Pub Date : 2024-07-12DOI: 10.1186/s11658-024-00616-3
Wei Jin, Zhenqun Xu, Yan Song, Fangjie Chen
Background: Extrachromosomal circular DNA (eccDNA), a kind of circular DNA that originates from chromosomes, carries complete gene information, particularly the oncogenic genes. This study aimed to examine the contributions of FAM84B induced by eccDNA to prostate cancer (PCa) development and the biomolecules involved.
Methods: The presence of eccDNA in PCa cells and the FAM84B transcripts that eccDNA carries were verified by outward and inward PCR. The effect of inhibition of eccDNA synthesis on FAM84B expression in PCa cells was analyzed by knocking down Lig3. The impact of FAM84B on the growth and metastases of PCa cells was verified by Cell Counting Kit-8 (CCK8), EdU, transwell assays, and a xenograft mouse model. Chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) and dual-luciferase reporter assays were carried out to examine the effect of FAM84B/MYC on WWP1 transcription, and a co-immunoprecipitation (Co-IP) assay was conducted to verify the modification of CDKN1B by WWP1. The function of this molecular axis in PCa was explored by rescue assays.
Results: The inhibited eccDNA synthesis significantly downregulated FAM84B in PCa cells, thereby attenuating the growth and metastasis of PCa. FAM84B promoted the transcription of WWP1 by MYC by activating the expression of MYC coterminous with the 8q24.21 gene desert in a beta catenin-dependent approach. WWP1 transcription promoted by MYC facilitated the ubiquitination and degradation of CDKN1B protein and inversely attenuated the repressive effect of CDKN1B on MYC expression. Exogenous overexpression of CDKN1B blocked FAM84B-activated MYC/WWP1 expression, thereby inhibiting PCa progression.
Conclusions: FAM84B promoted by eccDNA mediates degradation of CDKN1B via MYC/WWP1, thereby accelerating PCa progression.
{"title":"Extrachromosomal circular DNA promotes prostate cancer progression through the FAM84B/CDKN1B/MYC/WWP1 axis.","authors":"Wei Jin, Zhenqun Xu, Yan Song, Fangjie Chen","doi":"10.1186/s11658-024-00616-3","DOIUrl":"10.1186/s11658-024-00616-3","url":null,"abstract":"<p><strong>Background: </strong>Extrachromosomal circular DNA (eccDNA), a kind of circular DNA that originates from chromosomes, carries complete gene information, particularly the oncogenic genes. This study aimed to examine the contributions of FAM84B induced by eccDNA to prostate cancer (PCa) development and the biomolecules involved.</p><p><strong>Methods: </strong>The presence of eccDNA in PCa cells and the FAM84B transcripts that eccDNA carries were verified by outward and inward PCR. The effect of inhibition of eccDNA synthesis on FAM84B expression in PCa cells was analyzed by knocking down Lig3. The impact of FAM84B on the growth and metastases of PCa cells was verified by Cell Counting Kit-8 (CCK8), EdU, transwell assays, and a xenograft mouse model. Chromatin immunoprecipitation quantitative PCR (ChIP-qPCR) and dual-luciferase reporter assays were carried out to examine the effect of FAM84B/MYC on WWP1 transcription, and a co-immunoprecipitation (Co-IP) assay was conducted to verify the modification of CDKN1B by WWP1. The function of this molecular axis in PCa was explored by rescue assays.</p><p><strong>Results: </strong>The inhibited eccDNA synthesis significantly downregulated FAM84B in PCa cells, thereby attenuating the growth and metastasis of PCa. FAM84B promoted the transcription of WWP1 by MYC by activating the expression of MYC coterminous with the 8q24.21 gene desert in a beta catenin-dependent approach. WWP1 transcription promoted by MYC facilitated the ubiquitination and degradation of CDKN1B protein and inversely attenuated the repressive effect of CDKN1B on MYC expression. Exogenous overexpression of CDKN1B blocked FAM84B-activated MYC/WWP1 expression, thereby inhibiting PCa progression.</p><p><strong>Conclusions: </strong>FAM84B promoted by eccDNA mediates degradation of CDKN1B via MYC/WWP1, thereby accelerating PCa progression.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"103"},"PeriodicalIF":9.2,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11245840/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141598760","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.1186/s11658-024-00618-1
Wenpeng Liang, Feng Xu, Li Li, Chunlei Peng, Hualin Sun, Jiaying Qiu, Junjie Sun
Skeletal muscular atrophy is a complex disease involving a large number of gene expression regulatory networks and various biological processes. Despite extensive research on this topic, its underlying mechanisms remain elusive, and effective therapeutic approaches are yet to be established. Recent studies have shown that epigenetics play an important role in regulating skeletal muscle atrophy, influencing the expression of numerous genes associated with this condition through the addition or removal of certain chemical modifications at the molecular level. This review article comprehensively summarizes the different types of modifications to DNA, histones, RNA, and their known regulators. We also discuss how epigenetic modifications change during the process of skeletal muscle atrophy, the molecular mechanisms by which epigenetic regulatory proteins control skeletal muscle atrophy, and assess their translational potential. The role of epigenetics on muscle stem cells is also highlighted. In addition, we propose that alternative splicing interacts with epigenetic mechanisms to regulate skeletal muscle mass, offering a novel perspective that enhances our understanding of epigenetic inheritance's role and the regulatory network governing skeletal muscle atrophy. Collectively, advancements in the understanding of epigenetic mechanisms provide invaluable insights into the study of skeletal muscle atrophy. Moreover, this knowledge paves the way for identifying new avenues for the development of more effective therapeutic strategies and pharmaceutical interventions.
{"title":"Epigenetic control of skeletal muscle atrophy.","authors":"Wenpeng Liang, Feng Xu, Li Li, Chunlei Peng, Hualin Sun, Jiaying Qiu, Junjie Sun","doi":"10.1186/s11658-024-00618-1","DOIUrl":"10.1186/s11658-024-00618-1","url":null,"abstract":"<p><p>Skeletal muscular atrophy is a complex disease involving a large number of gene expression regulatory networks and various biological processes. Despite extensive research on this topic, its underlying mechanisms remain elusive, and effective therapeutic approaches are yet to be established. Recent studies have shown that epigenetics play an important role in regulating skeletal muscle atrophy, influencing the expression of numerous genes associated with this condition through the addition or removal of certain chemical modifications at the molecular level. This review article comprehensively summarizes the different types of modifications to DNA, histones, RNA, and their known regulators. We also discuss how epigenetic modifications change during the process of skeletal muscle atrophy, the molecular mechanisms by which epigenetic regulatory proteins control skeletal muscle atrophy, and assess their translational potential. The role of epigenetics on muscle stem cells is also highlighted. In addition, we propose that alternative splicing interacts with epigenetic mechanisms to regulate skeletal muscle mass, offering a novel perspective that enhances our understanding of epigenetic inheritance's role and the regulatory network governing skeletal muscle atrophy. Collectively, advancements in the understanding of epigenetic mechanisms provide invaluable insights into the study of skeletal muscle atrophy. Moreover, this knowledge paves the way for identifying new avenues for the development of more effective therapeutic strategies and pharmaceutical interventions.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"99"},"PeriodicalIF":9.2,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229277/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558138","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.1186/s11658-024-00613-6
Patrick Auberger, Cécile Favreau, Coline Savy, Arnaud Jacquel, Guillaume Robert
Phospholipid Hydroperoxide Gluthatione Peroxidase also called Glutathione Peroxidase 4 is one of the 25 described human selenoproteins. It plays an essential role in eliminating toxic lipid hydroxy peroxides, thus inhibiting ferroptosis and favoring cell survival. GPX4 is differentially expressed according to myeloid differentiation stage, exhibiting lower expression in hematopoietic stem cells and polymorphonuclear leucocytes, while harboring higher level of expression in common myeloid progenitors and monocytes. In addition, GPX4 is highly expressed in most of acute myeloid leukemia (AML) subtypes compared to normal hematopoietic stem cells. High GPX4 expression is consistently correlated to poor prognosis in patients suffering AML. However, the role of GPX4 in the development of the myeloid lineage and in the initiation and progression of myeloid leukemia remains poorly explored. Given its essential role in the detoxification of lipid hydroperoxides, and its overexpression in most of myeloid malignancies, GPX4 inhibition has emerged as a promising therapeutic strategy to specifically trigger ferroptosis and eradicate myeloid leukemia cells. In this review, we describe the most recent advances concerning the role of GPX4 and, more generally ferroptosis in the myeloid lineage and in the emergence of AML. We also discuss the therapeutic interest and limitations of GPX4 inhibition alone or in combination with other drugs as innovative therapies to treat AML patients.
{"title":"Emerging role of glutathione peroxidase 4 in myeloid cell lineage development and acute myeloid leukemia.","authors":"Patrick Auberger, Cécile Favreau, Coline Savy, Arnaud Jacquel, Guillaume Robert","doi":"10.1186/s11658-024-00613-6","DOIUrl":"10.1186/s11658-024-00613-6","url":null,"abstract":"<p><p>Phospholipid Hydroperoxide Gluthatione Peroxidase also called Glutathione Peroxidase 4 is one of the 25 described human selenoproteins. It plays an essential role in eliminating toxic lipid hydroxy peroxides, thus inhibiting ferroptosis and favoring cell survival. GPX4 is differentially expressed according to myeloid differentiation stage, exhibiting lower expression in hematopoietic stem cells and polymorphonuclear leucocytes, while harboring higher level of expression in common myeloid progenitors and monocytes. In addition, GPX4 is highly expressed in most of acute myeloid leukemia (AML) subtypes compared to normal hematopoietic stem cells. High GPX4 expression is consistently correlated to poor prognosis in patients suffering AML. However, the role of GPX4 in the development of the myeloid lineage and in the initiation and progression of myeloid leukemia remains poorly explored. Given its essential role in the detoxification of lipid hydroperoxides, and its overexpression in most of myeloid malignancies, GPX4 inhibition has emerged as a promising therapeutic strategy to specifically trigger ferroptosis and eradicate myeloid leukemia cells. In this review, we describe the most recent advances concerning the role of GPX4 and, more generally ferroptosis in the myeloid lineage and in the emergence of AML. We also discuss the therapeutic interest and limitations of GPX4 inhibition alone or in combination with other drugs as innovative therapies to treat AML patients.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"98"},"PeriodicalIF":9.2,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11229210/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.1186/s11658-024-00614-5
Jiajia Lu, Xiaojian Shi, Qiang Fu, Yaguang Han, Lei Zhu, Zhibin Zhou, Yongchuan Li, Nan Lu
<p><strong>Objective: </strong>Osteoporosis is a global health issue characterized by decreased bone mass and microstructural degradation, leading to an increased risk of fractures. This study aims to explore the molecular mechanism by which P2X7 receptors influence osteoclast formation and bone resorption through the PI3K-Akt-GSK3β signaling pathway.</p><p><strong>Methods: </strong>An osteoporosis mouse model was generated through ovariectomy (OVX) in normal C57BL/6 and P2X7<sup>f/f</sup>; LysM-cre mice. Osteoclasts were isolated for transcriptomic analysis, and differentially expressed genes were selected for functional enrichment analysis. Metabolite analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and multivariate statistical analysis and pattern recognition were used to identify differential lipid metabolism markers and their distribution. Bioinformatics analyses were conducted using the Encyclopedia of Genes and Genomes database and the MetaboAnalyst database to assess potential biomarkers and create a metabolic pathway map. Osteoclast precursor cells were used for in vitro cell experiments, evaluating cell viability and proliferation using the Cell Counting Kit 8 (CCK-8) assay. Osteoclast precursor cells were induced to differentiate into osteoclasts using macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-beta ligand (RANKL), and tartrate-resistant acid phosphatase (TRAP) staining was performed to compare differentiation morphology, size, and quantity between different groups. Western blot analysis was used to assess the expression of differentiation markers, fusion gene markers, and bone resorption ability markers in osteoclasts. Immunofluorescence staining was employed to examine the spatial distribution and quantity of osteoclast cell skeletons, P2X7 protein, and cell nuclei, while pit assay was used to evaluate osteoclast bone resorption ability. Finally, in vivo animal experiments, including micro computed tomography (micro-CT), hematoxylin and eosin (HE) staining, TRAP staining, and immunohistochemistry, were conducted to observe bone tissue morphology, osteoclast differentiation, and the phosphorylation level of the PI3K-Akt-GSK3β signaling pathway.</p><p><strong>Results: </strong>Transcriptomic and metabolomic data collectively reveal that the P2X7 receptor can impact the pathogenesis of osteoporosis through the PI3K-Akt-GSK3β signaling pathway. Subsequent in vitro experiments showed that cells in the Sh-P2X7 + Recilisib group exhibited increased proliferative activity (1.15 versus 0.59), higher absorbance levels (0.68 versus 0.34), and a significant increase in resorption pit area (13.94 versus 3.50). Expression levels of osteoclast differentiation-related proteins MMP-9, CK, and NFATc1 were markedly elevated (MMP-9: 1.72 versus 0.96; CK: 2.54 versus 0.95; NFATc1: 3.05 versus 0.95), along with increased fluorescent intensity of F-actin rings. In contr
{"title":"New mechanistic understanding of osteoclast differentiation and bone resorption mediated by P2X7 receptors and PI3K-Akt-GSK3β signaling.","authors":"Jiajia Lu, Xiaojian Shi, Qiang Fu, Yaguang Han, Lei Zhu, Zhibin Zhou, Yongchuan Li, Nan Lu","doi":"10.1186/s11658-024-00614-5","DOIUrl":"10.1186/s11658-024-00614-5","url":null,"abstract":"<p><strong>Objective: </strong>Osteoporosis is a global health issue characterized by decreased bone mass and microstructural degradation, leading to an increased risk of fractures. This study aims to explore the molecular mechanism by which P2X7 receptors influence osteoclast formation and bone resorption through the PI3K-Akt-GSK3β signaling pathway.</p><p><strong>Methods: </strong>An osteoporosis mouse model was generated through ovariectomy (OVX) in normal C57BL/6 and P2X7<sup>f/f</sup>; LysM-cre mice. Osteoclasts were isolated for transcriptomic analysis, and differentially expressed genes were selected for functional enrichment analysis. Metabolite analysis was performed using liquid chromatography-tandem mass spectrometry (LC-MS/MS), and multivariate statistical analysis and pattern recognition were used to identify differential lipid metabolism markers and their distribution. Bioinformatics analyses were conducted using the Encyclopedia of Genes and Genomes database and the MetaboAnalyst database to assess potential biomarkers and create a metabolic pathway map. Osteoclast precursor cells were used for in vitro cell experiments, evaluating cell viability and proliferation using the Cell Counting Kit 8 (CCK-8) assay. Osteoclast precursor cells were induced to differentiate into osteoclasts using macrophage colony-stimulating factor (M-CSF) and receptor activator of nuclear factor kappa-beta ligand (RANKL), and tartrate-resistant acid phosphatase (TRAP) staining was performed to compare differentiation morphology, size, and quantity between different groups. Western blot analysis was used to assess the expression of differentiation markers, fusion gene markers, and bone resorption ability markers in osteoclasts. Immunofluorescence staining was employed to examine the spatial distribution and quantity of osteoclast cell skeletons, P2X7 protein, and cell nuclei, while pit assay was used to evaluate osteoclast bone resorption ability. Finally, in vivo animal experiments, including micro computed tomography (micro-CT), hematoxylin and eosin (HE) staining, TRAP staining, and immunohistochemistry, were conducted to observe bone tissue morphology, osteoclast differentiation, and the phosphorylation level of the PI3K-Akt-GSK3β signaling pathway.</p><p><strong>Results: </strong>Transcriptomic and metabolomic data collectively reveal that the P2X7 receptor can impact the pathogenesis of osteoporosis through the PI3K-Akt-GSK3β signaling pathway. Subsequent in vitro experiments showed that cells in the Sh-P2X7 + Recilisib group exhibited increased proliferative activity (1.15 versus 0.59), higher absorbance levels (0.68 versus 0.34), and a significant increase in resorption pit area (13.94 versus 3.50). Expression levels of osteoclast differentiation-related proteins MMP-9, CK, and NFATc1 were markedly elevated (MMP-9: 1.72 versus 0.96; CK: 2.54 versus 0.95; NFATc1: 3.05 versus 0.95), along with increased fluorescent intensity of F-actin rings. In contr","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"100"},"PeriodicalIF":9.2,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232284/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-08DOI: 10.1186/s11658-024-00617-2
Siyong Peng, Yingbo Guo, Marie Irondelle, Abigail Mazzu, Michel Kahi, Paula Ferreira Montenegro, Frédéric Bost, Nathalie M Mazure
Background: Prostate cancer (PCa) ranks as the second most prevalent cancer in men, with advanced stages posing significant treatment challenges. Given its solid tumor nature, PCa is highly susceptible to hypoxia, a condition associated with resistance to radiation and chemotherapy, metastasis, and unfavorable patient outcomes. Hypoxia-inducible factors (HIFs) play a pivotal role in cancer cell adaptation to hypoxic environments, contributing to treatment resistance. Consequently, inhibitors targeting HIFs hold promise for cancer therapy.
Methods: In this study, we aimed to characterize novel HIF-1α inhibitors including Sodwanones A (1), B (2), C (3), G (4) and Yardenone 2 (5) isolated from marine sponges belonging to the Axinella genus. Our investigation evaluated the impact of these compounds on various aspects of HIF-1α regulation, including stabilization, nuclear localization, expression of HIF-1 target genes (while sparing HIF-2 target genes), cellular metabolism, as well as cell proliferation and viability in prostate cells under hypoxic conditions.
Results: Our findings revealed that among the compounds tested, Yardenone 2 exhibited notable effects in hypoxia: it destabilized HIF-1α at the protein level, decreased its nuclear localization, selectively altered the expression of HIF-1 target genes, and restrained cell proliferation in aggressive PC3 prostate cancer cells as well as in an MSK-PCa3 patient-derived organoid line. Moreover, it affected the morphology of these organoid. Yardenone 2 was also compared to Docetaxel, a specific microtubule inhibitor and a drug used in the treatment of prostate cancer. The comparison between the two compounds revealed notable differences, such as a lack of specificity to hypoxic cells of Docetaxel.
Conclusion: These results mark the first demonstration that Yardenone 2 functions as a cytostatic-like inhibitor impacting microtubules, specifically targeting hypoxic cancer cells. This discovery suggests a promising avenue for novel therapeutic interventions in prostate cancer.
{"title":"The marine-derived HIF-1α inhibitor, Yardenone 2, reduces prostate cancer cell proliferation by targeting HIF-1 target genes.","authors":"Siyong Peng, Yingbo Guo, Marie Irondelle, Abigail Mazzu, Michel Kahi, Paula Ferreira Montenegro, Frédéric Bost, Nathalie M Mazure","doi":"10.1186/s11658-024-00617-2","DOIUrl":"10.1186/s11658-024-00617-2","url":null,"abstract":"<p><strong>Background: </strong>Prostate cancer (PCa) ranks as the second most prevalent cancer in men, with advanced stages posing significant treatment challenges. Given its solid tumor nature, PCa is highly susceptible to hypoxia, a condition associated with resistance to radiation and chemotherapy, metastasis, and unfavorable patient outcomes. Hypoxia-inducible factors (HIFs) play a pivotal role in cancer cell adaptation to hypoxic environments, contributing to treatment resistance. Consequently, inhibitors targeting HIFs hold promise for cancer therapy.</p><p><strong>Methods: </strong>In this study, we aimed to characterize novel HIF-1α inhibitors including Sodwanones A (1), B (2), C (3), G (4) and Yardenone 2 (5) isolated from marine sponges belonging to the Axinella genus. Our investigation evaluated the impact of these compounds on various aspects of HIF-1α regulation, including stabilization, nuclear localization, expression of HIF-1 target genes (while sparing HIF-2 target genes), cellular metabolism, as well as cell proliferation and viability in prostate cells under hypoxic conditions.</p><p><strong>Results: </strong>Our findings revealed that among the compounds tested, Yardenone 2 exhibited notable effects in hypoxia: it destabilized HIF-1α at the protein level, decreased its nuclear localization, selectively altered the expression of HIF-1 target genes, and restrained cell proliferation in aggressive PC3 prostate cancer cells as well as in an MSK-PCa3 patient-derived organoid line. Moreover, it affected the morphology of these organoid. Yardenone 2 was also compared to Docetaxel, a specific microtubule inhibitor and a drug used in the treatment of prostate cancer. The comparison between the two compounds revealed notable differences, such as a lack of specificity to hypoxic cells of Docetaxel.</p><p><strong>Conclusion: </strong>These results mark the first demonstration that Yardenone 2 functions as a cytostatic-like inhibitor impacting microtubules, specifically targeting hypoxic cancer cells. This discovery suggests a promising avenue for novel therapeutic interventions in prostate cancer.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"101"},"PeriodicalIF":9.2,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11232290/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141558140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-03DOI: 10.1186/s11658-024-00611-8
Weiwei Jin, Yanru Yao, Yuhan Fu, Xiangxiang Lei, Wen Fu, Qiliang Lu, Xiangmin Tong, Qiuran Xu, Wei Su, Xiaoge Hu
Background: Pancreatic cancer (PC) is one of the most malignant cancers with highly aggressiveness and poor prognosis. N6-methyladenosine (m6A) have been indicated to be involved in PC development. Glucan Branching Enzyme 1 (GBE1) is mainly involved in cell glycogen metabolism. However, the function of GBE1 and Whether GBE1 occurs m6A modification in PC progression remains to be illustrated.
Methods: The clinical prognosis of GBE1 was analyzed through online platform. The expression of GBE1 was obtained from online platform and then verified in normal and PC cell lines. Lentivirus was used to generated GBE1 stable-overexpression or knockdown PC cells. Cell Counting Kit (CCK-8), colony formation assay, sphere formation assay and flow cytometry assay were conducted to analyze cell proliferation and stemness ability in vitro. Subcutaneous and orthotopic mouse models were used to verify the function of GBE1 in vivo. RNA immunoprecipitation (RIP) assay, RNA stability experiment and western blots were conducted to explore the molecular regulation of GBE1 in PC.
Results: GBE1 was significantly upregulated in PC and associated with poor prognosis of PC patients. Functionally, GBE1 overexpression facilitated PC cell proliferation and stemness-like properties, while knockdown of GBE1 attenuated the malignancy of PC cells. Importantly, we found the m6A modification of GBE1 RNA, and WTAP and IGF2BP3 was revealed as the m6A regulators to increase GBE1 mRNA stability and expression. Furthermore, c-Myc was discovered as a downstream gene of GBE1 and functional rescue experiments showed that overexpression of c-Myc could rescue GBE1 knockdown-induced PC cell growth inhibition.
Conclusions: Our study uncovered the oncogenic role of GBE1/c-Myc axis in PC progression and revealed WTAP/IGF2BP3-mediated m6A modification of GBE1, which highlight the potential application of GBE1 in the targeted therapy of PC.
背景:胰腺癌(PC)是侵袭性极强、预后极差的恶性肿瘤之一。有研究表明,N6-甲基腺苷(m6A)与胰腺癌的发病有关。葡聚糖分支酶 1(GBE1)主要参与细胞糖原代谢。然而,GBE1的功能以及GBE1是否会在PC进展过程中发生m6A修饰仍有待说明:方法:通过在线平台对 GBE1 的临床预后进行分析。方法:通过在线平台分析了 GBE1 的临床预后,并在正常细胞系和 PC 细胞系中验证了 GBE1 的表达。使用慢病毒生成 GBE1 稳定表达或敲除的 PC 细胞。采用细胞计数试剂盒(CCK-8)、集落形成试验、球形成试验和流式细胞术分析体外细胞增殖和干性能力。采用皮下和正位小鼠模型来验证 GBE1 在体内的功能。通过RNA免疫沉淀(RIP)实验、RNA稳定性实验和Western印迹来探讨GBE1在PC中的分子调控:结果:GBE1在PC中明显上调,并与PC患者的不良预后相关。结果:GBE1在PC中明显上调,并与PC患者的不良预后相关。在功能上,GBE1的过表达促进了PC细胞的增殖和类干细胞特性,而敲除GBE1则会减轻PC细胞的恶性程度。重要的是,我们发现了GBE1 RNA的m6A修饰,WTAP和IGF2BP3是增加GBE1 mRNA稳定性和表达的m6A调控因子。此外,研究还发现c-Myc是GBE1的下游基因,功能拯救实验表明,过表达c-Myc可拯救GBE1敲除诱导的PC细胞生长抑制:我们的研究发现了GBE1/c-Myc轴在PC进展中的致癌作用,并揭示了WTAP/IGF2BP3介导的GBE1的m6A修饰,这凸显了GBE1在PC靶向治疗中的潜在应用。
{"title":"WTAP/IGF2BP3-mediated GBE1 expression accelerates the proliferation and enhances stemness in pancreatic cancer cells via upregulating c-Myc.","authors":"Weiwei Jin, Yanru Yao, Yuhan Fu, Xiangxiang Lei, Wen Fu, Qiliang Lu, Xiangmin Tong, Qiuran Xu, Wei Su, Xiaoge Hu","doi":"10.1186/s11658-024-00611-8","DOIUrl":"10.1186/s11658-024-00611-8","url":null,"abstract":"<p><strong>Background: </strong>Pancreatic cancer (PC) is one of the most malignant cancers with highly aggressiveness and poor prognosis. N6-methyladenosine (m6A) have been indicated to be involved in PC development. Glucan Branching Enzyme 1 (GBE1) is mainly involved in cell glycogen metabolism. However, the function of GBE1 and Whether GBE1 occurs m6A modification in PC progression remains to be illustrated.</p><p><strong>Methods: </strong>The clinical prognosis of GBE1 was analyzed through online platform. The expression of GBE1 was obtained from online platform and then verified in normal and PC cell lines. Lentivirus was used to generated GBE1 stable-overexpression or knockdown PC cells. Cell Counting Kit (CCK-8), colony formation assay, sphere formation assay and flow cytometry assay were conducted to analyze cell proliferation and stemness ability in vitro. Subcutaneous and orthotopic mouse models were used to verify the function of GBE1 in vivo. RNA immunoprecipitation (RIP) assay, RNA stability experiment and western blots were conducted to explore the molecular regulation of GBE1 in PC.</p><p><strong>Results: </strong>GBE1 was significantly upregulated in PC and associated with poor prognosis of PC patients. Functionally, GBE1 overexpression facilitated PC cell proliferation and stemness-like properties, while knockdown of GBE1 attenuated the malignancy of PC cells. Importantly, we found the m6A modification of GBE1 RNA, and WTAP and IGF2BP3 was revealed as the m6A regulators to increase GBE1 mRNA stability and expression. Furthermore, c-Myc was discovered as a downstream gene of GBE1 and functional rescue experiments showed that overexpression of c-Myc could rescue GBE1 knockdown-induced PC cell growth inhibition.</p><p><strong>Conclusions: </strong>Our study uncovered the oncogenic role of GBE1/c-Myc axis in PC progression and revealed WTAP/IGF2BP3-mediated m6A modification of GBE1, which highlight the potential application of GBE1 in the targeted therapy of PC.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"97"},"PeriodicalIF":9.2,"publicationDate":"2024-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11223412/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141497218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Anti-angiogenic therapy has become one of the effective treatment methods for tumors. Long noncoding RNAs (lncRNAs) are emerging as important regulators of tumorigenesis and angiogenesis in EC. However, the underlying mechanisms of lncRNA TRPM2-AS in EC are still not clear.
Methods: We screened the differently expressed lncRNAs that were highly associated with poor prognosis and angiogenesis of EC by bioinformatics analysis, and constructed a ceRNA network based on the prognostic lncRNAs. The subcellular localization of TRPM2-AS was determined by fluorescence in situ hybridization (FISH) and nuclear cytoplasmic fractionation assay. CCK-8, EdU, transwell, western blot, qRT-PCR and endothelial tube formation assay were used to evaluate the effects of TRPM2-AS on the proliferation, invasion, migration of EC cells and angiogenesis. The targeted microRNA (miRNA) of TRPM2-AS was predicted by bioinformatic methods. The interaction between TRPM2-AS and miR497-5p, miR497-5p and SPP1 were analyzed by RNA immunoprecipitation and dual-luciferase reporter assay. A subcutaneous tumor model was used to explore TRPM2-AS's function in vivo. CIBERSORT was used to analyze the correlation between TRPM2-AS and immune cell immersion in EC.
Results: We found that the expression of TRPM2-AS and SPP1 was aberrantly upregulated, while miR-497-5p expression was significantly downregulated in EC tissues and cells. TRPM2-AS was closely correlated with the angiogenesis and poor prognosis in EC patients. Mechanistically, TRPM2-AS could sponge miR-497-5p to release SPP1, thus promoting the proliferation, invasion and migration of EC cells and angiogenesis of HUVECs. Knockdown of TRPM2-AS in xenograft mouse model inhibited tumor proliferation and angiogenesis in vivo. In addition, TRPM2-AS plays a vital role in regulating the tumor immune microenvironment of EC, overexpression of TRPM2-AS in EC cells stimulated the polarization of M2 macrophages and angiogenesis through secreting SPP1 enriched exosomes.
Conclusion: The depletion of TRPM2-AS inhibits the oncogenicity of EC by targeting the miR-497-5p/SPP1 axis. This study offers a better understanding of TRPM2-AS's role in regulating angiogenesis and provides a novel target for EC treatment.
{"title":"LncRNA TRPM2-AS promotes endometrial carcinoma progression and angiogenesis via targeting miR-497-5p/SPP1 axis.","authors":"Hanbo Ma, Fengyun Weng, Xiaowen Tong, Huaifang Li, Yinan Yao, Jiangjing Yuan","doi":"10.1186/s11658-024-00612-7","DOIUrl":"10.1186/s11658-024-00612-7","url":null,"abstract":"<p><strong>Background: </strong>Anti-angiogenic therapy has become one of the effective treatment methods for tumors. Long noncoding RNAs (lncRNAs) are emerging as important regulators of tumorigenesis and angiogenesis in EC. However, the underlying mechanisms of lncRNA TRPM2-AS in EC are still not clear.</p><p><strong>Methods: </strong>We screened the differently expressed lncRNAs that were highly associated with poor prognosis and angiogenesis of EC by bioinformatics analysis, and constructed a ceRNA network based on the prognostic lncRNAs. The subcellular localization of TRPM2-AS was determined by fluorescence in situ hybridization (FISH) and nuclear cytoplasmic fractionation assay. CCK-8, EdU, transwell, western blot, qRT-PCR and endothelial tube formation assay were used to evaluate the effects of TRPM2-AS on the proliferation, invasion, migration of EC cells and angiogenesis. The targeted microRNA (miRNA) of TRPM2-AS was predicted by bioinformatic methods. The interaction between TRPM2-AS and miR497-5p, miR497-5p and SPP1 were analyzed by RNA immunoprecipitation and dual-luciferase reporter assay. A subcutaneous tumor model was used to explore TRPM2-AS's function in vivo. CIBERSORT was used to analyze the correlation between TRPM2-AS and immune cell immersion in EC.</p><p><strong>Results: </strong>We found that the expression of TRPM2-AS and SPP1 was aberrantly upregulated, while miR-497-5p expression was significantly downregulated in EC tissues and cells. TRPM2-AS was closely correlated with the angiogenesis and poor prognosis in EC patients. Mechanistically, TRPM2-AS could sponge miR-497-5p to release SPP1, thus promoting the proliferation, invasion and migration of EC cells and angiogenesis of HUVECs. Knockdown of TRPM2-AS in xenograft mouse model inhibited tumor proliferation and angiogenesis in vivo. In addition, TRPM2-AS plays a vital role in regulating the tumor immune microenvironment of EC, overexpression of TRPM2-AS in EC cells stimulated the polarization of M2 macrophages and angiogenesis through secreting SPP1 enriched exosomes.</p><p><strong>Conclusion: </strong>The depletion of TRPM2-AS inhibits the oncogenicity of EC by targeting the miR-497-5p/SPP1 axis. This study offers a better understanding of TRPM2-AS's role in regulating angiogenesis and provides a novel target for EC treatment.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"93"},"PeriodicalIF":9.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218065/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-02DOI: 10.1186/s11658-024-00610-9
Shuo Ma, Yanhua Xu, Xinyue Qin, Mei Tao, Xinliang Gu, Lei Shen, Yinhao Chen, Ming Zheng, Shiyi Qin, Guoqiu Wu, Shaoqing Ju
Background: An increasing number of studies have demonstrated the association of circular RNAs (circRNAs) with the pathological processes of various diseases and their involvement in the onset and progression of multiple cancers. Nevertheless, the functional roles and underlying mechanisms of circRNAs in the autophagy regulation of gastric cancer (GC) have not been fully elucidated.
Methods: We used transmission electron microscopy and the mRFP-GFP-LC3 dual fluorescent autophagy indicator to investigate autophagy regulation. The cell counting kit-8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine incorporation assay, Transwell assay, and Western blot assay were conducted to confirm circPTPN22's influence on GC progression. Dual luciferase reporter assays validated the binding between circPTPN22 and miR-6788-5p, as well as miR-6788-5p and p21-activated kinase-1 (PAK1). Functional rescue experiments assessed whether circPTPN22 modulates PAK1 expression by competitively binding miR-6788-5p, affecting autophagy and other biological processes in GC cells. We investigated the impact of circPTPN22 on in vivo GC tumors using a nude mouse xenograft model. Bioinformatics tools predicted upstream regulatory transcription factors and binding proteins of circPTPN22, while chromatin immunoprecipitation and ribonucleoprotein immunoprecipitation assays confirmed the binding status.
Results: Upregulation of circPTPN22 in GC has been shown to inhibit autophagy and promote cell proliferation, migration, and invasion. Mechanistically, circPTPN22 directly binds to miR-6788-5p, subsequently regulating the expression of PAK1, which activates protein kinase B (Akt) and extracellular signal-regulated kinase (Erk) phosphorylation. This modulation ultimately affects autophagy levels in GC cells. Additionally, runt-related transcription factor 1 (RUNX1) negatively regulates circPTPN22 expression, while RNA-binding proteins such as FUS (fused in sarcoma) and ELAVL1 (recombinant ELAV-like protein 1) positively regulate its expression. Inhibition of the autophagy pathway can increase FUS expression, further upregulating circPTPN22 in GC cells, thereby exacerbating the progression of GC.
Conclusion: Under the regulation of the transcription factor RUNX1 and RNA-binding proteins FUS and ELAVL1, circPTPN22 activates the phosphorylation of Akt and Erk through the miR-6788-5p/PAK1 axis, thereby modulating autophagy in GC cells. Inhibition of autophagy increases FUS, which in turn upregulates circPTPN22, forming a positive feedback loop that ultimately accelerates the progression of GC.
{"title":"RUNX1, FUS, and ELAVL1-induced circPTPN22 promote gastric cancer cell proliferation, migration, and invasion through miR-6788-5p/PAK1 axis-mediated autophagy.","authors":"Shuo Ma, Yanhua Xu, Xinyue Qin, Mei Tao, Xinliang Gu, Lei Shen, Yinhao Chen, Ming Zheng, Shiyi Qin, Guoqiu Wu, Shaoqing Ju","doi":"10.1186/s11658-024-00610-9","DOIUrl":"10.1186/s11658-024-00610-9","url":null,"abstract":"<p><strong>Background: </strong>An increasing number of studies have demonstrated the association of circular RNAs (circRNAs) with the pathological processes of various diseases and their involvement in the onset and progression of multiple cancers. Nevertheless, the functional roles and underlying mechanisms of circRNAs in the autophagy regulation of gastric cancer (GC) have not been fully elucidated.</p><p><strong>Methods: </strong>We used transmission electron microscopy and the mRFP-GFP-LC3 dual fluorescent autophagy indicator to investigate autophagy regulation. The cell counting kit-8 assay, colony formation assay, 5-ethynyl-2'-deoxyuridine incorporation assay, Transwell assay, and Western blot assay were conducted to confirm circPTPN22's influence on GC progression. Dual luciferase reporter assays validated the binding between circPTPN22 and miR-6788-5p, as well as miR-6788-5p and p21-activated kinase-1 (PAK1). Functional rescue experiments assessed whether circPTPN22 modulates PAK1 expression by competitively binding miR-6788-5p, affecting autophagy and other biological processes in GC cells. We investigated the impact of circPTPN22 on in vivo GC tumors using a nude mouse xenograft model. Bioinformatics tools predicted upstream regulatory transcription factors and binding proteins of circPTPN22, while chromatin immunoprecipitation and ribonucleoprotein immunoprecipitation assays confirmed the binding status.</p><p><strong>Results: </strong>Upregulation of circPTPN22 in GC has been shown to inhibit autophagy and promote cell proliferation, migration, and invasion. Mechanistically, circPTPN22 directly binds to miR-6788-5p, subsequently regulating the expression of PAK1, which activates protein kinase B (Akt) and extracellular signal-regulated kinase (Erk) phosphorylation. This modulation ultimately affects autophagy levels in GC cells. Additionally, runt-related transcription factor 1 (RUNX1) negatively regulates circPTPN22 expression, while RNA-binding proteins such as FUS (fused in sarcoma) and ELAVL1 (recombinant ELAV-like protein 1) positively regulate its expression. Inhibition of the autophagy pathway can increase FUS expression, further upregulating circPTPN22 in GC cells, thereby exacerbating the progression of GC.</p><p><strong>Conclusion: </strong>Under the regulation of the transcription factor RUNX1 and RNA-binding proteins FUS and ELAVL1, circPTPN22 activates the phosphorylation of Akt and Erk through the miR-6788-5p/PAK1 axis, thereby modulating autophagy in GC cells. Inhibition of autophagy increases FUS, which in turn upregulates circPTPN22, forming a positive feedback loop that ultimately accelerates the progression of GC.</p>","PeriodicalId":9688,"journal":{"name":"Cellular & Molecular Biology Letters","volume":"29 1","pages":"95"},"PeriodicalIF":9.2,"publicationDate":"2024-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11218243/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141491024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}