首页 > 最新文献

Cellular Oncology最新文献

英文 中文
Retraction Note: The autocrine glycosylated-GREM1 interacts with TGFB1 to suppress TGFβ/BMP/SMAD-mediated EMT partially by inhibiting MYL9 transactivation in urinary carcinoma. 撤稿说明:自分泌糖基化-GREM1与TGFB1相互作用,通过抑制泌尿系统癌中MYL9的转录,部分抑制TGFβ/BMP/SMAD介导的EMT。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-12-01 DOI: 10.1007/s13402-024-01006-9
Ti-Chun Chan, Cheng-Tang Pan, Hsin-Yu Hsieh, Pichpisith Pierre Vejvisithsakul, Ren-Jie Wei, Bi-Wen Yeh, Wen-Jeng Wu, Lih-Ren Chen, Meng-Shin Shiao, Chien-Feng Li, Yow-Ling Shiue
{"title":"Retraction Note: The autocrine glycosylated-GREM1 interacts with TGFB1 to suppress TGFβ/BMP/SMAD-mediated EMT partially by inhibiting MYL9 transactivation in urinary carcinoma.","authors":"Ti-Chun Chan, Cheng-Tang Pan, Hsin-Yu Hsieh, Pichpisith Pierre Vejvisithsakul, Ren-Jie Wei, Bi-Wen Yeh, Wen-Jeng Wu, Lih-Ren Chen, Meng-Shin Shiao, Chien-Feng Li, Yow-Ling Shiue","doi":"10.1007/s13402-024-01006-9","DOIUrl":"10.1007/s13402-024-01006-9","url":null,"abstract":"","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"2461-2462"},"PeriodicalIF":6.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459013","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of EREG/ErbB/ERK by Astragaloside IV reversed taxol-resistance of non-small cell lung cancer through attenuation of stemness via TGFβ and Hedgehog signal pathway. 黄芪皂苷IV通过TGFβ和刺猬信号通路抑制EREG/ErbB/ERK,从而逆转了非小细胞肺癌对紫杉醇的耐药性。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-12-01 Epub Date: 2024-10-07 DOI: 10.1007/s13402-024-00999-7
Wenhao Xiu, Yujia Zhang, Dongfang Tang, Sau Har Lee, Rui Zeng, Tingjie Ye, Hua Li, Yanlin Lu, Changtai Qin, Yuxi Yang, Xiaofeng Yan, Xiaoling Wang, Xudong Hu, Maoquan Chu, Zhumei Sun, Wei Xu

Purpose: Taxol is the first-line chemo-drug for advanced non-small cell lung cancer (NSCLC), but it frequently causes acquired resistance, which leads to the failure of treatment. Therefore, it is critical to screen and characterize the mechanism of the taxol-resistance reversal agent that could re-sensitize the resistant cancer cells to chemo-drug.

Method: The cell viability, sphere-forming and xenografts assay were used to evaluate the ability of ASIV to reverse taxol-resistance. Immunohistochemistry, cytokine application, small-interfering RNA, small molecule inhibitors, and RNA-seq approaches were applied to characterize the molecular mechanism of inhibition of epiregulin (EREG) and downstream signaling by ASIV to reverse taxol-resistance.

Results: ASIV reversed taxol resistance through suppression of the stemness-associated genes of spheres in NSCLC. The mechanism exploration revealed that ASIV promoted the K48-linked polyubiquitination of EREG along with degradation. Moreover, EREG could be triggered by chemo-drug treatment. Consequently, EREG bound to the ErbB receptor and activated the ERK signal to regulate the expression of the stemness-associated genes. Inhibition of EREG/ErbB/ERK could reverse the taxol-resistance by inhibiting the stemness-associated genes. Finally, it was observed that TGFβ and Hedgehog signaling were downstream of EREG/ErbB/ERK, which could be targeted using inhibitors to reverse the taxol resistance of NSCLC.

Conclusions: These findings revealed that inhibition of EREG by ASIV reversed taxol-resistance through suppression of the stemness of NSCLC via EREG/ErbB/ERK-TGFβ, Hedgehog axis.

目的:紫杉醇是治疗晚期非小细胞肺癌(NSCLC)的一线化疗药物,但它经常引起获得性耐药性,导致治疗失败。因此,筛选并鉴定可使耐药癌细胞对化疗药物重新敏感的紫杉醇耐药性逆转剂的机制至关重要:方法:采用细胞活力、成球和异种移植试验评估 ASIV 逆转紫杉醇耐药性的能力。免疫组化、细胞因子应用、小干扰RNA、小分子抑制剂和RNA-seq等方法被用于表征ASIV抑制epiregulin(EREG)和下游信号转导以逆转taxol耐药性的分子机制:结果:ASIV通过抑制NSCLC中球形细胞的干性相关基因逆转了紫杉醇耐药。机制探索发现,ASIV促进了EREG的K48连接多泛素化和降解。此外,化疗药物也会触发EREG。因此,EREG与ErbB受体结合并激活ERK信号,从而调控干性相关基因的表达。抑制EREG/ErbB/ERK可抑制干性相关基因,从而逆转对紫杉醇的耐药性。最后,研究人员观察到,TGFβ和刺猬信号是EREG/ErbB/ERK的下游,可以使用抑制剂来逆转NSCLC对紫杉醇的耐药性:这些研究结果表明,ASIV抑制EREG可通过EREG/ErbB/ERK-TGFβ和Hedgehog轴抑制NSCLC的干性,从而逆转紫杉醇耐药性。
{"title":"Inhibition of EREG/ErbB/ERK by Astragaloside IV reversed taxol-resistance of non-small cell lung cancer through attenuation of stemness via TGFβ and Hedgehog signal pathway.","authors":"Wenhao Xiu, Yujia Zhang, Dongfang Tang, Sau Har Lee, Rui Zeng, Tingjie Ye, Hua Li, Yanlin Lu, Changtai Qin, Yuxi Yang, Xiaofeng Yan, Xiaoling Wang, Xudong Hu, Maoquan Chu, Zhumei Sun, Wei Xu","doi":"10.1007/s13402-024-00999-7","DOIUrl":"10.1007/s13402-024-00999-7","url":null,"abstract":"<p><strong>Purpose: </strong>Taxol is the first-line chemo-drug for advanced non-small cell lung cancer (NSCLC), but it frequently causes acquired resistance, which leads to the failure of treatment. Therefore, it is critical to screen and characterize the mechanism of the taxol-resistance reversal agent that could re-sensitize the resistant cancer cells to chemo-drug.</p><p><strong>Method: </strong>The cell viability, sphere-forming and xenografts assay were used to evaluate the ability of ASIV to reverse taxol-resistance. Immunohistochemistry, cytokine application, small-interfering RNA, small molecule inhibitors, and RNA-seq approaches were applied to characterize the molecular mechanism of inhibition of epiregulin (EREG) and downstream signaling by ASIV to reverse taxol-resistance.</p><p><strong>Results: </strong>ASIV reversed taxol resistance through suppression of the stemness-associated genes of spheres in NSCLC. The mechanism exploration revealed that ASIV promoted the K48-linked polyubiquitination of EREG along with degradation. Moreover, EREG could be triggered by chemo-drug treatment. Consequently, EREG bound to the ErbB receptor and activated the ERK signal to regulate the expression of the stemness-associated genes. Inhibition of EREG/ErbB/ERK could reverse the taxol-resistance by inhibiting the stemness-associated genes. Finally, it was observed that TGFβ and Hedgehog signaling were downstream of EREG/ErbB/ERK, which could be targeted using inhibitors to reverse the taxol resistance of NSCLC.</p><p><strong>Conclusions: </strong>These findings revealed that inhibition of EREG by ASIV reversed taxol-resistance through suppression of the stemness of NSCLC via EREG/ErbB/ERK-TGFβ, Hedgehog axis.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"2201-2215"},"PeriodicalIF":6.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitochondria in tumor immune surveillance and tumor therapies targeting mitochondria. 肿瘤免疫监视中的线粒体和针对线粒体的肿瘤疗法。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-12-01 Epub Date: 2024-10-07 DOI: 10.1007/s13402-024-01000-1
Lvyuan Li, Yi Zhang, Qiling Tang, Chunyu Wu, Mei Yang, Yan Hu, Zhaojian Gong, Lei Shi, Can Guo, Zhaoyang Zeng, Pan Chen, Wei Xiong

Mitochondria play a central role in cellular energy production and metabolic regulation, and their function has been identified as a key factor influencing tumor immune responses. This review provides a comprehensive overview of the latest advancements in understanding the role of mitochondria in tumor immune surveillance, covering both innate and adaptive immune responses. Specifically, it outlines how mitochondria influence the function of the tumor immune system, underscoring their crucial role in modulating immune cell behavior to either promote or inhibit tumor development and progression. Additionally, this review highlights emerging drug interventions targeting mitochondria, including novel small molecules with significant potential in cancer therapy. Through an in-depth analysis, it explores how these innovative strategies could improve the efficacy and outlook of tumor treatment.

线粒体在细胞能量产生和代谢调节中发挥着核心作用,其功能已被确定为影响肿瘤免疫反应的关键因素。本综述全面概述了在了解线粒体在肿瘤免疫监视中的作用方面取得的最新进展,包括先天性免疫反应和适应性免疫反应。具体来说,它概述了线粒体如何影响肿瘤免疫系统的功能,强调了线粒体在调节免疫细胞行为以促进或抑制肿瘤发生和发展方面的关键作用。此外,这篇综述还重点介绍了针对线粒体的新兴药物干预措施,包括在癌症治疗中具有巨大潜力的新型小分子药物。通过深入分析,本综述探讨了这些创新策略如何改善肿瘤治疗的疗效和前景。
{"title":"Mitochondria in tumor immune surveillance and tumor therapies targeting mitochondria.","authors":"Lvyuan Li, Yi Zhang, Qiling Tang, Chunyu Wu, Mei Yang, Yan Hu, Zhaojian Gong, Lei Shi, Can Guo, Zhaoyang Zeng, Pan Chen, Wei Xiong","doi":"10.1007/s13402-024-01000-1","DOIUrl":"10.1007/s13402-024-01000-1","url":null,"abstract":"<p><p>Mitochondria play a central role in cellular energy production and metabolic regulation, and their function has been identified as a key factor influencing tumor immune responses. This review provides a comprehensive overview of the latest advancements in understanding the role of mitochondria in tumor immune surveillance, covering both innate and adaptive immune responses. Specifically, it outlines how mitochondria influence the function of the tumor immune system, underscoring their crucial role in modulating immune cell behavior to either promote or inhibit tumor development and progression. Additionally, this review highlights emerging drug interventions targeting mitochondria, including novel small molecules with significant potential in cancer therapy. Through an in-depth analysis, it explores how these innovative strategies could improve the efficacy and outlook of tumor treatment.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"2031-2047"},"PeriodicalIF":6.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dysregulation of the p53 pathway provides a therapeutic target in aggressive pediatric sarcomas with stem-like traits. p53通路失调为具有干细胞样特征的侵袭性小儿肉瘤提供了治疗靶点。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-12-01 Epub Date: 2024-12-04 DOI: 10.1007/s13402-024-01020-x
Lucie Curylova, Iva Staniczkova Zambo, Jakub Neradil, Michal Kyr, Nicola Jurackova, Sarka Pavlova, Kristyna Polaskova, Peter Mudry, Jaroslav Sterba, Renata Veselska, Jan Skoda

Purpose: Pediatric sarcomas are bone and soft tissue tumors that often exhibit high metastatic potential and refractory stem-like phenotypes, resulting in poor outcomes. Aggressive sarcomas frequently harbor a disrupted p53 pathway. However, whether pediatric sarcoma stemness is associated with abrogated p53 function and might be attenuated via p53 reactivation remains unclear.

Methods: We utilized a unique panel of pediatric sarcoma models and tumor tissue cohorts to investigate the correlation between the expression of stemness-related transcription factors, p53 pathway dysregulations, tumorigenicity in vivo, and clinicopathological features. TP53 mutation status was assessed by next-generation sequencing. Major findings were validated via shRNA-mediated silencing and functional assays. The p53 pathway-targeting drugs were used to explore the effects and selectivity of p53 reactivation against sarcoma cells with stem-like traits.

Results: We found that highly tumorigenic stem-like sarcoma cells exhibit dysregulated p53, making them vulnerable to drugs that restore wild-type p53 activity. Immunohistochemistry of mouse xenografts and human tumor tissues revealed that p53 dysregulations, together with enhanced expression of the stemness-related transcription factors SOX2 or KLF4, are crucial features in pediatric osteosarcoma, rhabdomyosarcoma, and Ewing's sarcoma development. p53 dysregulation appears to be an important step for sarcoma cells to acquire a fully stem-like phenotype, and p53-positive pediatric sarcomas exhibit a high frequency of early metastasis. Importantly, reactivating p53 signaling via MDM2/MDMX inhibition selectively induces apoptosis in aggressive, stem-like Ewing's sarcoma cells while sparing healthy fibroblasts.

Conclusions: Our results indicate that restoring canonical p53 activity provides a promising strategy for developing improved therapies for pediatric sarcomas with unfavorable stem-like traits.

目的:儿童肉瘤是骨和软组织肿瘤,通常表现出高转移潜力和难治性茎样表型,导致预后不良。侵袭性肉瘤经常有p53通路被破坏。然而,儿童肉瘤的干性是否与p53功能的丧失有关,并可能通过p53的再激活而减弱,目前尚不清楚。方法:我们利用一组独特的儿童肉瘤模型和肿瘤组织队列来研究干细胞相关转录因子的表达、p53通路失调、体内致瘤性和临床病理特征之间的相关性。通过下一代测序评估TP53突变状态。主要研究结果通过shrna介导的沉默和功能分析得到验证。利用p53通路靶向药物探讨p53再激活对具有干样性状的肉瘤细胞的作用和选择性。结果:我们发现高度致瘤性干细胞样肉瘤细胞表现出p53失调,使它们对恢复野生型p53活性的药物敏感。小鼠异种移植物和人肿瘤组织的免疫组化结果显示,p53异常以及与干细胞相关的转录因子SOX2或KLF4的表达增强是儿童骨肉瘤、横纹肌肉瘤和尤文氏肉瘤发展的关键特征。P53失调似乎是肉瘤细胞获得完全干细胞样表型的重要步骤,P53阳性的儿童肉瘤表现出高频率的早期转移。重要的是,通过MDM2/MDMX抑制重新激活p53信号选择性地诱导侵袭性干细胞样尤文氏肉瘤细胞凋亡,同时保留健康的成纤维细胞。结论:我们的研究结果表明,恢复典型p53活性为开发具有不利干细胞样特征的儿童肉瘤的改进疗法提供了一个有希望的策略。
{"title":"Dysregulation of the p53 pathway provides a therapeutic target in aggressive pediatric sarcomas with stem-like traits.","authors":"Lucie Curylova, Iva Staniczkova Zambo, Jakub Neradil, Michal Kyr, Nicola Jurackova, Sarka Pavlova, Kristyna Polaskova, Peter Mudry, Jaroslav Sterba, Renata Veselska, Jan Skoda","doi":"10.1007/s13402-024-01020-x","DOIUrl":"10.1007/s13402-024-01020-x","url":null,"abstract":"<p><strong>Purpose: </strong>Pediatric sarcomas are bone and soft tissue tumors that often exhibit high metastatic potential and refractory stem-like phenotypes, resulting in poor outcomes. Aggressive sarcomas frequently harbor a disrupted p53 pathway. However, whether pediatric sarcoma stemness is associated with abrogated p53 function and might be attenuated via p53 reactivation remains unclear.</p><p><strong>Methods: </strong>We utilized a unique panel of pediatric sarcoma models and tumor tissue cohorts to investigate the correlation between the expression of stemness-related transcription factors, p53 pathway dysregulations, tumorigenicity in vivo, and clinicopathological features. TP53 mutation status was assessed by next-generation sequencing. Major findings were validated via shRNA-mediated silencing and functional assays. The p53 pathway-targeting drugs were used to explore the effects and selectivity of p53 reactivation against sarcoma cells with stem-like traits.</p><p><strong>Results: </strong>We found that highly tumorigenic stem-like sarcoma cells exhibit dysregulated p53, making them vulnerable to drugs that restore wild-type p53 activity. Immunohistochemistry of mouse xenografts and human tumor tissues revealed that p53 dysregulations, together with enhanced expression of the stemness-related transcription factors SOX2 or KLF4, are crucial features in pediatric osteosarcoma, rhabdomyosarcoma, and Ewing's sarcoma development. p53 dysregulation appears to be an important step for sarcoma cells to acquire a fully stem-like phenotype, and p53-positive pediatric sarcomas exhibit a high frequency of early metastasis. Importantly, reactivating p53 signaling via MDM2/MDMX inhibition selectively induces apoptosis in aggressive, stem-like Ewing's sarcoma cells while sparing healthy fibroblasts.</p><p><strong>Conclusions: </strong>Our results indicate that restoring canonical p53 activity provides a promising strategy for developing improved therapies for pediatric sarcomas with unfavorable stem-like traits.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"2317-2334"},"PeriodicalIF":6.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142766508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unveiling therapeutic avenues targeting xCT in head and neck cancer. 揭示针对头颈部癌症 xCT 的治疗途径。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-12-01 Epub Date: 2024-10-03 DOI: 10.1007/s13402-024-00997-9
Jaewang Lee, Jong-Lyel Roh

Head and neck cancer (HNC) remains a major global health burden, prompting the need for innovative therapeutic strategies. This review examines the role of the cystine/glutamate antiporter (xCT) in HNC, specifically focusing on how xCT contributes to cancer progression through mechanisms such as redox imbalance, ferroptosis, and treatment resistance. The central questions addressed include how xCT dysregulation affects tumor biology and the potential for targeting xCT to enhance treatment outcomes. We explore recent developments in xCT-targeted current and emerging therapies, including xCT inhibitors and novel treatment modalities, and their role in addressing therapeutic challenges. This review aims to provide a comprehensive analysis of xCT as a therapeutic target and to outline future directions for research and clinical application.

头颈癌(HNC)仍然是全球主要的健康负担,因此需要创新的治疗策略。这篇综述探讨了胱氨酸/谷氨酸拮抗剂(xCT)在HNC中的作用,特别关注xCT如何通过氧化还原失衡、铁变态反应和耐药性等机制促进癌症进展。研究的核心问题包括 xCT 失调如何影响肿瘤生物学以及靶向 xCT 提高治疗效果的潜力。我们探讨了以 xCT 为靶点的现有疗法和新兴疗法的最新进展,包括 xCT 抑制剂和新型治疗模式,以及它们在应对治疗挑战方面的作用。本综述旨在全面分析作为治疗靶点的xCT,并概述未来的研究和临床应用方向。
{"title":"Unveiling therapeutic avenues targeting xCT in head and neck cancer.","authors":"Jaewang Lee, Jong-Lyel Roh","doi":"10.1007/s13402-024-00997-9","DOIUrl":"10.1007/s13402-024-00997-9","url":null,"abstract":"<p><p>Head and neck cancer (HNC) remains a major global health burden, prompting the need for innovative therapeutic strategies. This review examines the role of the cystine/glutamate antiporter (xCT) in HNC, specifically focusing on how xCT contributes to cancer progression through mechanisms such as redox imbalance, ferroptosis, and treatment resistance. The central questions addressed include how xCT dysregulation affects tumor biology and the potential for targeting xCT to enhance treatment outcomes. We explore recent developments in xCT-targeted current and emerging therapies, including xCT inhibitors and novel treatment modalities, and their role in addressing therapeutic challenges. This review aims to provide a comprehensive analysis of xCT as a therapeutic target and to outline future directions for research and clinical application.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"2019-2030"},"PeriodicalIF":6.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TENT5A mediates the cancer-inhibiting effects of EGR1 by suppressing the protein stability of RPL35 in hepatocellular carcinoma. TENT5A 通过抑制肝细胞癌中 RPL35 蛋白的稳定性来介导 EGR1 的抑癌作用。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-12-01 Epub Date: 2024-11-21 DOI: 10.1007/s13402-024-01014-9
Xuejie Min, Fen Lin, Xinge Zhao, Junming Yu, Chao Ge, Saihua Zhang, Xianxian Li, Fangyu Zhao, Taoyang Chen, Hua Tian, Mingxia Yan, Jinjun Li, Hong Li

Purpose: Terminal nucleotidyltransferase 5A (TENT5A), recently predicted as a non-canonical poly(A) polymerase, is critically involved in several human disorders including retinitis pigmentosa, cancer and obesity. However, the exact biological role of TENT5A in hepatocellular carcinoma (HCC) has not been elucidated.

Methods: The transcription level of TENT5A and clinical correlation were analyzed using the LIRI-JP cohort, the TCGA-LIHC cohort, and clinical tissue samples of HCC patients in our laboratory. Proliferation, migration, and invasion were detected with stably TENT5A overexpressing and knockdown HCC cells in vitro and in vivo. Chromatin immunoprecipitation and dual-luciferase reporter assay were performed to verify the binding of the target protein to DNA. Co-immunoprecipitation and GST pull-down assay combined with mass spectrometry (MS) were used to identify protein interactions.

Results: Our study presented here shows that TENT5A is downregulated in HCC tissues, suggesting a shorter overall survival for patients. Gain- and loss-of-function experiments reveal that TENT5A suppresses the proliferation and metastasis, and the residue Gly122 is of great importance to the role of TENT5A in HCC. More importantly, EGR1 (Early growth response 1) directly binds to the TENT5A promoter and promotes TENT5A expression. By interacting with RPL35, TENT5A is involved in ribosome biogenesis and exerts a negative regulatory effect on the mTOR pathway.

Conclusions: Our findings illustrate the role of the oncosuppressive function of TENT5A in HCC and suggest that the EGR1/TENT5A/RPL35 regulatory axis may be a promising target for therapeutic strategies in HCC.

目的:末端核苷酸转移酶5A(TENT5A)最近被预测为一种非典型多(A)聚合酶,它与包括视网膜色素变性、癌症和肥胖症在内的多种人类疾病密切相关。然而,TENT5A在肝细胞癌(HCC)中的确切生物学作用尚未阐明:方法:本实验室利用 LIRI-JP 队列、TCGA-LIHC 队列和 HCC 患者的临床组织样本分析了 TENT5A 的转录水平和临床相关性。体外和体内检测了稳定表达和敲除 TENT5A 的 HCC 细胞的增殖、迁移和侵袭。染色质免疫沉淀和双荧光素酶报告实验验证了目标蛋白与DNA的结合。共免疫沉淀和 GST 下拉实验结合质谱分析法(MS)来确定蛋白质之间的相互作用:结果:我们的研究表明,TENT5A在HCC组织中下调,表明患者的总生存期缩短。功能增益和功能缺失实验表明,TENT5A 可抑制癌细胞的增殖和转移,而残基 Gly122 对 TENT5A 在 HCC 中的作用具有重要意义。更重要的是,EGR1(早期生长应答 1)直接与 TENT5A 启动子结合并促进 TENT5A 的表达。通过与 RPL35 相互作用,TENT5A 参与了核糖体的生物生成,并对 mTOR 通路产生了负调控作用:我们的研究结果说明了 TENT5A 在 HCC 中的抑制作用,并表明 EGR1/TENT5A/RPL35 调节轴可能是 HCC 治疗策略的一个有前途的靶点。
{"title":"TENT5A mediates the cancer-inhibiting effects of EGR1 by suppressing the protein stability of RPL35 in hepatocellular carcinoma.","authors":"Xuejie Min, Fen Lin, Xinge Zhao, Junming Yu, Chao Ge, Saihua Zhang, Xianxian Li, Fangyu Zhao, Taoyang Chen, Hua Tian, Mingxia Yan, Jinjun Li, Hong Li","doi":"10.1007/s13402-024-01014-9","DOIUrl":"10.1007/s13402-024-01014-9","url":null,"abstract":"<p><strong>Purpose: </strong>Terminal nucleotidyltransferase 5A (TENT5A), recently predicted as a non-canonical poly(A) polymerase, is critically involved in several human disorders including retinitis pigmentosa, cancer and obesity. However, the exact biological role of TENT5A in hepatocellular carcinoma (HCC) has not been elucidated.</p><p><strong>Methods: </strong>The transcription level of TENT5A and clinical correlation were analyzed using the LIRI-JP cohort, the TCGA-LIHC cohort, and clinical tissue samples of HCC patients in our laboratory. Proliferation, migration, and invasion were detected with stably TENT5A overexpressing and knockdown HCC cells in vitro and in vivo. Chromatin immunoprecipitation and dual-luciferase reporter assay were performed to verify the binding of the target protein to DNA. Co-immunoprecipitation and GST pull-down assay combined with mass spectrometry (MS) were used to identify protein interactions.</p><p><strong>Results: </strong>Our study presented here shows that TENT5A is downregulated in HCC tissues, suggesting a shorter overall survival for patients. Gain- and loss-of-function experiments reveal that TENT5A suppresses the proliferation and metastasis, and the residue Gly<sup>122</sup> is of great importance to the role of TENT5A in HCC. More importantly, EGR1 (Early growth response 1) directly binds to the TENT5A promoter and promotes TENT5A expression. By interacting with RPL35, TENT5A is involved in ribosome biogenesis and exerts a negative regulatory effect on the mTOR pathway.</p><p><strong>Conclusions: </strong>Our findings illustrate the role of the oncosuppressive function of TENT5A in HCC and suggest that the EGR1/TENT5A/RPL35 regulatory axis may be a promising target for therapeutic strategies in HCC.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"2247-2264"},"PeriodicalIF":6.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680879","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical value of 18F-FDG PET/CT in patients with newly diagnosed acute leukemia. 18F-FDG PET/CT 对新诊断急性白血病患者的临床价值。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-12-01 Epub Date: 2024-09-24 DOI: 10.1007/s13402-024-00993-z
Jiamin Fang, Jie Chen, Xinqi Li, Pengpeng Li, Xiaoyan Liu, Yong He, Fuling Zhou

Purpose: To explore the correlation between semi-quantitative parameters of 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) scans findings and the clinical features of patients with acute leukemia (AL), as well as to evaluate the clinical utility of 18F-FDG PET/CT in the management of AL.

Methods: A retrospective study was conducted with 44 patients newly diagnosed with acute leukemia (AL) at Zhongnan Hospital of Wuhan University between January 2019 and August 2024.

Results: Multivariate analysis revealed that age at diagnosis of AL (odds ratio [OR]: 0.888, P < 0.01) and percentage of blasts in the peripheral blood (PB) (OR: 1.061, P < 0.05) were independent predictors of the appearance of active extramedullary disease (EMD). Kaplan-Meier survival analysis for patients with EMD(+) indicated that those with organ infiltration beyond the lymph nodes experienced markedly reduced overall survival (OS) compared to those without such infiltration (157 days and 806 days, respectively). Furthermore, in the AL subgroup with EMD, the ratio of the maximum standardized uptake value (SUVmax) in the bone marrow (BM) to SUVmax of the liver emerged as an independent prognostic factor for OS (Hazard ratio [HR]: 2.372; 95% confidence interval [CI]: 1.079-5.214, P < 0.05).

Conclusion: 18F-FDG PET/CT offers the benefits of being non-invasive and highly sensitive for the thorough evaluation of disease status in patients newly diagnosed with AL. Furthermore, the SUVmax BM/liver ratio is of significant clinical importance for prognosticating outcomes in patients with AL presenting EMD.

目的:探讨18F-氟脱氧葡萄糖(18F-FDG)正电子发射断层扫描/计算机断层扫描(PET/CT)扫描结果的半定量参数与急性白血病(AL)患者临床特征的相关性,并评估18F-FDG PET/CT在AL治疗中的临床实用性:方法:对武汉大学中南医院2019年1月至2024年8月期间新确诊的44例急性白血病(AL)患者进行回顾性研究:多变量分析显示,诊断AL时的年龄(几率比[OR]:结论:18F-FDG PET/CT 具有无创、高灵敏度等优点,可全面评估新诊断的 AL 患者的疾病状况。此外,SUVmax BM/肝脏比值对出现EMD的AL患者的预后具有重要的临床意义。
{"title":"Clinical value of <sup>18</sup>F-FDG PET/CT in patients with newly diagnosed acute leukemia.","authors":"Jiamin Fang, Jie Chen, Xinqi Li, Pengpeng Li, Xiaoyan Liu, Yong He, Fuling Zhou","doi":"10.1007/s13402-024-00993-z","DOIUrl":"10.1007/s13402-024-00993-z","url":null,"abstract":"<p><strong>Purpose: </strong>To explore the correlation between semi-quantitative parameters of <sup>18</sup>F-fluorodeoxyglucose (<sup>18</sup>F-FDG) positron emission tomography/computed tomography (PET/CT) scans findings and the clinical features of patients with acute leukemia (AL), as well as to evaluate the clinical utility of <sup>18</sup>F-FDG PET/CT in the management of AL.</p><p><strong>Methods: </strong>A retrospective study was conducted with 44 patients newly diagnosed with acute leukemia (AL) at Zhongnan Hospital of Wuhan University between January 2019 and August 2024.</p><p><strong>Results: </strong>Multivariate analysis revealed that age at diagnosis of AL (odds ratio [OR]: 0.888, P < 0.01) and percentage of blasts in the peripheral blood (PB) (OR: 1.061, P < 0.05) were independent predictors of the appearance of active extramedullary disease (EMD). Kaplan-Meier survival analysis for patients with EMD(+) indicated that those with organ infiltration beyond the lymph nodes experienced markedly reduced overall survival (OS) compared to those without such infiltration (157 days and 806 days, respectively). Furthermore, in the AL subgroup with EMD, the ratio of the maximum standardized uptake value (SUVmax) in the bone marrow (BM) to SUVmax of the liver emerged as an independent prognostic factor for OS (Hazard ratio [HR]: 2.372; 95% confidence interval [CI]: 1.079-5.214, P < 0.05).</p><p><strong>Conclusion: </strong><sup>18</sup>F-FDG PET/CT offers the benefits of being non-invasive and highly sensitive for the thorough evaluation of disease status in patients newly diagnosed with AL. Furthermore, the SUVmax BM/liver ratio is of significant clinical importance for prognosticating outcomes in patients with AL presenting EMD.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"2135-2145"},"PeriodicalIF":6.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrating bulk and single-cell transcriptomics to elucidate the role and potential mechanisms of autophagy in aging tissue. 整合体细胞和单细胞转录组学,阐明自噬在衰老组织中的作用和潜在机制。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-12-01 Epub Date: 2024-10-16 DOI: 10.1007/s13402-024-00996-w
Zhenhua Zhu, Linsen Li, Youqiong Ye, Qing Zhong

Purpose: Autophagy is frequently observed in tissues during the aging process, yet the tissues most strongly correlated with autophagy during aging and the underlying regulatory mechanisms remain inadequately understood. The purpose of this study is to identify the tissues with the highest correlation between autophagy and aging, and to explore the functions and mechanisms of autophagy in the aging tissue microenvironment.

Methods: Integrated bulk RNA-seq from over 7000 normal tissue samples, single-cell sequencing data from blood samples of different ages, more than 2000 acute myeloid leukemia (AML) bulk RNA-seq, and multiple sets of AML single-cell data. The datasets were analysed using various bioinformatic approaches.

Results: Blood tissue exhibited the highest positive correlation between autophagy and aging among healthy tissues. Single-cell resolution analysis revealed that in aged blood, classical monocytes (C. monocytes) are most closely associated with elevated autophagy levels. Increased autophagy in these monocytes correlated with a higher proportion of C. monocytes, with hypoxia identified as a crucial contributing factor. In AML, a representative myeloid blood disease, enhanced autophagy was accompanied by an increased proportionof C. monocytes. High autophagy levels in monocytes are associated with pro-inflammatory gene upregulation and Reactive Oxygen Species (ROS) accumulation, contributing to tissue aging.

Conclusion: This study revealed that autophagy is most strongly correlated with aging in blood tissue. Enhanced autophagy levels in C. monocytes demonstrate a positive correlation with increased secretion of pro-inflammatory factors and elevated production of ROS, which may contribute to a more rapid aging process. This discovery underscores the critical role of autophagy in blood aging and suggests potential therapeutic targets to mitigate aging-related health issues.

目的:自噬在衰老过程中经常在组织中被观察到,然而衰老过程中与自噬相关性最强的组织及其潜在的调控机制仍未被充分了解。本研究旨在确定自噬与衰老相关性最高的组织,并探索自噬在衰老组织微环境中的功能和机制:整合了7000多份正常组织样本的大量RNA-seq数据、不同年龄段血液样本的单细胞测序数据、2000多份急性髓性白血病(AML)的大量RNA-seq数据以及多组AML单细胞数据。这些数据集采用了各种生物信息学方法进行分析:结果:在健康组织中,血液组织显示出自噬与衰老之间最高的正相关性。单细胞分辨率分析显示,在衰老的血液中,经典单核细胞(C. monocytes)与自噬水平升高的关系最为密切。这些单核细胞自噬水平的升高与 C. 单核细胞比例的升高有关,而缺氧被认为是一个重要的促成因素。在具有代表性的骨髓性血液疾病急性髓性白血病中,自噬的增强伴随着C. 单核细胞比例的增加。单核细胞的高自噬水平与促炎基因上调和活性氧(ROS)积累有关,从而导致组织老化:这项研究表明,自噬与血液组织的衰老关系最为密切。C.单核细胞自噬水平的提高与促炎因子分泌的增加和 ROS 生成的增加呈正相关,这可能会导致更快的衰老过程。这一发现强调了自噬在血液衰老中的关键作用,并提出了缓解衰老相关健康问题的潜在治疗目标。
{"title":"Integrating bulk and single-cell transcriptomics to elucidate the role and potential mechanisms of autophagy in aging tissue.","authors":"Zhenhua Zhu, Linsen Li, Youqiong Ye, Qing Zhong","doi":"10.1007/s13402-024-00996-w","DOIUrl":"10.1007/s13402-024-00996-w","url":null,"abstract":"<p><strong>Purpose: </strong>Autophagy is frequently observed in tissues during the aging process, yet the tissues most strongly correlated with autophagy during aging and the underlying regulatory mechanisms remain inadequately understood. The purpose of this study is to identify the tissues with the highest correlation between autophagy and aging, and to explore the functions and mechanisms of autophagy in the aging tissue microenvironment.</p><p><strong>Methods: </strong>Integrated bulk RNA-seq from over 7000 normal tissue samples, single-cell sequencing data from blood samples of different ages, more than 2000 acute myeloid leukemia (AML) bulk RNA-seq, and multiple sets of AML single-cell data. The datasets were analysed using various bioinformatic approaches.</p><p><strong>Results: </strong>Blood tissue exhibited the highest positive correlation between autophagy and aging among healthy tissues. Single-cell resolution analysis revealed that in aged blood, classical monocytes (C. monocytes) are most closely associated with elevated autophagy levels. Increased autophagy in these monocytes correlated with a higher proportion of C. monocytes, with hypoxia identified as a crucial contributing factor. In AML, a representative myeloid blood disease, enhanced autophagy was accompanied by an increased proportionof C. monocytes. High autophagy levels in monocytes are associated with pro-inflammatory gene upregulation and Reactive Oxygen Species (ROS) accumulation, contributing to tissue aging.</p><p><strong>Conclusion: </strong>This study revealed that autophagy is most strongly correlated with aging in blood tissue. Enhanced autophagy levels in C. monocytes demonstrate a positive correlation with increased secretion of pro-inflammatory factors and elevated production of ROS, which may contribute to a more rapid aging process. This discovery underscores the critical role of autophagy in blood aging and suggests potential therapeutic targets to mitigate aging-related health issues.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":"2183-2199"},"PeriodicalIF":6.6,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ADAR1 enhances tumor proliferation and radioresistance in non-small cell lung cancer by interacting with Rad18. ADAR1 通过与 Rad18 相互作用,增强非小细胞肺癌的肿瘤增殖和放射抗性。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-11-21 DOI: 10.1007/s13402-024-01012-x
Chen Tian, Chang Li, Juanjuan Wang, Yuting Liu, Jiaqi Gao, Xiaohua Hong, Feifei Gu, Kai Zhang, Yue Hu, Hongjie Fan, Li Liu, Yulan Zeng

Purpose: Posttranslational modification significantly contributes to the transcriptional diversity of tumors. Adenosine deaminase acting on RNA 1 (ADAR1) and its mediated adenosine-to-inosine (A-to-I) editing have been reported to influence tumorigenesis across various cancer types. Nevertheless, the relationship between ADAR1 and radioresistence remains to be elucidated.

Methods: The protein expression was detected by immunohistochemistry and Western Blot, while the mRNA expression was measured by RT-qPCR. The tumor growth was evaluated by CCK8, colony formation assays, EdU assay, and in-vivo mouse model. γ-H2AX foci formation, neutral comet tailing assay, and clonogenic cell survival assay were performed to determine the DNA damage and radiosensitivity. RNA-seq was conducted to identify the main downstream effector. The interaction between ADAR1 and Rad18 was examined by immunofluorescence and co-immunoprecipitation.

Results: We reported that ADAR1 was upregulated and correlated with poor prognosis in non-small cell lung cancer (NSCLC). In addition, we demonstrated that silencing ADAR1 significantly impaired tumor growth and improved tumor sensitivity to radiotherapy in vitro and in vivo. Mechanistically, we found that Rad18, which has been established as a versatile modulator of DNA repair, was the major downstream effector of ADAR1. ADAR1 not only regulated Rad18 mRNA expression by E2F3 but also colocalized and interacted with Rad18. Finally, our rescue experiments demonstrated that ADAR1's protumorigenic functions were partially dependent on Rad18.

Conclusion: Our results revealed the role of ADAR1 in cooperation with Rad18 in modulating oncogenesis and radioresistance in NSCLC for the first time, and suggested the therapeutic potential of targeting ADAR1 in overcoming radioresistance.

目的:翻译后修饰是肿瘤转录多样性的重要因素。据报道,作用于 RNA 1 的腺苷脱氨酶(ADAR1)及其介导的腺苷-肌苷(A-to-I)编辑影响了各种癌症类型的肿瘤发生。然而,ADAR1 与放射耐受性之间的关系仍有待阐明:方法:通过免疫组化和 Western Blot 检测蛋白表达,通过 RT-qPCR 检测 mRNA 表达。通过 CCK8、集落形成试验、EdU 试验和体内小鼠模型评估肿瘤生长情况。通过γ-H2AX病灶形成、中性彗尾试验和克隆细胞存活试验来确定DNA损伤和放射敏感性。进行了 RNA-seq 研究以确定主要的下游效应物。免疫荧光和共沉淀检测了ADAR1和Rad18之间的相互作用:结果:我们发现 ADAR1 上调并与非小细胞肺癌(NSCLC)的不良预后相关。此外,我们还证实了沉默 ADAR1 能显著抑制肿瘤生长,提高肿瘤在体外和体内对放疗的敏感性。从机理上讲,我们发现Rad18是ADAR1的主要下游效应器,Rad18是DNA修复的多功能调节器。ADAR1不仅通过E2F3调控Rad18 mRNA的表达,还与Rad18共定位并相互作用。最后,我们的拯救实验表明,ADAR1的原癌基因功能部分依赖于Rad18:我们的研究结果首次揭示了ADAR1与Rad18在调控NSCLC肿瘤发生和放射抗性中的作用,并提示了靶向ADAR1克服放射抗性的治疗潜力。
{"title":"ADAR1 enhances tumor proliferation and radioresistance in non-small cell lung cancer by interacting with Rad18.","authors":"Chen Tian, Chang Li, Juanjuan Wang, Yuting Liu, Jiaqi Gao, Xiaohua Hong, Feifei Gu, Kai Zhang, Yue Hu, Hongjie Fan, Li Liu, Yulan Zeng","doi":"10.1007/s13402-024-01012-x","DOIUrl":"https://doi.org/10.1007/s13402-024-01012-x","url":null,"abstract":"<p><strong>Purpose: </strong>Posttranslational modification significantly contributes to the transcriptional diversity of tumors. Adenosine deaminase acting on RNA 1 (ADAR1) and its mediated adenosine-to-inosine (A-to-I) editing have been reported to influence tumorigenesis across various cancer types. Nevertheless, the relationship between ADAR1 and radioresistence remains to be elucidated.</p><p><strong>Methods: </strong>The protein expression was detected by immunohistochemistry and Western Blot, while the mRNA expression was measured by RT-qPCR. The tumor growth was evaluated by CCK8, colony formation assays, EdU assay, and in-vivo mouse model. γ-H2AX foci formation, neutral comet tailing assay, and clonogenic cell survival assay were performed to determine the DNA damage and radiosensitivity. RNA-seq was conducted to identify the main downstream effector. The interaction between ADAR1 and Rad18 was examined by immunofluorescence and co-immunoprecipitation.</p><p><strong>Results: </strong>We reported that ADAR1 was upregulated and correlated with poor prognosis in non-small cell lung cancer (NSCLC). In addition, we demonstrated that silencing ADAR1 significantly impaired tumor growth and improved tumor sensitivity to radiotherapy in vitro and in vivo. Mechanistically, we found that Rad18, which has been established as a versatile modulator of DNA repair, was the major downstream effector of ADAR1. ADAR1 not only regulated Rad18 mRNA expression by E2F3 but also colocalized and interacted with Rad18. Finally, our rescue experiments demonstrated that ADAR1's protumorigenic functions were partially dependent on Rad18.</p><p><strong>Conclusion: </strong>Our results revealed the role of ADAR1 in cooperation with Rad18 in modulating oncogenesis and radioresistance in NSCLC for the first time, and suggested the therapeutic potential of targeting ADAR1 in overcoming radioresistance.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142680410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell death in glioblastoma and the central nervous system. 胶质母细胞瘤和中枢神经系统中的细胞死亡。
IF 6.6 2区 医学 Q1 Medicine Pub Date : 2024-11-06 DOI: 10.1007/s13402-024-01007-8
Kyle Malone, Eric LaCasse, Shawn T Beug

Glioblastoma is the commonest and deadliest primary brain tumor. Glioblastoma is characterized by significant intra- and inter-tumoral heterogeneity, resistance to treatment and dismal prognoses despite decades of research in understanding its biological underpinnings. Encompassed within this heterogeneity and therapy resistance are severely dysregulated programmed cell death pathways. Glioblastomas recapitulate many neurodevelopmental and neural injury responses; in addition, glioblastoma cells are composed of multiple different transformed versions of CNS cell types. To obtain a greater understanding of the features underlying cell death regulation in glioblastoma, it is important to understand the control of cell death within the healthy CNS during homeostatic and neurodegenerative conditions. Herein, we review apoptotic control within neural stem cells, astrocytes, oligodendrocytes and neurons and compare them to glioblastoma apoptotic control. Specific focus is paid to the Inhibitor of Apoptosis proteins, which play key roles in neuroinflammation, CNS cell survival and gliomagenesis. This review will help in understanding glioblastoma as a transformed version of a heterogeneous organ composed of multiple varied cell types performing different functions and possessing different means of apoptotic control. Further, this review will help in developing more glioblastoma-specific treatment approaches and will better inform treatments looking at more direct brain delivery of therapeutic agents.

胶质母细胞瘤是最常见、最致命的原发性脑肿瘤。胶质母细胞瘤具有瘤内和瘤间显著的异质性、耐药性和预后不良的特点,尽管数十年来人们一直在研究其生物学基础。这种异质性和耐药性中包含着严重失调的程序性细胞死亡通路。胶质母细胞瘤重现了许多神经发育和神经损伤反应;此外,胶质母细胞瘤细胞由多种不同的中枢神经系统细胞类型转化而成。为了更深入地了解胶质母细胞瘤细胞死亡调控的基本特征,了解健康中枢神经系统在平衡和神经退行性病变条件下的细胞死亡调控非常重要。在此,我们回顾了神经干细胞、星形胶质细胞、少突胶质细胞和神经元的凋亡调控,并将它们与胶质母细胞瘤的凋亡调控进行了比较。我们特别关注了在神经炎症、中枢神经系统细胞存活和胶质瘤发生中发挥关键作用的凋亡抑制蛋白。这篇综述将有助于理解胶质母细胞瘤是由多种不同类型的细胞组成的异质器官的转化版本,这些细胞具有不同的功能和不同的凋亡控制手段。此外,这篇综述还有助于开发更多针对胶质母细胞瘤的治疗方法,并为更直接地向大脑输送治疗药物的治疗方法提供更好的参考。
{"title":"Cell death in glioblastoma and the central nervous system.","authors":"Kyle Malone, Eric LaCasse, Shawn T Beug","doi":"10.1007/s13402-024-01007-8","DOIUrl":"https://doi.org/10.1007/s13402-024-01007-8","url":null,"abstract":"<p><p>Glioblastoma is the commonest and deadliest primary brain tumor. Glioblastoma is characterized by significant intra- and inter-tumoral heterogeneity, resistance to treatment and dismal prognoses despite decades of research in understanding its biological underpinnings. Encompassed within this heterogeneity and therapy resistance are severely dysregulated programmed cell death pathways. Glioblastomas recapitulate many neurodevelopmental and neural injury responses; in addition, glioblastoma cells are composed of multiple different transformed versions of CNS cell types. To obtain a greater understanding of the features underlying cell death regulation in glioblastoma, it is important to understand the control of cell death within the healthy CNS during homeostatic and neurodegenerative conditions. Herein, we review apoptotic control within neural stem cells, astrocytes, oligodendrocytes and neurons and compare them to glioblastoma apoptotic control. Specific focus is paid to the Inhibitor of Apoptosis proteins, which play key roles in neuroinflammation, CNS cell survival and gliomagenesis. This review will help in understanding glioblastoma as a transformed version of a heterogeneous organ composed of multiple varied cell types performing different functions and possessing different means of apoptotic control. Further, this review will help in developing more glioblastoma-specific treatment approaches and will better inform treatments looking at more direct brain delivery of therapeutic agents.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582175","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cellular Oncology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1