Purpose: Taxol is the first-line chemo-drug for advanced non-small cell lung cancer (NSCLC), but it frequently causes acquired resistance, which leads to the failure of treatment. Therefore, it is critical to screen and characterize the mechanism of the taxol-resistance reversal agent that could re-sensitize the resistant cancer cells to chemo-drug.
Method: The cell viability, sphere-forming and xenografts assay were used to evaluate the ability of ASIV to reverse taxol-resistance. Immunohistochemistry, cytokine application, small-interfering RNA, small molecule inhibitors, and RNA-seq approaches were applied to characterize the molecular mechanism of inhibition of epiregulin (EREG) and downstream signaling by ASIV to reverse taxol-resistance.
Results: ASIV reversed taxol resistance through suppression of the stemness-associated genes of spheres in NSCLC. The mechanism exploration revealed that ASIV promoted the K48-linked polyubiquitination of EREG along with degradation. Moreover, EREG could be triggered by chemo-drug treatment. Consequently, EREG bound to the ErbB receptor and activated the ERK signal to regulate the expression of the stemness-associated genes. Inhibition of EREG/ErbB/ERK could reverse the taxol-resistance by inhibiting the stemness-associated genes. Finally, it was observed that TGFβ and Hedgehog signaling were downstream of EREG/ErbB/ERK, which could be targeted using inhibitors to reverse the taxol resistance of NSCLC.
Conclusions: These findings revealed that inhibition of EREG by ASIV reversed taxol-resistance through suppression of the stemness of NSCLC via EREG/ErbB/ERK-TGFβ, Hedgehog axis.
{"title":"Inhibition of EREG/ErbB/ERK by Astragaloside IV reversed taxol-resistance of non-small cell lung cancer through attenuation of stemness via TGFβ and Hedgehog signal pathway.","authors":"Wenhao Xiu, Yujia Zhang, Dongfang Tang, Sau Har Lee, Rui Zeng, Tingjie Ye, Hua Li, Yanlin Lu, Changtai Qin, Yuxi Yang, Xiaofeng Yan, Xiaoling Wang, Xudong Hu, Maoquan Chu, Zhumei Sun, Wei Xu","doi":"10.1007/s13402-024-00999-7","DOIUrl":"https://doi.org/10.1007/s13402-024-00999-7","url":null,"abstract":"<p><strong>Purpose: </strong>Taxol is the first-line chemo-drug for advanced non-small cell lung cancer (NSCLC), but it frequently causes acquired resistance, which leads to the failure of treatment. Therefore, it is critical to screen and characterize the mechanism of the taxol-resistance reversal agent that could re-sensitize the resistant cancer cells to chemo-drug.</p><p><strong>Method: </strong>The cell viability, sphere-forming and xenografts assay were used to evaluate the ability of ASIV to reverse taxol-resistance. Immunohistochemistry, cytokine application, small-interfering RNA, small molecule inhibitors, and RNA-seq approaches were applied to characterize the molecular mechanism of inhibition of epiregulin (EREG) and downstream signaling by ASIV to reverse taxol-resistance.</p><p><strong>Results: </strong>ASIV reversed taxol resistance through suppression of the stemness-associated genes of spheres in NSCLC. The mechanism exploration revealed that ASIV promoted the K48-linked polyubiquitination of EREG along with degradation. Moreover, EREG could be triggered by chemo-drug treatment. Consequently, EREG bound to the ErbB receptor and activated the ERK signal to regulate the expression of the stemness-associated genes. Inhibition of EREG/ErbB/ERK could reverse the taxol-resistance by inhibiting the stemness-associated genes. Finally, it was observed that TGFβ and Hedgehog signaling were downstream of EREG/ErbB/ERK, which could be targeted using inhibitors to reverse the taxol resistance of NSCLC.</p><p><strong>Conclusions: </strong>These findings revealed that inhibition of EREG by ASIV reversed taxol-resistance through suppression of the stemness of NSCLC via EREG/ErbB/ERK-TGFβ, Hedgehog axis.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380111","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07DOI: 10.1007/s13402-024-01000-1
Lvyuan Li, Yi Zhang, Qiling Tang, Chunyu Wu, Mei Yang, Yan Hu, Zhaojian Gong, Lei Shi, Can Guo, Zhaoyang Zeng, Pan Chen, Wei Xiong
Mitochondria play a central role in cellular energy production and metabolic regulation, and their function has been identified as a key factor influencing tumor immune responses. This review provides a comprehensive overview of the latest advancements in understanding the role of mitochondria in tumor immune surveillance, covering both innate and adaptive immune responses. Specifically, it outlines how mitochondria influence the function of the tumor immune system, underscoring their crucial role in modulating immune cell behavior to either promote or inhibit tumor development and progression. Additionally, this review highlights emerging drug interventions targeting mitochondria, including novel small molecules with significant potential in cancer therapy. Through an in-depth analysis, it explores how these innovative strategies could improve the efficacy and outlook of tumor treatment.
{"title":"Mitochondria in tumor immune surveillance and tumor therapies targeting mitochondria.","authors":"Lvyuan Li, Yi Zhang, Qiling Tang, Chunyu Wu, Mei Yang, Yan Hu, Zhaojian Gong, Lei Shi, Can Guo, Zhaoyang Zeng, Pan Chen, Wei Xiong","doi":"10.1007/s13402-024-01000-1","DOIUrl":"https://doi.org/10.1007/s13402-024-01000-1","url":null,"abstract":"<p><p>Mitochondria play a central role in cellular energy production and metabolic regulation, and their function has been identified as a key factor influencing tumor immune responses. This review provides a comprehensive overview of the latest advancements in understanding the role of mitochondria in tumor immune surveillance, covering both innate and adaptive immune responses. Specifically, it outlines how mitochondria influence the function of the tumor immune system, underscoring their crucial role in modulating immune cell behavior to either promote or inhibit tumor development and progression. Additionally, this review highlights emerging drug interventions targeting mitochondria, including novel small molecules with significant potential in cancer therapy. Through an in-depth analysis, it explores how these innovative strategies could improve the efficacy and outlook of tumor treatment.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142380112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1007/s13402-024-00997-9
Jaewang Lee, Jong-Lyel Roh
Head and neck cancer (HNC) remains a major global health burden, prompting the need for innovative therapeutic strategies. This review examines the role of the cystine/glutamate antiporter (xCT) in HNC, specifically focusing on how xCT contributes to cancer progression through mechanisms such as redox imbalance, ferroptosis, and treatment resistance. The central questions addressed include how xCT dysregulation affects tumor biology and the potential for targeting xCT to enhance treatment outcomes. We explore recent developments in xCT-targeted current and emerging therapies, including xCT inhibitors and novel treatment modalities, and their role in addressing therapeutic challenges. This review aims to provide a comprehensive analysis of xCT as a therapeutic target and to outline future directions for research and clinical application.
{"title":"Unveiling therapeutic avenues targeting xCT in head and neck cancer.","authors":"Jaewang Lee, Jong-Lyel Roh","doi":"10.1007/s13402-024-00997-9","DOIUrl":"https://doi.org/10.1007/s13402-024-00997-9","url":null,"abstract":"<p><p>Head and neck cancer (HNC) remains a major global health burden, prompting the need for innovative therapeutic strategies. This review examines the role of the cystine/glutamate antiporter (xCT) in HNC, specifically focusing on how xCT contributes to cancer progression through mechanisms such as redox imbalance, ferroptosis, and treatment resistance. The central questions addressed include how xCT dysregulation affects tumor biology and the potential for targeting xCT to enhance treatment outcomes. We explore recent developments in xCT-targeted current and emerging therapies, including xCT inhibitors and novel treatment modalities, and their role in addressing therapeutic challenges. This review aims to provide a comprehensive analysis of xCT as a therapeutic target and to outline future directions for research and clinical application.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142364557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-06-18DOI: 10.1007/s13402-024-00961-7
Min Wu, Lin Zhang, Lifu Pi, Layang Liu, Siyu Wang, Yujie Wu, Hongli Pan, Mingyao Liu, Zhengfang Yi
Purpose: Breast cancer is the most commonly diagnosed cancer in women, and triple-negative breast cancer (TNBC) accounts for approximately 15%-20% of all breast cancers. TNBC is highly invasive and malignant. Due to the lack of relevant receptor markers, the prognosis of TNBC is poor and the five-year survival rate is low. Paclitaxel is the first-line drug for the treatment of TNBC, which can inhibit cell mitosis. However, many patients develop drug resistance during treatment, leading to chemotherapy failure. Therefore, finding new therapeutic combinations to overcome TNBC drug resistance can provide new strategies for improving the survival rate of TNBC patients.
Methods: Cell viability assay, RT-qPCR, Colony formation assay, Western blot, and Xenogeneic transplantation methods were used to investigate roles and mechanisms of IRE1α/XBP1s pathway in the paclitaxel-resistant TNBC cells, and combined paclitaxel and IRE1α inhibitor in the treatment of TNBC was examined in vitro and in vivo.
Results: We found activation of UPR in paclitaxel-resistant cells, confirming that IRE1α/XBP1 promotes paclitaxel resistance in TNBC. In addition, we demonstrated that the combination of paclitaxel and IRE1α inhibitors can synergistically inhibit the proliferation of TNBC tumors both in vitro and in vivo,suggesting that IRE1α inhibitors combined with paclitaxel may be a new treatment option for TNBC.
Conclusions: In this study, we demonstrated the important role of IRE1α signaling in mediating paclitaxel resistance and identified that combination therapies targeting IRE1α signaling could overcome paclitaxel resistance and enhance chemotherapy efficacy.
{"title":"IRE1α inhibitor enhances paclitaxel sensitivity of triple-negative breast cancer cells.","authors":"Min Wu, Lin Zhang, Lifu Pi, Layang Liu, Siyu Wang, Yujie Wu, Hongli Pan, Mingyao Liu, Zhengfang Yi","doi":"10.1007/s13402-024-00961-7","DOIUrl":"10.1007/s13402-024-00961-7","url":null,"abstract":"<p><strong>Purpose: </strong>Breast cancer is the most commonly diagnosed cancer in women, and triple-negative breast cancer (TNBC) accounts for approximately 15%-20% of all breast cancers. TNBC is highly invasive and malignant. Due to the lack of relevant receptor markers, the prognosis of TNBC is poor and the five-year survival rate is low. Paclitaxel is the first-line drug for the treatment of TNBC, which can inhibit cell mitosis. However, many patients develop drug resistance during treatment, leading to chemotherapy failure. Therefore, finding new therapeutic combinations to overcome TNBC drug resistance can provide new strategies for improving the survival rate of TNBC patients.</p><p><strong>Methods: </strong>Cell viability assay, RT-qPCR, Colony formation assay, Western blot, and Xenogeneic transplantation methods were used to investigate roles and mechanisms of IRE1α/XBP1s pathway in the paclitaxel-resistant TNBC cells, and combined paclitaxel and IRE1α inhibitor in the treatment of TNBC was examined in vitro and in vivo.</p><p><strong>Results: </strong>We found activation of UPR in paclitaxel-resistant cells, confirming that IRE1α/XBP1 promotes paclitaxel resistance in TNBC. In addition, we demonstrated that the combination of paclitaxel and IRE1α inhibitors can synergistically inhibit the proliferation of TNBC tumors both in vitro and in vivo,suggesting that IRE1α inhibitors combined with paclitaxel may be a new treatment option for TNBC.</p><p><strong>Conclusions: </strong>In this study, we demonstrated the important role of IRE1α signaling in mediating paclitaxel resistance and identified that combination therapies targeting IRE1α signaling could overcome paclitaxel resistance and enhance chemotherapy efficacy.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141418101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-20DOI: 10.1007/s13402-024-00983-1
Haiyan Chen, Yimin Fang, Siqi Dai, Kai Jiang, Li Shen, Jian Zhao, Kanghua Huang, Xiaofeng Zhou, Kefeng Ding
Background: Neoadjuvant chemoradiotherapy (nCRT) stands as a pivotal therapeutic approach for locally advanced rectal cancer (LARC), yet the absence of a reliable biomarker to forecast its efficacy remains a challenge. Thus, this study aimed to assess whether the proteomic compositions of small extracellular vesicles (sEVs) might offer predictive insights into nCRT response among patients with LARC, while also delving into the proteomic alterations within sEVs post nCRT.
Methods: Plasma samples were obtained from LARC patients both pre- and post-nCRT. Plasma-derived sEVs were isolated utilizing the TIO2-based method, followed by LC-MS/MS-based proteomic analysis. Subsequently, pathway enrichment analysis was performed to the Differentially Expressed Proteins (DEPs). Additionally, ROC curves were generated to evaluate the predictive potential of sEV proteins in determining nCRT response. Public databases were interrogated to identify sEV protein-associated genes that are correlated with the response to nCRT in LARC.
Results: A total of 16 patients were enrolled. Among them, 8 patients achieved a pathological complete response (good responders, GR), while the remaining 8 did not achieve a complete response (poor responders, PR). Our analysis of pretreatment plasma-derived sEVs revealed 67 significantly up-regulated DEPs and 9 significantly down-regulated DEPs. Notably, PROC (AUC: 0.922), F7 (AUC: 0.953) and AZU1 (AUC: 0.906) demonstrated high AUC values and significant differences (P value < 0.05) in discriminating between GR and PR patients. Furthermore, a signature consisting of 5 sEV protein-associated genes (S100A6, ENO1, MIF, PRDX6 and MYL6) was capable of predicting the response to nCRT, yielding an AUC of 0.621(95% CI: 0.454-0.788). Besides, this 5-sEV protein-associated gene signature enabled stratification of patients into low- and high-risk group, with the low-risk group demonstrating a longer overall survival in the testing set (P = 0.048). Moreover, our investigation identified 11 significantly up-regulated DEPs and 31 significantly down-regulated DEPs when comparing pre- and post-nCRT proteomic profiles. GO analysis unveiled enrichment in the regulation of phospholipase A2 activity.
Conclusions: Differential expression of sEV proteins distinguishes between GR and PR patients and holds promise as predictive markers for nCRT response and prognosis in patients with LARC. Furthermore, our findings highlight substantial alterations in sEV protein composition following nCRT.
{"title":"Characterization and proteomic analysis of plasma-derived small extracellular vesicles in locally advanced rectal cancer patients.","authors":"Haiyan Chen, Yimin Fang, Siqi Dai, Kai Jiang, Li Shen, Jian Zhao, Kanghua Huang, Xiaofeng Zhou, Kefeng Ding","doi":"10.1007/s13402-024-00983-1","DOIUrl":"10.1007/s13402-024-00983-1","url":null,"abstract":"<p><strong>Background: </strong>Neoadjuvant chemoradiotherapy (nCRT) stands as a pivotal therapeutic approach for locally advanced rectal cancer (LARC), yet the absence of a reliable biomarker to forecast its efficacy remains a challenge. Thus, this study aimed to assess whether the proteomic compositions of small extracellular vesicles (sEVs) might offer predictive insights into nCRT response among patients with LARC, while also delving into the proteomic alterations within sEVs post nCRT.</p><p><strong>Methods: </strong>Plasma samples were obtained from LARC patients both pre- and post-nCRT. Plasma-derived sEVs were isolated utilizing the TIO<sub>2</sub>-based method, followed by LC-MS/MS-based proteomic analysis. Subsequently, pathway enrichment analysis was performed to the Differentially Expressed Proteins (DEPs). Additionally, ROC curves were generated to evaluate the predictive potential of sEV proteins in determining nCRT response. Public databases were interrogated to identify sEV protein-associated genes that are correlated with the response to nCRT in LARC.</p><p><strong>Results: </strong>A total of 16 patients were enrolled. Among them, 8 patients achieved a pathological complete response (good responders, GR), while the remaining 8 did not achieve a complete response (poor responders, PR). Our analysis of pretreatment plasma-derived sEVs revealed 67 significantly up-regulated DEPs and 9 significantly down-regulated DEPs. Notably, PROC (AUC: 0.922), F7 (AUC: 0.953) and AZU1 (AUC: 0.906) demonstrated high AUC values and significant differences (P value < 0.05) in discriminating between GR and PR patients. Furthermore, a signature consisting of 5 sEV protein-associated genes (S100A6, ENO1, MIF, PRDX6 and MYL6) was capable of predicting the response to nCRT, yielding an AUC of 0.621(95% CI: 0.454-0.788). Besides, this 5-sEV protein-associated gene signature enabled stratification of patients into low- and high-risk group, with the low-risk group demonstrating a longer overall survival in the testing set (P = 0.048). Moreover, our investigation identified 11 significantly up-regulated DEPs and 31 significantly down-regulated DEPs when comparing pre- and post-nCRT proteomic profiles. GO analysis unveiled enrichment in the regulation of phospholipase A2 activity.</p><p><strong>Conclusions: </strong>Differential expression of sEV proteins distinguishes between GR and PR patients and holds promise as predictive markers for nCRT response and prognosis in patients with LARC. Furthermore, our findings highlight substantial alterations in sEV protein composition following nCRT.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003718","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01Epub Date: 2024-08-14DOI: 10.1007/s13402-024-00979-x
Sen Zhang, Liwen Ren, Wan Li, Yizhi Zhang, Yihui Yang, Hong Yang, Fang Xu, Wanxin Cao, Xiaoxue Li, Xu Zhang, Guanhua Du, Jinhua Wang
Interferon Gamma Inducible Protein 30 (IFI30), also known as Gamma-Interferon-Inducible Lysosomal Thiol Reductase (GILT), is predominantly found in lysosomes and the cytoplasm. As the sole enzyme identified to catalyze disulfide bond reduction in the endocytic pathway, IFI30 contributes to both major histocompatibility complex (MHC) class I-restricted antigen cross-presentation and MHC class II-restricted antigen processing by decreasing the disulfide bonds of endocytosed proteins. Remarkably, emerging research has revealed that IFI30 is involved in tumorigenesis, tumor development, and the tumor immune response. Targeting IFI30 may provide new strategies for cancer therapy and improve the prognosis of patients. This review provided a comprehensive overview of the research progress on IFI30 in tumor progression, cellular redox status, autophagy, tumor immune response, and drug sensitivity, with a view to providing the theoretical basis for pharmacological intervention of IFI30 in tumor therapy, particularly in immunotherapy.
{"title":"Interferon Gamma Inducible Protein 30: from biological functions to potential therapeutic target in cancers.","authors":"Sen Zhang, Liwen Ren, Wan Li, Yizhi Zhang, Yihui Yang, Hong Yang, Fang Xu, Wanxin Cao, Xiaoxue Li, Xu Zhang, Guanhua Du, Jinhua Wang","doi":"10.1007/s13402-024-00979-x","DOIUrl":"10.1007/s13402-024-00979-x","url":null,"abstract":"<p><p>Interferon Gamma Inducible Protein 30 (IFI30), also known as Gamma-Interferon-Inducible Lysosomal Thiol Reductase (GILT), is predominantly found in lysosomes and the cytoplasm. As the sole enzyme identified to catalyze disulfide bond reduction in the endocytic pathway, IFI30 contributes to both major histocompatibility complex (MHC) class I-restricted antigen cross-presentation and MHC class II-restricted antigen processing by decreasing the disulfide bonds of endocytosed proteins. Remarkably, emerging research has revealed that IFI30 is involved in tumorigenesis, tumor development, and the tumor immune response. Targeting IFI30 may provide new strategies for cancer therapy and improve the prognosis of patients. This review provided a comprehensive overview of the research progress on IFI30 in tumor progression, cellular redox status, autophagy, tumor immune response, and drug sensitivity, with a view to providing the theoretical basis for pharmacological intervention of IFI30 in tumor therapy, particularly in immunotherapy.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975152","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: Dysfunctional lymphangiogenesis is pivotal for various pathological processes including tumor lymph node metastasis which is a crucial cause of therapeutic failure for ESCC. In this study, we aim to elucidate the molecular mechanisms and clinical relevance of Zinc-finger protein ZNF468 in lymphangiogenesis and lymphatic metastasis in ESCC.
Methods: Immunohistochemistry, Western blot, Kaplan-Meier plotter analysis and Gene Set Enrichment Analysis were preformed to detect the association of ZNF468 with lymphangiogenesis and poor prognosis in ESCC patients. Foot-pads lymph node metastasis model, tube formation assay, 3D-culture assay and invasion assay were preformed to verify the effect of ZNF468 on lymphangiogenesis and lymph node metastasis. CUT&Tag analysis, immunoprecipitation and mass spectrometry analysis and ChIP-PCR assay were preformed to study the molecular mechanisms of ZNF468 in lymphangiogenesis.
Results: We found that ectopic expression of ZNF468 was correlated with higher microlymphatic vessel density in ESCC tissues, leading to poorer prognosis of ESCC patients. ZNF468 enhanced the capacity of lymphangiogenesis and promoted lymphatic metastasis in ESCC both in vitro and in vivo. However, silencing ZNF468 reversed these phenotypes in ESCC. Mechanically, we demonstrated that ZNF468 recruits the histone modification factors (PRMT1/HAT1) to increase the levels of H4R2me2a and H3K9ac, which then leads to the recruitment of the transcription initiation complex on the VEGF-C promoter, ultimately promoting the upregulation of VEGF-C transcription. Strikingly, the promoting effect of lymphatic metastasis induced by ZNF468 in ESCC was abrogated by targeting PRMT1 using Arginine methyltransferase inhibitor-1 or silencing VEGF-C. Furthermore, we found that the activation of PI3K/AKT and ERK1/2 signaling is required for ZNF468-medicated lymphatic metastasis in ESCC. Importantly, the clinical relevance between ZNF468 and VEGF-C were confirmed not only in ESCC samples and but also in multiple cancer types.
Conclusion: Our results identified a precise mechanism underlying ZNF468-induced epigenetic upregulation of VEGF-C in facilitating lymphangiogenesis and lymph node metastasis of ESCC, which might provide a novel prognostic biomarker and potential therapeutic for ESCC patients.
{"title":"ZNF468-mediated epigenetic upregulation of VEGF-C facilitates lymphangiogenesis and lymphatic metastasis in ESCC via PI3K/Akt and ERK1/2 signaling pathways.","authors":"Jinrong Zhu, Xiangyu Qiu, Xin Jin, Xiaoya Nie, Shengming Ou, Geyan Wu, Jianfei Shen, Rongxin Zhang","doi":"10.1007/s13402-024-00976-0","DOIUrl":"10.1007/s13402-024-00976-0","url":null,"abstract":"<p><strong>Purpose: </strong>Dysfunctional lymphangiogenesis is pivotal for various pathological processes including tumor lymph node metastasis which is a crucial cause of therapeutic failure for ESCC. In this study, we aim to elucidate the molecular mechanisms and clinical relevance of Zinc-finger protein ZNF468 in lymphangiogenesis and lymphatic metastasis in ESCC.</p><p><strong>Methods: </strong>Immunohistochemistry, Western blot, Kaplan-Meier plotter analysis and Gene Set Enrichment Analysis were preformed to detect the association of ZNF468 with lymphangiogenesis and poor prognosis in ESCC patients. Foot-pads lymph node metastasis model, tube formation assay, 3D-culture assay and invasion assay were preformed to verify the effect of ZNF468 on lymphangiogenesis and lymph node metastasis. CUT&Tag analysis, immunoprecipitation and mass spectrometry analysis and ChIP-PCR assay were preformed to study the molecular mechanisms of ZNF468 in lymphangiogenesis.</p><p><strong>Results: </strong>We found that ectopic expression of ZNF468 was correlated with higher microlymphatic vessel density in ESCC tissues, leading to poorer prognosis of ESCC patients. ZNF468 enhanced the capacity of lymphangiogenesis and promoted lymphatic metastasis in ESCC both in vitro and in vivo. However, silencing ZNF468 reversed these phenotypes in ESCC. Mechanically, we demonstrated that ZNF468 recruits the histone modification factors (PRMT1/HAT1) to increase the levels of H4R2me2a and H3K9ac, which then leads to the recruitment of the transcription initiation complex on the VEGF-C promoter, ultimately promoting the upregulation of VEGF-C transcription. Strikingly, the promoting effect of lymphatic metastasis induced by ZNF468 in ESCC was abrogated by targeting PRMT1 using Arginine methyltransferase inhibitor-1 or silencing VEGF-C. Furthermore, we found that the activation of PI3K/AKT and ERK1/2 signaling is required for ZNF468-medicated lymphatic metastasis in ESCC. Importantly, the clinical relevance between ZNF468 and VEGF-C were confirmed not only in ESCC samples and but also in multiple cancer types.</p><p><strong>Conclusion: </strong>Our results identified a precise mechanism underlying ZNF468-induced epigenetic upregulation of VEGF-C in facilitating lymphangiogenesis and lymph node metastasis of ESCC, which might provide a novel prognostic biomarker and potential therapeutic for ESCC patients.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141975154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Immunotherapies, including chimeric antigen receptor (CAR) T cells and bispecific antibodies (BsAbs), encounter several challenges in the management of acute myeloid leukemia (AML), including limited persistence of these treatments, antigen loss and resistance of leukemia stem cells (LSCs) to therapy.
Methods: Here, we proposed a novel dual-targeting approach utilizing engineered anti-IL10R CAR-T cells to secrete bispecific antibodies targeting CD33. This innovative strategy, rooted in our previous research which established a connection between IL-10 and the stemness of AML cells, designed to improve targeting efficiency and eradicate both LSCs and AML blasts.
Results: We first demonstrated the superior efficacy of this synergistic approach in eliminating AML cell lines and primary cells expressing different levels of the target antigens, even in cases of low CD33 or IL10R expression. Furthermore, the IL10R CAR-T cells that secret anti-CD33 bsAbs (CAR.BsAb-T), exhibited an enhanced activation and induction of cytotoxicity not only in IL10R CAR-T cells but also in bystander T cells, thereby more effectively targeting CD33-positive tumor cells. Our in vivo experiments provided additional evidence that CAR.BsAb-T cells could efficiently redirect T cells, reduce tumor burden, and demonstrate no significant toxicity. Additionally, delivering bsAbs locally to the tumor sites through this strategy helps mitigate the pharmacokinetic challenges typically associated with the rapid clearance of prototypical bsAbs.
Conclusions: Overall, the engineering of a single-vector targeting IL10R CAR, which subsequently secretes CD33-targeted bsAb, addresses the issue of immune escape due to the heterogeneous expression of IL10R and CD33, and represents a promising progress in AML therapy aimed at improving treatment outcomes.
{"title":"A dual-targeting approach with anti-IL10R CAR-T cells engineered to release anti-CD33 bispecific antibody in enhancing killing effect on acute myeloid leukemia cells.","authors":"Zhifeng Yan, Runxia Gu, Haotian Ma, Nianci Chen, Ting Zhang, Yingxi Xu, Shaowei Qiu, Haiyan Xing, Kejing Tang, Zheng Tian, Qing Rao, Min Wang, Jianxiang Wang","doi":"10.1007/s13402-024-00971-5","DOIUrl":"10.1007/s13402-024-00971-5","url":null,"abstract":"<p><strong>Background: </strong>Immunotherapies, including chimeric antigen receptor (CAR) T cells and bispecific antibodies (BsAbs), encounter several challenges in the management of acute myeloid leukemia (AML), including limited persistence of these treatments, antigen loss and resistance of leukemia stem cells (LSCs) to therapy.</p><p><strong>Methods: </strong>Here, we proposed a novel dual-targeting approach utilizing engineered anti-IL10R CAR-T cells to secrete bispecific antibodies targeting CD33. This innovative strategy, rooted in our previous research which established a connection between IL-10 and the stemness of AML cells, designed to improve targeting efficiency and eradicate both LSCs and AML blasts.</p><p><strong>Results: </strong>We first demonstrated the superior efficacy of this synergistic approach in eliminating AML cell lines and primary cells expressing different levels of the target antigens, even in cases of low CD33 or IL10R expression. Furthermore, the IL10R CAR-T cells that secret anti-CD33 bsAbs (CAR.BsAb-T), exhibited an enhanced activation and induction of cytotoxicity not only in IL10R CAR-T cells but also in bystander T cells, thereby more effectively targeting CD33-positive tumor cells. Our in vivo experiments provided additional evidence that CAR.BsAb-T cells could efficiently redirect T cells, reduce tumor burden, and demonstrate no significant toxicity. Additionally, delivering bsAbs locally to the tumor sites through this strategy helps mitigate the pharmacokinetic challenges typically associated with the rapid clearance of prototypical bsAbs.</p><p><strong>Conclusions: </strong>Overall, the engineering of a single-vector targeting IL10R CAR, which subsequently secretes CD33-targeted bsAb, addresses the issue of immune escape due to the heterogeneous expression of IL10R and CD33, and represents a promising progress in AML therapy aimed at improving treatment outcomes.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141615892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Neoadjuvant chemotherapy (NAC) combined with immunotherapy is increasingly used in non-small cell lung cancer (NSCLC). Tissue-resident memory T (TRM) cells are the primary subset responding to anti-cancer immunity. However, the immunomodulatory effects of NAC on TRM cells remain unknown.
Methods: We established two NSCLC cohorts including patients undergoing upfront surgery (US) and NAC followed by surgery. Beyond the unpaired comparison between the US cohort (n = 122) and NAC cohort (n = 141) with resection samples, 58 matched pre-NAC biopsy samples were available for paired comparisons. Using multiplex immunofluorescence, we characterized TRM cells (CD103+CD8+) and four heterogeneous TRM subsets, including naive TRM1 (PD-1-Tim-3-), pre-exhausted TRM2 (PD-1+Tim-3-), TRM3 (PD-1-Tim-3+), and terminally exhausted TRM4 (PD-1+Tim-3+). Cell density, cytotoxicity, and two spatial features were defined to evaluate the effect of NAC on TRM subsets.
Results: The cell densities, infiltration scores, and cancer-cell proximity scores of TRM cells, especially TRM1&2 subsets, were significantly increased after NAC and associated with better prognosis of patients. In Contrast, no significant change was observed in the TRM4 subset, which was associated with poor prognosis. Besides, the cytotoxicity of TRM subsets was unaltered after NAC. Compared with patients without major pathologic response (MPRs), patients with MPR had higher densities of TRM1&2 subsets and higher cancer-cell proximity scores of TRM2&3 subsets. Furthermore, increased density of CD31 + cancer microvessels was positively associated with both TRM and Tnon-RM cells after NAC.
Conclusions: NAC may remodel the cell density and spatial distribution of TRM subsets, which is associated with favorable therapeutic effect and prognosis in patients with NSCLC.
{"title":"Optimizing the spatial immune landscape of CD103<sup>+</sup>CD8<sup>+</sup> tissue-resident memory T cells in non-small cell lung cancer by neoadjuvant chemotherapy.","authors":"Guanqun Yang, Mengyu Hu, Siqi Cai, Chaozhuo Li, Liying Yang, Miaoqing Zhao, Hongbiao Jing, Ligang Xing, Xiaorong Sun","doi":"10.1007/s13402-024-00980-4","DOIUrl":"10.1007/s13402-024-00980-4","url":null,"abstract":"<p><strong>Background: </strong>Neoadjuvant chemotherapy (NAC) combined with immunotherapy is increasingly used in non-small cell lung cancer (NSCLC). Tissue-resident memory T (T<sub>RM</sub>) cells are the primary subset responding to anti-cancer immunity. However, the immunomodulatory effects of NAC on T<sub>RM</sub> cells remain unknown.</p><p><strong>Methods: </strong>We established two NSCLC cohorts including patients undergoing upfront surgery (US) and NAC followed by surgery. Beyond the unpaired comparison between the US cohort (n = 122) and NAC cohort (n = 141) with resection samples, 58 matched pre-NAC biopsy samples were available for paired comparisons. Using multiplex immunofluorescence, we characterized T<sub>RM</sub> cells (CD103<sup>+</sup>CD8<sup>+</sup>) and four heterogeneous T<sub>RM</sub> subsets, including naive T<sub>RM1</sub> (PD-1<sup>-</sup>Tim-3<sup>-</sup>), pre-exhausted T<sub>RM2</sub> (PD-1<sup>+</sup>Tim-3<sup>-</sup>), T<sub>RM3</sub> (PD-1<sup>-</sup>Tim-3<sup>+</sup>), and terminally exhausted T<sub>RM4</sub> (PD-1<sup>+</sup>Tim-3<sup>+</sup>). Cell density, cytotoxicity, and two spatial features were defined to evaluate the effect of NAC on T<sub>RM</sub> subsets.</p><p><strong>Results: </strong>The cell densities, infiltration scores, and cancer-cell proximity scores of T<sub>RM</sub> cells, especially T<sub>RM1&2</sub> subsets, were significantly increased after NAC and associated with better prognosis of patients. In Contrast, no significant change was observed in the T<sub>RM4</sub> subset, which was associated with poor prognosis. Besides, the cytotoxicity of T<sub>RM</sub> subsets was unaltered after NAC. Compared with patients without major pathologic response (MPRs), patients with MPR had higher densities of T<sub>RM1&2</sub> subsets and higher cancer-cell proximity scores of T<sub>RM2&3</sub> subsets. Furthermore, increased density of CD31 + cancer microvessels was positively associated with both T<sub>RM</sub> and T<sub>non-RM</sub> cells after NAC.</p><p><strong>Conclusions: </strong>NAC may remodel the cell density and spatial distribution of T<sub>RM</sub> subsets, which is associated with favorable therapeutic effect and prognosis in patients with NSCLC.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141999446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: Ovarian metastasis of gastric cancer (GC), commonly referred to as Krukenberg tumors, leads to a poor prognosis. However, the cause of metastasis remains unknown. Here, we present an integrated single-cell RNA sequencing (scRNA-Seq) analysis of the immunological microenvironment of two paired clinical specimens with ovarian metastasis of GC.
Methods: scRNA-Seq was performed to determine the immunological microenvironment in ovarian metastasis of gastric cancer. CellChat was employed to analyze cell-cell communications across different cell types. Functional enrichment analysis was done by enrichKEGG in clusterProfiler. GEPIA2 was used to assess the influence of certain genes and gene signatures on prognosis.
Results: The ovarian metastasis tissues exhibit a heterogenous immunological microenvironment compared to the primary tumors. Exhaustion of T and B cells is observed in the ovarian metastasis tissues. Compared to the paired adjacent non-tumoral and primary tumors, the ratio of endothelial cells and fibroblasts is high in the ovarian metastasis tissues. Compared to primary ovarian cancers, we identify a specific group of tumor-associated fibroblasts with MFAP4 and CAPNS1 expression in the ovarian metastatic tissues of GC. We further define metastasis-related-endothelial and metastasis-related-fibroblast signatures and indicate that patients with these high signature scores have a poor prognosis. In addition, the ovarian metastasis tissue has a lower level of intercellular communications compared to the primary tumor.
Conclusion: Our findings reveal the immunological microenvironment of ovarian metastasis of gastric cancer and will promote the discovery of new therapeutic strategies for ovarian metastasis in gastric cancer.
{"title":"Single-cell RNA transcriptomic analyses of tumor microenvironment of ovarian metastasis in gastric cancer.","authors":"Guoyu Chen, Mingda Zhang, Xiaolin Lin, Qiqi Shi, Chenxin Xu, Bowen Sun, Xiuying Xiao, Haizhong Feng","doi":"10.1007/s13402-024-00974-2","DOIUrl":"10.1007/s13402-024-00974-2","url":null,"abstract":"<p><strong>Purpose: </strong>Ovarian metastasis of gastric cancer (GC), commonly referred to as Krukenberg tumors, leads to a poor prognosis. However, the cause of metastasis remains unknown. Here, we present an integrated single-cell RNA sequencing (scRNA-Seq) analysis of the immunological microenvironment of two paired clinical specimens with ovarian metastasis of GC.</p><p><strong>Methods: </strong>scRNA-Seq was performed to determine the immunological microenvironment in ovarian metastasis of gastric cancer. CellChat was employed to analyze cell-cell communications across different cell types. Functional enrichment analysis was done by enrichKEGG in clusterProfiler. GEPIA2 was used to assess the influence of certain genes and gene signatures on prognosis.</p><p><strong>Results: </strong>The ovarian metastasis tissues exhibit a heterogenous immunological microenvironment compared to the primary tumors. Exhaustion of T and B cells is observed in the ovarian metastasis tissues. Compared to the paired adjacent non-tumoral and primary tumors, the ratio of endothelial cells and fibroblasts is high in the ovarian metastasis tissues. Compared to primary ovarian cancers, we identify a specific group of tumor-associated fibroblasts with MFAP4 and CAPNS1 expression in the ovarian metastatic tissues of GC. We further define metastasis-related-endothelial and metastasis-related-fibroblast signatures and indicate that patients with these high signature scores have a poor prognosis. In addition, the ovarian metastasis tissue has a lower level of intercellular communications compared to the primary tumor.</p><p><strong>Conclusion: </strong>Our findings reveal the immunological microenvironment of ovarian metastasis of gastric cancer and will promote the discovery of new therapeutic strategies for ovarian metastasis in gastric cancer.</p>","PeriodicalId":9690,"journal":{"name":"Cellular Oncology","volume":null,"pages":null},"PeriodicalIF":6.6,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142003720","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}