan, Meng-Ju Wu, Ming-Hsien Chan, Chun-Nan Yeh, Nai-Jung Chiang, Ming-Huang Chen, Yu-Chan Chang
{"title":"SLC25A11-mediated reprogramming of mitochondrial redox state and lipid peroxidation confers NRF2-dependent ferroptosis resistance in biliary tract cancer.","authors":"Yu-Yu Lin, Han-Hsi Kuo, Zhao-Jing He, Hsin-Yi Chung, Cheorl-Ho Kim, Yi-Ru Pan, Meng-Ju Wu, Ming-Hsien Chan, Chun-Nan Yeh, Nai-Jung Chiang, Ming-Huang Chen, Yu-Chan Chang","doi":"10.1186/s11658-025-00843-2","DOIUrl":"https://doi.org/10.1186/s11658-025-00843-2","url":null,"abstract":"","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":" ","pages":""},"PeriodicalIF":10.2,"publicationDate":"2026-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145942199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The neuro-immune insights of itch: peripheral mechanisms and central glial contributions. 瘙痒的神经免疫洞察:外周机制和中枢神经胶质的贡献。
IF 10.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-06 DOI: 10.1186/s11658-025-00834-3
Zhe Li, Ning Yu, Sidi Feng, Xinrui Wang, Yu-Xia Chu, Xiaowen Liu
{"title":"The neuro-immune insights of itch: peripheral mechanisms and central glial contributions.","authors":"Zhe Li, Ning Yu, Sidi Feng, Xinrui Wang, Yu-Xia Chu, Xiaowen Liu","doi":"10.1186/s11658-025-00834-3","DOIUrl":"10.1186/s11658-025-00834-3","url":null,"abstract":"","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":" ","pages":"18"},"PeriodicalIF":10.2,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12870243/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145910536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Many faces of mammalian NSD methyltransferases. 哺乳动物NSD甲基转移酶的许多方面。
IF 10.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-06 DOI: 10.1186/s11658-025-00848-x
Eugenia A Tiukacheva, Yegor Vassetzky, Sergey V Razin, Dong Fang, Sergey V Ulianov

Nuclear receptor-binding SET domain (NSD) proteins have been initially described as methyltransferases specific to lysine-36 in histone H3 and associated with active chromatin. However, their role in the regulation of transcription and in overall cellular physiology is much more complex, especially in mammals. The emerging diversity of their targets and, accordingly, the processes in which NSD proteins are involved, shows the importance of their noncanonical functions. A wide functionality apparently requires a complicated control system ensuring proper spatial and temporal activation of NSD methyltransferases. In this review, we discuss the role of NSD proteins in transcription, genome topology, mitosis, oncogenesis, immunity, DSB repair, and known mechanisms regulating their activity.

核受体结合SET结构域(NSD)蛋白最初被描述为组蛋白H3中赖氨酸-36特异性的甲基转移酶,并与活性染色质相关。然而,它们在调控转录和整体细胞生理学中的作用要复杂得多,尤其是在哺乳动物中。其靶点的多样性以及相应的NSD蛋白参与的过程显示了其非规范功能的重要性。广泛的功能显然需要一个复杂的控制系统,以确保适当的空间和时间激活NSD甲基转移酶。在这篇综述中,我们讨论了NSD蛋白在转录、基因组拓扑、有丝分裂、肿瘤发生、免疫、DSB修复中的作用,以及调节其活性的已知机制。
{"title":"Many faces of mammalian NSD methyltransferases.","authors":"Eugenia A Tiukacheva, Yegor Vassetzky, Sergey V Razin, Dong Fang, Sergey V Ulianov","doi":"10.1186/s11658-025-00848-x","DOIUrl":"10.1186/s11658-025-00848-x","url":null,"abstract":"<p><p>Nuclear receptor-binding SET domain (NSD) proteins have been initially described as methyltransferases specific to lysine-36 in histone H3 and associated with active chromatin. However, their role in the regulation of transcription and in overall cellular physiology is much more complex, especially in mammals. The emerging diversity of their targets and, accordingly, the processes in which NSD proteins are involved, shows the importance of their noncanonical functions. A wide functionality apparently requires a complicated control system ensuring proper spatial and temporal activation of NSD methyltransferases. In this review, we discuss the role of NSD proteins in transcription, genome topology, mitosis, oncogenesis, immunity, DSB repair, and known mechanisms regulating their activity.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":" ","pages":"16"},"PeriodicalIF":10.2,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12870971/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145910540","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The multiple roles of Ggt1-Cre in the generation of transgenic mice. Ggt1-Cre在转基因小鼠产生中的多重作用。
IF 10.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-06 DOI: 10.1186/s11658-025-00844-1
Ze-Sen Feng, Jie Luo, Xiao-Cui Chen, Ping-Ping Zhao, Shi-Tong Qiu, Chun-Yu Wu, Xiao-Rong Huang, Bing-Chun Sun, Xiao-Jun Guo, Zhen-Nan Ye, Chen Yang, Hua-Feng Liu, Ji-Xin Tang
{"title":"The multiple roles of Ggt1-Cre in the generation of transgenic mice.","authors":"Ze-Sen Feng, Jie Luo, Xiao-Cui Chen, Ping-Ping Zhao, Shi-Tong Qiu, Chun-Yu Wu, Xiao-Rong Huang, Bing-Chun Sun, Xiao-Jun Guo, Zhen-Nan Ye, Chen Yang, Hua-Feng Liu, Ji-Xin Tang","doi":"10.1186/s11658-025-00844-1","DOIUrl":"10.1186/s11658-025-00844-1","url":null,"abstract":"","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":" ","pages":"19"},"PeriodicalIF":10.2,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12870300/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145910557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting integrin αVβ3-Ptgs2-mTOR signaling rescues bone formation in osteoporosis: from molecular mechanism toward therapy. 靶向整合素αVβ3-Ptgs2-mTOR信号恢复骨质疏松症的骨形成:从分子机制到治疗
IF 10.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-06 DOI: 10.1186/s11658-025-00842-3
Changshun Chen, Jinyi Gu, Chenhui Yang, Fei Yang, Zirui Liu, Lei Wen, Rongjing Chen, Bin Geng, Yayi Xia
{"title":"Targeting integrin αVβ3-Ptgs2-mTOR signaling rescues bone formation in osteoporosis: from molecular mechanism toward therapy.","authors":"Changshun Chen, Jinyi Gu, Chenhui Yang, Fei Yang, Zirui Liu, Lei Wen, Rongjing Chen, Bin Geng, Yayi Xia","doi":"10.1186/s11658-025-00842-3","DOIUrl":"10.1186/s11658-025-00842-3","url":null,"abstract":"","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":" ","pages":"17"},"PeriodicalIF":10.2,"publicationDate":"2026-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12870427/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145910571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
G-quadruplex structures are key regulators of mammalian spermatogenesis. g -四重体结构是哺乳动物精子发生的关键调节因子。
IF 10.2 1区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2026-01-03 DOI: 10.1186/s11658-025-00839-y
Shuo Li, Yixiao Ma, Haoxin Shi, Ruoyu Wang, Chen Li, Tian Zhang, Chunyu Zhu, Yanan Gu, Ziyao Song, Haoran Guo, Mohan Dong, Yu Li, Zhen Li, Ming-Qi Wang, Weihong Wen, Fa Yang, Weijun Qin
{"title":"G-quadruplex structures are key regulators of mammalian spermatogenesis.","authors":"Shuo Li, Yixiao Ma, Haoxin Shi, Ruoyu Wang, Chen Li, Tian Zhang, Chunyu Zhu, Yanan Gu, Ziyao Song, Haoran Guo, Mohan Dong, Yu Li, Zhen Li, Ming-Qi Wang, Weihong Wen, Fa Yang, Weijun Qin","doi":"10.1186/s11658-025-00839-y","DOIUrl":"10.1186/s11658-025-00839-y","url":null,"abstract":"","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":" ","pages":"15"},"PeriodicalIF":10.2,"publicationDate":"2026-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12865992/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145896088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cellular & Molecular Biology Letters
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1