Pub Date : 2025-01-24DOI: 10.1186/s11658-025-00692-z
Huayu Fan, Hui Zhao, Yan Hou, Danni Meng, Jizong Jiang, Eon-Bee Lee, Yinzheng Fu, Xiangdong Zhang, Rui Chen, Yongtao Wang
Background: Interfacial heterogeneity is widely explored to reveal molecular mechanisms of force-mediated pathways due to biased tension. However, the influence of cell density,, curvature, and interfacial heterogeneity on underlying pathways of mechanotransduction is obscure.
Methods: Polydimethylsiloxane (PDMS)-based stencils were micropatterned to prepare the micropores for cell culture. The colonies of human mesenchymal stem cells (hMSCs) were formed by controlling cell seeding density to investigate the influences of cell density, curvature and heterogeneity on mechanotransduction. Immunofluorescent staining of integrin, vinculin, and talin-1 was conducted to evaluate adhesion-related expression levels. Then, immunofluorescent staining of actin, actinin, and myosin was performed to detect cytoskeleton distribution, especially at the periphery. Nuclear force-sensing mechanotransduction was explained by yes-associated protein (YAP) and laminA/C analysis.
Results: The micropatterned colony of hMSCs demonstrated the coincident characters with engineered micropores of microstencils. The cell colony obviously developed the heterogeneous morphogenesis. Heterogeneous focal adhesion guided the development of actin, actinin, and myosin together to regulate cellular contractility and movement by integrin, vinculin, and talin-1. Cytoskeletal staining showed that actin, actinin, and myosin fibers were reorganized at the periphery of microstencils. YAP nuclear translocation and laminA/C nuclear remodeling were enhanced at the periphery by the regulation of heterogeneous focal adhesion (FA) and cytoskeleton arrangement.
Conclusions: The characters of the engineered clustering colony showed similar results with prepared microstencils, and colony curvature was also well adjusted to establish heterogeneous balance at the periphery of cell colony. The mechanism of curvature, spreading, and elongation was also investigated to disclose the compliance of FA and cytoskeleton along with curvature microarrays for increased nuclear force-sensing mechanotransduction. The results may provide helpful information for understanding interfacial heterogeneity and nuclear mechanotransduction of stem cells.
{"title":"Heterogeneous focal adhesion cytoskeleton nanoarchitectures from microengineered interfacial curvature to oversee nuclear remodeling and mechanotransduction of mesenchymal stem cells.","authors":"Huayu Fan, Hui Zhao, Yan Hou, Danni Meng, Jizong Jiang, Eon-Bee Lee, Yinzheng Fu, Xiangdong Zhang, Rui Chen, Yongtao Wang","doi":"10.1186/s11658-025-00692-z","DOIUrl":"10.1186/s11658-025-00692-z","url":null,"abstract":"<p><strong>Background: </strong>Interfacial heterogeneity is widely explored to reveal molecular mechanisms of force-mediated pathways due to biased tension. However, the influence of cell density,, curvature, and interfacial heterogeneity on underlying pathways of mechanotransduction is obscure.</p><p><strong>Methods: </strong>Polydimethylsiloxane (PDMS)-based stencils were micropatterned to prepare the micropores for cell culture. The colonies of human mesenchymal stem cells (hMSCs) were formed by controlling cell seeding density to investigate the influences of cell density, curvature and heterogeneity on mechanotransduction. Immunofluorescent staining of integrin, vinculin, and talin-1 was conducted to evaluate adhesion-related expression levels. Then, immunofluorescent staining of actin, actinin, and myosin was performed to detect cytoskeleton distribution, especially at the periphery. Nuclear force-sensing mechanotransduction was explained by yes-associated protein (YAP) and laminA/C analysis.</p><p><strong>Results: </strong>The micropatterned colony of hMSCs demonstrated the coincident characters with engineered micropores of microstencils. The cell colony obviously developed the heterogeneous morphogenesis. Heterogeneous focal adhesion guided the development of actin, actinin, and myosin together to regulate cellular contractility and movement by integrin, vinculin, and talin-1. Cytoskeletal staining showed that actin, actinin, and myosin fibers were reorganized at the periphery of microstencils. YAP nuclear translocation and laminA/C nuclear remodeling were enhanced at the periphery by the regulation of heterogeneous focal adhesion (FA) and cytoskeleton arrangement.</p><p><strong>Conclusions: </strong>The characters of the engineered clustering colony showed similar results with prepared microstencils, and colony curvature was also well adjusted to establish heterogeneous balance at the periphery of cell colony. The mechanism of curvature, spreading, and elongation was also investigated to disclose the compliance of FA and cytoskeleton along with curvature microarrays for increased nuclear force-sensing mechanotransduction. The results may provide helpful information for understanding interfacial heterogeneity and nuclear mechanotransduction of stem cells.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"30 1","pages":"10"},"PeriodicalIF":9.2,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11762875/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143037232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hakai protein (CBLL1 gene) was identified as an E3 ubiquitin ligase of E-cadherin complex, inducing its ubiquitination and degradation, thus inducing epithelial-to-mesenchymal transition. Most of the knowledge about the protein was associated to its E3 ubiquitin ligase canonical role. However, important recent published research has highlighted the noncanonical role of Hakai, independent of its E3 ubiquitin ligase activity, underscoring its involvement in the N6-methyladenosine (m6A) writer complex and its impact on the methylation of RNA. The involvement of Hakai in this mRNA modification process has renewed the relevance of this protein as an important contributor in cancer. Moreover, Hakai potential as a cancer biomarker and its prognostic value in malignant disease also emphasize its untapped potential in precision medicine, which would also be discussed in detail in our review. The development of the first small-molecule inhibitor that targets its atypical substrate binding domain is a promising step that could eventually lead to patient benefit, and we would cover its discovery and ongoing efforts toward its use in clinic.
{"title":"Beyond destruction: emerging roles of the E3 ubiquitin ligase Hakai.","authors":"Juan-José Escuder-Rodríguez, Andrea Rodríguez-Alonso, Lía Jove, Macarena Quiroga, Gloria Alfonsín, Angélica Figueroa","doi":"10.1186/s11658-025-00693-y","DOIUrl":"10.1186/s11658-025-00693-y","url":null,"abstract":"<p><p>Hakai protein (CBLL1 gene) was identified as an E3 ubiquitin ligase of E-cadherin complex, inducing its ubiquitination and degradation, thus inducing epithelial-to-mesenchymal transition. Most of the knowledge about the protein was associated to its E3 ubiquitin ligase canonical role. However, important recent published research has highlighted the noncanonical role of Hakai, independent of its E3 ubiquitin ligase activity, underscoring its involvement in the N<sup>6</sup>-methyladenosine (m<sup>6</sup>A) writer complex and its impact on the methylation of RNA. The involvement of Hakai in this mRNA modification process has renewed the relevance of this protein as an important contributor in cancer. Moreover, Hakai potential as a cancer biomarker and its prognostic value in malignant disease also emphasize its untapped potential in precision medicine, which would also be discussed in detail in our review. The development of the first small-molecule inhibitor that targets its atypical substrate binding domain is a promising step that could eventually lead to patient benefit, and we would cover its discovery and ongoing efforts toward its use in clinic.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"30 1","pages":"9"},"PeriodicalIF":9.2,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11749156/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: A previous study found that MAF1 homolog, a negative regulator of RNA polymerase III (MAF1), protects the blood-brain barrier (BBB) in sepsis-associated encephalopathy (SAE); however, the related molecular mechanisms remain unclear.
Subjects and methods: In this study, a rat sepsis model was constructed using the cecum ligation and puncture (CLP) method. In vitro, rat brain microvascular endothelial cells and astrocytes were stimulated with serum from the sepsis model rats. The loss of MAF1 protein levels and the molecular mechanisms leading to cell damage were investigated.
Results: It was shown in the SAE models that MAF1 was expressed at low levels. Knockdown of Cullin 2 (CUL2) stimulated the accumulation of MAF1 protein, attenuated the RNA sensor RIG-I/interferon regulatory factor 3 (IRF3) signaling pathway, and reduced cell apoptosis. Furthermore, it increased phosphatase and tensin homolog (PTEN) expression and inactivated the serine/threonine kinase (AKT)/mechanistic target of the rapamycin kinase (mTOR) signaling pathway. Interference with forkhead box O1 (FOXO1) inhibited MAF1 expression and activated the RIG-I/IRF3 signaling pathway, while MAF1 overexpression promoted PTEN expression, decreased cell apoptosis, and normalized autophagy.
Conclusions: These findings demonstrate that CUL2 promoted MAF1 ubiquitination and caused BBB injury in SAE. Through the regulatory loop of PTEN/AKT/FOXO1/MAF1, CUL2 initiated the gradual downregulation of MAF1, which subsequently regulated polymerase III (Pol III)-dependent transcription and played essential roles in cell apoptosis in SAE.
Clinical trial number: not applicable.
背景:先前的一项研究发现,RNA聚合酶III (MAF1)的负调节因子MAF1同源物在脓毒症相关脑病(SAE)中保护血脑屏障(BBB);然而,相关的分子机制尚不清楚。对象和方法:本研究采用盲肠结扎穿刺法(CLP)建立大鼠脓毒症模型。体外用脓毒症模型大鼠血清刺激大鼠脑微血管内皮细胞和星形胶质细胞。研究了MAF1蛋白水平的丧失及其导致细胞损伤的分子机制。结果:SAE模型显示MAF1表达水平较低。Cullin 2 (CUL2)的敲低刺激了MAF1蛋白的积累,减弱了RNA传感器RIG-I/干扰素调节因子3 (IRF3)信号通路,减少了细胞凋亡。此外,它增加了磷酸酶和紧张素同源物(PTEN)的表达,并使丝氨酸/苏氨酸激酶(AKT)/雷帕霉素激酶(mTOR)信号通路的机制靶点失活。干扰叉头盒O1 (FOXO1)抑制MAF1表达,激活RIG-I/IRF3信号通路,而MAF1过表达促进PTEN表达,减少细胞凋亡,使细胞自噬正常化。结论:这些结果表明CUL2促进了mafr1泛素化并导致SAE血脑屏障损伤。CUL2通过PTEN/AKT/FOXO1/MAF1的调控环,启动MAF1的逐渐下调,进而调控聚合酶III (polymerase III, Pol III)依赖的转录,在SAE细胞凋亡中发挥重要作用。临床试验号:不适用。
{"title":"Feedback loop centered on MAF1 reduces blood-brain barrier damage in sepsis-associated encephalopathy.","authors":"Xuebiao Wei, Wenqiang Jiang, Zhonghua Wang, Yichen Li, Yuanwen Jing, Yongli Han, Linqiang Huang, Shenglong Chen","doi":"10.1186/s11658-025-00686-x","DOIUrl":"10.1186/s11658-025-00686-x","url":null,"abstract":"<p><strong>Background: </strong>A previous study found that MAF1 homolog, a negative regulator of RNA polymerase III (MAF1), protects the blood-brain barrier (BBB) in sepsis-associated encephalopathy (SAE); however, the related molecular mechanisms remain unclear.</p><p><strong>Subjects and methods: </strong>In this study, a rat sepsis model was constructed using the cecum ligation and puncture (CLP) method. In vitro, rat brain microvascular endothelial cells and astrocytes were stimulated with serum from the sepsis model rats. The loss of MAF1 protein levels and the molecular mechanisms leading to cell damage were investigated.</p><p><strong>Results: </strong>It was shown in the SAE models that MAF1 was expressed at low levels. Knockdown of Cullin 2 (CUL2) stimulated the accumulation of MAF1 protein, attenuated the RNA sensor RIG-I/interferon regulatory factor 3 (IRF3) signaling pathway, and reduced cell apoptosis. Furthermore, it increased phosphatase and tensin homolog (PTEN) expression and inactivated the serine/threonine kinase (AKT)/mechanistic target of the rapamycin kinase (mTOR) signaling pathway. Interference with forkhead box O1 (FOXO1) inhibited MAF1 expression and activated the RIG-I/IRF3 signaling pathway, while MAF1 overexpression promoted PTEN expression, decreased cell apoptosis, and normalized autophagy.</p><p><strong>Conclusions: </strong>These findings demonstrate that CUL2 promoted MAF1 ubiquitination and caused BBB injury in SAE. Through the regulatory loop of PTEN/AKT/FOXO1/MAF1, CUL2 initiated the gradual downregulation of MAF1, which subsequently regulated polymerase III (Pol III)-dependent transcription and played essential roles in cell apoptosis in SAE.</p><p><strong>Clinical trial number: </strong>not applicable.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"30 1","pages":"8"},"PeriodicalIF":9.2,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11744841/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-17DOI: 10.1186/s11658-025-00685-y
Michał Biernacki, Elżbieta Skrzydlewska
The skin is a barrier that protects the human body against environmental factors (physical, including solar radiation, chemicals, and pathogens). The integrity and, consequently, the effective metabolic activity of skin cells is ensured by the cell membrane, the important structural and metabolic elements of which are phospholipids. Phospholipids are subject to continuous transformation, including enzymatic hydrolysis (with the participation of phospholipases A, C, and D) to free polyunsaturated fatty acids (PUFAs), which under the influence of cyclooxygenases (COX1/2), lipoxygenases (LOXs), and cytochrome P450 (CYPs P450) are metabolized to various classes of oxylipins, depending on the type of PUFA being metabolized and the enzyme acting. The most frequently analyzed oxylipins, especially in skin cells, are eicosanoids, which are derivatives of arachidonic acid (AA). Their level depends on both environmental factors and endogenous metabolic disorders. However, they play an important role in homeostasis mechanisms related to the structural and functional integrity of the skin, including maintaining redox balance, as well as regulating inflammatory processes arising in response to endogenous and exogenous factors reaching skin cells. Therefore, it is believed that dysregulation of eicosanoid levels may contribute to the development of skin diseases, such as psoriasis or atopic dermatitis, which in turn suggests that targeted control of the generation of specific eicosanoids may have diagnostic significance and beneficial therapeutic effects. This review is the first systemic and very detailed approach presenting both the causes and consequences of changes in phospholipid metabolism leading to the generation of eicosanoids, changes in the level of which result in specific metabolic disorders in skin cells leading to the development of various diseases. At the same time, existing literature data indicate that further detailed research is necessary to understand a clear relationship between changes in the level of specific eicosanoids and the pathomechanisms of specific skin diseases, as well as to develop an effective diagnostic and therapeutic approach.
{"title":"Metabolic pathways of eicosanoids-derivatives of arachidonic acid and their significance in skin.","authors":"Michał Biernacki, Elżbieta Skrzydlewska","doi":"10.1186/s11658-025-00685-y","DOIUrl":"10.1186/s11658-025-00685-y","url":null,"abstract":"<p><p>The skin is a barrier that protects the human body against environmental factors (physical, including solar radiation, chemicals, and pathogens). The integrity and, consequently, the effective metabolic activity of skin cells is ensured by the cell membrane, the important structural and metabolic elements of which are phospholipids. Phospholipids are subject to continuous transformation, including enzymatic hydrolysis (with the participation of phospholipases A, C, and D) to free polyunsaturated fatty acids (PUFAs), which under the influence of cyclooxygenases (COX1/2), lipoxygenases (LOXs), and cytochrome P450 (CYPs P450) are metabolized to various classes of oxylipins, depending on the type of PUFA being metabolized and the enzyme acting. The most frequently analyzed oxylipins, especially in skin cells, are eicosanoids, which are derivatives of arachidonic acid (AA). Their level depends on both environmental factors and endogenous metabolic disorders. However, they play an important role in homeostasis mechanisms related to the structural and functional integrity of the skin, including maintaining redox balance, as well as regulating inflammatory processes arising in response to endogenous and exogenous factors reaching skin cells. Therefore, it is believed that dysregulation of eicosanoid levels may contribute to the development of skin diseases, such as psoriasis or atopic dermatitis, which in turn suggests that targeted control of the generation of specific eicosanoids may have diagnostic significance and beneficial therapeutic effects. This review is the first systemic and very detailed approach presenting both the causes and consequences of changes in phospholipid metabolism leading to the generation of eicosanoids, changes in the level of which result in specific metabolic disorders in skin cells leading to the development of various diseases. At the same time, existing literature data indicate that further detailed research is necessary to understand a clear relationship between changes in the level of specific eicosanoids and the pathomechanisms of specific skin diseases, as well as to develop an effective diagnostic and therapeutic approach.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"30 1","pages":"7"},"PeriodicalIF":9.2,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11742234/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-15DOI: 10.1186/s11658-024-00684-5
Pritha Majumder, Biswanath Chatterjee, Khadiza Akter, Asmar Ahsan, Su Jie Tan, Chi-Chen Huang, Jen-Fei Chu, Che-Kun James Shen
Background: Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.
Method: Different molecular and imaging techniques, e.g., immunoprecipitation (IP), RNA-IP, Immunofluorescence (IF)/fluorescence in situ hybridization (FISH), live cell imaging, live cell tracking of RNA using beacon, and mouse model study are used to elucidate a novel mechanism regulating dendritic spine transport of mRNAs in mammalian neurons.
Results: We demonstrate here that brief mGluR1 activation-mediated dephosphorylation of pFMRP (S499) results in the dissociation of FMRP from TDP-43 and handover of TDP-43/Rac1 mRNA complex from the dendritic transport track on microtubules to myosin V track on the spine actin filaments. Rac1 mRNA thus enters the spines for translational reactivation and increases the mature spine density. In contrast, during mGluR1-mediated neuronal LTD, FMRP (S499) remains phosphorylated and the TDP-43/Rac1 mRNA complex, being associated with kinesin 1-FMRP/cortactin/drebrin, enters the spines owing to Ca2+-dependent microtubule invasion into spines, but without translational reactivation. In a VPA-ASD mouse model, this regulation become anomalous.
Conclusions: This study, for the first time, highlights the importance of posttranslational modification of RBPs, such as the neurodevelopmental disease-related protein FMRP, as the molecular switch regulating the dendrite-to-spine transport of specific mRNAs under mGluR1-mediated neurotransmissions. The misregulation of this switch could contribute to the pathogenesis of FMRP-related neurodisorders including the autism spectrum disorder (ASD). It also could indicate a molecular connection between ASD and neurodegenerative disease-related protein TDP-43 and opens up a new perspective of research to elucidate TDP-43 proteinopathy among patients with ASD.
{"title":"Molecular switch of the dendrite-to-spine transport of TDP-43/FMRP-bound neuronal mRNAs and its impairment in ASD.","authors":"Pritha Majumder, Biswanath Chatterjee, Khadiza Akter, Asmar Ahsan, Su Jie Tan, Chi-Chen Huang, Jen-Fei Chu, Che-Kun James Shen","doi":"10.1186/s11658-024-00684-5","DOIUrl":"10.1186/s11658-024-00684-5","url":null,"abstract":"<p><strong>Background: </strong>Regulation of messenger RNA (mRNA) transport and translation in neurons is essential for dendritic plasticity and learning/memory development. The trafficking of mRNAs along the hippocampal neuron dendrites remains translationally silent until they are selectively transported into the spines upon glutamate-induced receptor activation. However, the molecular mechanism(s) behind the spine entry of dendritic mRNAs under metabotropic glutamate receptor (mGluR)-mediated neuroactivation and long-term depression (LTD) as well as the fate of these mRNAs inside the spines are still elusive.</p><p><strong>Method: </strong>Different molecular and imaging techniques, e.g., immunoprecipitation (IP), RNA-IP, Immunofluorescence (IF)/fluorescence in situ hybridization (FISH), live cell imaging, live cell tracking of RNA using beacon, and mouse model study are used to elucidate a novel mechanism regulating dendritic spine transport of mRNAs in mammalian neurons.</p><p><strong>Results: </strong>We demonstrate here that brief mGluR1 activation-mediated dephosphorylation of pFMRP (S499) results in the dissociation of FMRP from TDP-43 and handover of TDP-43/Rac1 mRNA complex from the dendritic transport track on microtubules to myosin V track on the spine actin filaments. Rac1 mRNA thus enters the spines for translational reactivation and increases the mature spine density. In contrast, during mGluR1-mediated neuronal LTD, FMRP (S499) remains phosphorylated and the TDP-43/Rac1 mRNA complex, being associated with kinesin 1-FMRP/cortactin/drebrin, enters the spines owing to Ca<sup>2+</sup>-dependent microtubule invasion into spines, but without translational reactivation. In a VPA-ASD mouse model, this regulation become anomalous.</p><p><strong>Conclusions: </strong>This study, for the first time, highlights the importance of posttranslational modification of RBPs, such as the neurodevelopmental disease-related protein FMRP, as the molecular switch regulating the dendrite-to-spine transport of specific mRNAs under mGluR1-mediated neurotransmissions. The misregulation of this switch could contribute to the pathogenesis of FMRP-related neurodisorders including the autism spectrum disorder (ASD). It also could indicate a molecular connection between ASD and neurodegenerative disease-related protein TDP-43 and opens up a new perspective of research to elucidate TDP-43 proteinopathy among patients with ASD.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"30 1","pages":"6"},"PeriodicalIF":9.2,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11737055/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143000926","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-10DOI: 10.1186/s11658-024-00680-9
Zheng Cui, Xiaobai Liu, Tiange E, Hongda Lin, Di Wang, Yunhui Liu, Xuelei Ruan, Ping Wang, Libo Liu, Yixue Xue
Background: Glioblastoma multiforme (GBM) is a highly aggressive brain tumor, characterized by its poor prognosis. Glycolipid metabolism is strongly associated with GBM development and malignant behavior. However, the precise functions of snoRNAs and ADARs in glycolipid metabolism within GBM cells remain elusive. The objective of the present study is to delve into the underlying mechanisms through which snoRNAs and ADARs exert regulatory effects on glycolipid metabolism in GBM cells.
Methods: RNA immunoprecipitation and RNA pull-down experiments were conducted to verify the homodimerization of ADAR2 by SNORD113-3, and Sanger sequencing and Western blot experiments were used to detect the A-to-I RNA editing of PHKA2 mRNA by ADAR2. Furthermore, the phosphorylation of EBF1 was measured by in vitro kinase assay. Finally, in vivo studies using nude mice confirmed that SNORD113-3 and ADAR2 overexpression, along with PHKA2 knockdown, could suppress the formation of subcutaneous xenograft tumors and improve the outcome of tumor-bearing nude mice.
Results: We found that PHKA2 in GBM significantly promoted glycolipid metabolism, while SNORD113-3, ADAR2, and EBF1 significantly inhibited glycolipid metabolism. SNORD113-3 promotes ADAR2 protein expression by promoting ADAR2 homodimer formation. ADAR2 mediates the A-to-I RNA editing of PHKA2 mRNA. Mass spectrometry analysis and in vitro kinase testing revealed that PHKA2 phosphorylates EBF1 on Y256, reducing the stability and expression of EBF1. Furthermore, direct binding of EBF1 to PKM2 and ACLY promoters was observed, suggesting the inhibition of their expression by EBF1. These findings suggest the existence of a SNORD113-3/ADAR2/PHKA2/EBF1 pathway that collectively regulates the metabolism of glycolipid and the growth of GBM cells. Finally, in vivo studies using nude mice confirmed that knockdown of PHKA2, along with overexpression of SNORD113-3 and ADAR2, could obviously suppress GBM subcutaneous xenograft tumor formation and improve the outcome of those tumor-bearing nude mice.
Conclusions: Herein, we clarified the underlying mechanism involving the SNORD113-3/ADAR2/PHKA2/EBF1 pathway in the regulation of GBM cell growth and glycolipid metabolism. Our results provide a framework for the development of innovative therapeutic interventions to improve the prognosis of patients with GBM.
{"title":"Effect of SNORD113-3/ADAR2 on glycolipid metabolism in glioblastoma via A-to-I editing of PHKA2.","authors":"Zheng Cui, Xiaobai Liu, Tiange E, Hongda Lin, Di Wang, Yunhui Liu, Xuelei Ruan, Ping Wang, Libo Liu, Yixue Xue","doi":"10.1186/s11658-024-00680-9","DOIUrl":"10.1186/s11658-024-00680-9","url":null,"abstract":"<p><strong>Background: </strong>Glioblastoma multiforme (GBM) is a highly aggressive brain tumor, characterized by its poor prognosis. Glycolipid metabolism is strongly associated with GBM development and malignant behavior. However, the precise functions of snoRNAs and ADARs in glycolipid metabolism within GBM cells remain elusive. The objective of the present study is to delve into the underlying mechanisms through which snoRNAs and ADARs exert regulatory effects on glycolipid metabolism in GBM cells.</p><p><strong>Methods: </strong>RNA immunoprecipitation and RNA pull-down experiments were conducted to verify the homodimerization of ADAR2 by SNORD113-3, and Sanger sequencing and Western blot experiments were used to detect the A-to-I RNA editing of PHKA2 mRNA by ADAR2. Furthermore, the phosphorylation of EBF1 was measured by in vitro kinase assay. Finally, in vivo studies using nude mice confirmed that SNORD113-3 and ADAR2 overexpression, along with PHKA2 knockdown, could suppress the formation of subcutaneous xenograft tumors and improve the outcome of tumor-bearing nude mice.</p><p><strong>Results: </strong>We found that PHKA2 in GBM significantly promoted glycolipid metabolism, while SNORD113-3, ADAR2, and EBF1 significantly inhibited glycolipid metabolism. SNORD113-3 promotes ADAR2 protein expression by promoting ADAR2 homodimer formation. ADAR2 mediates the A-to-I RNA editing of PHKA2 mRNA. Mass spectrometry analysis and in vitro kinase testing revealed that PHKA2 phosphorylates EBF1 on Y256, reducing the stability and expression of EBF1. Furthermore, direct binding of EBF1 to PKM2 and ACLY promoters was observed, suggesting the inhibition of their expression by EBF1. These findings suggest the existence of a SNORD113-3/ADAR2/PHKA2/EBF1 pathway that collectively regulates the metabolism of glycolipid and the growth of GBM cells. Finally, in vivo studies using nude mice confirmed that knockdown of PHKA2, along with overexpression of SNORD113-3 and ADAR2, could obviously suppress GBM subcutaneous xenograft tumor formation and improve the outcome of those tumor-bearing nude mice.</p><p><strong>Conclusions: </strong>Herein, we clarified the underlying mechanism involving the SNORD113-3/ADAR2/PHKA2/EBF1 pathway in the regulation of GBM cell growth and glycolipid metabolism. Our results provide a framework for the development of innovative therapeutic interventions to improve the prognosis of patients with GBM.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"30 1","pages":"5"},"PeriodicalIF":9.2,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11724473/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142963982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Proper adhesion of cells to their environment is essential for the normal functioning of single cells and multicellular organisms. To attach to the extracellular matrix (ECM), mammalian cells form integrin adhesion complexes consisting of many proteins that together link the ECM and the actin cytoskeleton. Similar to mammalian cells, the amoeboid cells of the protist Dictyostelium discoideum also use multiprotein adhesion complexes to control their attachment to the underlying surface. However, the exact composition of the multiprotein complexes and the signaling pathways involved in the regulation of adhesion in D. discoideum have not yet been elucidated. Here, we show that the IQGAP-related protein IqgC is important for normal attachment of D. discoideum cells to the substratum. Mutant iqgC-null cells have impaired adhesion, whereas overexpression of IqgC promotes directional migration. A RasGAP C-terminal (RGCt) domain of IqgC is sufficient for its localization in the ventral adhesion focal complexes, while RasGAP activity of a GAP-related domain (GRD) is additionally required for the proper function of IqgC in adhesion. We identify the small GTPase RapA as a novel direct IqgC interactor and show that IqgC participates in a RapA-regulated signaling pathway targeting the adhesion complexes that include talin A, myosin VII, and paxillin B. On the basis of our results, we propose that IqgC is a positive regulator of adhesion, responsible for the strengthening of ventral adhesion structures and for the temporal control of their subsequent degradation.
{"title":"The IQGAP-related RasGAP IqgC regulates cell-substratum adhesion in Dictyostelium discoideum.","authors":"Lucija Mijanović, Darija Putar, Lucija Mimica, Sabina Klajn, Vedrana Filić, Igor Weber","doi":"10.1186/s11658-024-00678-3","DOIUrl":"10.1186/s11658-024-00678-3","url":null,"abstract":"<p><p>Proper adhesion of cells to their environment is essential for the normal functioning of single cells and multicellular organisms. To attach to the extracellular matrix (ECM), mammalian cells form integrin adhesion complexes consisting of many proteins that together link the ECM and the actin cytoskeleton. Similar to mammalian cells, the amoeboid cells of the protist Dictyostelium discoideum also use multiprotein adhesion complexes to control their attachment to the underlying surface. However, the exact composition of the multiprotein complexes and the signaling pathways involved in the regulation of adhesion in D. discoideum have not yet been elucidated. Here, we show that the IQGAP-related protein IqgC is important for normal attachment of D. discoideum cells to the substratum. Mutant iqgC-null cells have impaired adhesion, whereas overexpression of IqgC promotes directional migration. A RasGAP C-terminal (RGCt) domain of IqgC is sufficient for its localization in the ventral adhesion focal complexes, while RasGAP activity of a GAP-related domain (GRD) is additionally required for the proper function of IqgC in adhesion. We identify the small GTPase RapA as a novel direct IqgC interactor and show that IqgC participates in a RapA-regulated signaling pathway targeting the adhesion complexes that include talin A, myosin VII, and paxillin B. On the basis of our results, we propose that IqgC is a positive regulator of adhesion, responsible for the strengthening of ventral adhesion structures and for the temporal control of their subsequent degradation.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"30 1","pages":"4"},"PeriodicalIF":9.2,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11720917/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142944959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-09DOI: 10.1186/s11658-024-00681-8
Adhish S Walvekar, Marc Warmoes, Dean Cheung, Tim Sikora, Najmesadat Seyedkatouli, Gemma Gomez-Giro, Sebastian Perrone, Lisa Dengler, François Unger, Bruno F R Santos, Floriane Gavotto, Xiangyi Dong, Julia Becker-Kettern, Yong-Jun Kwon, Christian Jäger, Jens C Schwamborn, Nicole J Van Bergen, John Christodoulou, Carole L Linster
Background: Metabolism is error prone. For instance, the reduced forms of the central metabolic cofactors nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), can be converted into redox-inactive products, NADHX and NADPHX, through enzymatically catalyzed or spontaneous hydration. The metabolite repair enzymes NAXD and NAXE convert these damaged compounds back to the functional NAD(P)H cofactors. Pathogenic loss-of-function variants in NAXE and NAXD lead to development of the neurometabolic disorders progressive, early-onset encephalopathy with brain edema and/or leukoencephalopathy (PEBEL)1 and PEBEL2, respectively.
Methods: To gain insights into the molecular disease mechanisms, we investigated the metabolic impact of NAXD deficiency in human cell models. Control and NAXD-deficient cells were cultivated under different conditions, followed by cell viability and mitochondrial function assays as well as metabolomic analyses without or with stable isotope labeling. Enzymatic assays with purified recombinant proteins were performed to confirm molecular mechanisms suggested by the cell culture experiments.
Results: HAP1 NAXD knockout (NAXDko) cells showed growth impairment specifically in a basal medium containing galactose instead of glucose. Surprisingly, the galactose-grown NAXDko cells displayed only subtle signs of mitochondrial impairment, whereas metabolomic analyses revealed a strong inhibition of the cytosolic, de novo serine synthesis pathway in those cells as well as in NAXD patient-derived fibroblasts. We identified inhibition of 3-phosphoglycerate dehydrogenase as the root cause for this metabolic perturbation. The NAD precursor nicotinamide riboside (NR) and inosine exerted beneficial effects on HAP1 cell viability under galactose stress, with more pronounced effects in NAXDko cells. Metabolomic profiling in supplemented cells indicated that NR and inosine act via different mechanisms that at least partially involve the serine synthesis pathway.
Conclusions: Taken together, our study identifies a metabolic vulnerability in NAXD-deficient cells that can be targeted by small molecules such as NR or inosine, opening perspectives in the search for mechanism-based therapeutic interventions in PEBEL disorders.
{"title":"Failure to repair damaged NAD(P)H blocks de novo serine synthesis in human cells.","authors":"Adhish S Walvekar, Marc Warmoes, Dean Cheung, Tim Sikora, Najmesadat Seyedkatouli, Gemma Gomez-Giro, Sebastian Perrone, Lisa Dengler, François Unger, Bruno F R Santos, Floriane Gavotto, Xiangyi Dong, Julia Becker-Kettern, Yong-Jun Kwon, Christian Jäger, Jens C Schwamborn, Nicole J Van Bergen, John Christodoulou, Carole L Linster","doi":"10.1186/s11658-024-00681-8","DOIUrl":"https://doi.org/10.1186/s11658-024-00681-8","url":null,"abstract":"<p><strong>Background: </strong>Metabolism is error prone. For instance, the reduced forms of the central metabolic cofactors nicotinamide adenine dinucleotide (NADH) and nicotinamide adenine dinucleotide phosphate (NADPH), can be converted into redox-inactive products, NADHX and NADPHX, through enzymatically catalyzed or spontaneous hydration. The metabolite repair enzymes NAXD and NAXE convert these damaged compounds back to the functional NAD(P)H cofactors. Pathogenic loss-of-function variants in NAXE and NAXD lead to development of the neurometabolic disorders progressive, early-onset encephalopathy with brain edema and/or leukoencephalopathy (PEBEL)1 and PEBEL2, respectively.</p><p><strong>Methods: </strong>To gain insights into the molecular disease mechanisms, we investigated the metabolic impact of NAXD deficiency in human cell models. Control and NAXD-deficient cells were cultivated under different conditions, followed by cell viability and mitochondrial function assays as well as metabolomic analyses without or with stable isotope labeling. Enzymatic assays with purified recombinant proteins were performed to confirm molecular mechanisms suggested by the cell culture experiments.</p><p><strong>Results: </strong>HAP1 NAXD knockout (NAXDko) cells showed growth impairment specifically in a basal medium containing galactose instead of glucose. Surprisingly, the galactose-grown NAXDko cells displayed only subtle signs of mitochondrial impairment, whereas metabolomic analyses revealed a strong inhibition of the cytosolic, de novo serine synthesis pathway in those cells as well as in NAXD patient-derived fibroblasts. We identified inhibition of 3-phosphoglycerate dehydrogenase as the root cause for this metabolic perturbation. The NAD precursor nicotinamide riboside (NR) and inosine exerted beneficial effects on HAP1 cell viability under galactose stress, with more pronounced effects in NAXDko cells. Metabolomic profiling in supplemented cells indicated that NR and inosine act via different mechanisms that at least partially involve the serine synthesis pathway.</p><p><strong>Conclusions: </strong>Taken together, our study identifies a metabolic vulnerability in NAXD-deficient cells that can be targeted by small molecules such as NR or inosine, opening perspectives in the search for mechanism-based therapeutic interventions in PEBEL disorders.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"30 1","pages":"3"},"PeriodicalIF":9.2,"publicationDate":"2025-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11715087/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-06DOI: 10.1186/s11658-024-00682-7
Jiayi Zhang, Mingxuan Yao, Shiting Xia, Fancai Zeng, Qiuyu Liu
Hypoxia-inducible factors (HIFs) are essential transcription factors that orchestrate cellular responses to oxygen deprivation. HIF-1α, as an unstable subunit of HIF-1, is usually hydroxylated by prolyl hydroxylase domain enzymes under normoxic conditions, leading to ubiquitination and proteasomal degradation, thereby keeping low levels. Instead of hypoxia, sometimes even in normoxia, HIF-1α translocates into the nucleus, dimerizes with HIF-1β to generate HIF-1, and then activates genes involved in adaptive responses such as angiogenesis, metabolic reprogramming, and cellular survival, which presents new challenges and insights into its role in cellular processes. Thus, the review delves into the mechanisms by which HIF-1 maintains its stability under normoxia including but not limited to giving insights into transcriptional, translational, as well as posttranslational regulation to underscore the pivotal role of HIF-1 in cellular adaptation and malignancy. Moreover, HIF-1 is extensively involved in cancer and cardiovascular diseases and potentially serves as a bridge between them. An overview of HIF-1-related drugs that are approved or in clinical trials is summarized, highlighting their potential capacity for targeting HIF-1 in cancer and cardiovascular toxicity related to cancer treatment. The review provides a comprehensive insight into HIF-1's regulatory mechanism and paves the way for future research and therapeutic development.
{"title":"Systematic and comprehensive insights into HIF-1 stabilization under normoxic conditions: implications for cellular adaptation and therapeutic strategies in cancer.","authors":"Jiayi Zhang, Mingxuan Yao, Shiting Xia, Fancai Zeng, Qiuyu Liu","doi":"10.1186/s11658-024-00682-7","DOIUrl":"https://doi.org/10.1186/s11658-024-00682-7","url":null,"abstract":"<p><p>Hypoxia-inducible factors (HIFs) are essential transcription factors that orchestrate cellular responses to oxygen deprivation. HIF-1α, as an unstable subunit of HIF-1, is usually hydroxylated by prolyl hydroxylase domain enzymes under normoxic conditions, leading to ubiquitination and proteasomal degradation, thereby keeping low levels. Instead of hypoxia, sometimes even in normoxia, HIF-1α translocates into the nucleus, dimerizes with HIF-1β to generate HIF-1, and then activates genes involved in adaptive responses such as angiogenesis, metabolic reprogramming, and cellular survival, which presents new challenges and insights into its role in cellular processes. Thus, the review delves into the mechanisms by which HIF-1 maintains its stability under normoxia including but not limited to giving insights into transcriptional, translational, as well as posttranslational regulation to underscore the pivotal role of HIF-1 in cellular adaptation and malignancy. Moreover, HIF-1 is extensively involved in cancer and cardiovascular diseases and potentially serves as a bridge between them. An overview of HIF-1-related drugs that are approved or in clinical trials is summarized, highlighting their potential capacity for targeting HIF-1 in cancer and cardiovascular toxicity related to cancer treatment. The review provides a comprehensive insight into HIF-1's regulatory mechanism and paves the way for future research and therapeutic development.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"30 1","pages":"2"},"PeriodicalIF":9.2,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Epigenetic modifications have been proved to play important roles in the spinal degenerative diseases. As a type of noncoding RNA, the microRNA (miRNA) is a vital class of regulatory factor in the epigenetic modifications, while the role of miRNAs in the regulation of epigenetic modifications in ligamentum flavum hypertrophy (LFH) has not been fully investigated.
Methods: The miRNA sequencing analysis was used to explore the change of miRNA expression during the fibrosis of ligamentum flavum (LF) cells caused by the TGF-β1 (10 ng/ml). The downregulated miRNA miR-335-3p was selected to investigate its effects on the fibrosis of LF cells and explored the accurate relevant mechanisms.
Results: A total of 21 miRNAs were differently expressed during the fibrosis of LF cells. The downregulated miR-335-3p was selected for further investigation. MiR-335-3p was distinctly downregulated in the LFH tissues compared to non-LFH tissues. Overexpression of miR-335-3p could inhibit the fibrosis of LF cells. Further research showed miR-335-3p prevented the fibrosis of LF cells via binding to the 3'-UTR of SERPINE2 to reduce the expression of SERPINE2. The increased SERPINE2 expression might promote the fibrosis of LF cells via the activation of β-catenin signaling pathway to promote the transcription of fibrosis-related genes (ACTA2 and COL3A1).
Conclusions: Our results revealed that miR-335-3p prevented the fibrosis of LF cells via the epigenetic regulation of SERPINE2/β-catenin signaling pathway. The epigenetic regulator miR-335-3p might be a promising potential target for the treatment of LFH.
{"title":"Epigenetic modification regulates the ligamentum flavum hypertrophy through miR-335-3p/SERPINE2/β-catenin signaling pathway.","authors":"Yongzhao Zhao, Shuai Jiang, Longting Chen, Qian Xiang, Jialiang Lin, Weishi Li","doi":"10.1186/s11658-024-00660-z","DOIUrl":"10.1186/s11658-024-00660-z","url":null,"abstract":"<p><strong>Background: </strong>Epigenetic modifications have been proved to play important roles in the spinal degenerative diseases. As a type of noncoding RNA, the microRNA (miRNA) is a vital class of regulatory factor in the epigenetic modifications, while the role of miRNAs in the regulation of epigenetic modifications in ligamentum flavum hypertrophy (LFH) has not been fully investigated.</p><p><strong>Methods: </strong>The miRNA sequencing analysis was used to explore the change of miRNA expression during the fibrosis of ligamentum flavum (LF) cells caused by the TGF-β1 (10 ng/ml). The downregulated miRNA miR-335-3p was selected to investigate its effects on the fibrosis of LF cells and explored the accurate relevant mechanisms.</p><p><strong>Results: </strong>A total of 21 miRNAs were differently expressed during the fibrosis of LF cells. The downregulated miR-335-3p was selected for further investigation. MiR-335-3p was distinctly downregulated in the LFH tissues compared to non-LFH tissues. Overexpression of miR-335-3p could inhibit the fibrosis of LF cells. Further research showed miR-335-3p prevented the fibrosis of LF cells via binding to the 3'-UTR of SERPINE2 to reduce the expression of SERPINE2. The increased SERPINE2 expression might promote the fibrosis of LF cells via the activation of β-catenin signaling pathway to promote the transcription of fibrosis-related genes (ACTA2 and COL3A1).</p><p><strong>Conclusions: </strong>Our results revealed that miR-335-3p prevented the fibrosis of LF cells via the epigenetic regulation of SERPINE2/β-catenin signaling pathway. The epigenetic regulator miR-335-3p might be a promising potential target for the treatment of LFH.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"30 1","pages":"1"},"PeriodicalIF":9.2,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11699792/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}