Lin Tang, Fengjuan Jia, Ruijun Yu, Lufang Zhang, Qiuju Zhou
The first example of the visible light-driven and substrate-promoted three-component alkenyltrifluoromethylation of alkenes is developed. This approach uses easily available alkenes, 2-arylamino-1,4-naphthoquinones and Togni reagent as the reactants, and describes good functionality tolerance. The reaction offers a precise synthesis of valuable CF3-functionalized 1,4-naphthoquinones and can be applied in late-stage modification of natural products and pharmaceuticals. Experimental results imply that bifunctional 2-arylamino-1,4-naphthoquinones serve as both substrates and catalysts. In terms of this autocatalytic system, the protocol enables a straightforward intermolecular difunctionalization of alkenes under visible light irradiation without external catalysts.
{"title":"Visible light-driven and substrate-promoted alkenyltrifluoromethylation of alkenes to synthesize CF<sub>3</sub>-functionalized 1,4-naphthoquinones.","authors":"Lin Tang, Fengjuan Jia, Ruijun Yu, Lufang Zhang, Qiuju Zhou","doi":"10.1039/d4ob01585a","DOIUrl":"https://doi.org/10.1039/d4ob01585a","url":null,"abstract":"<p><p>The first example of the visible light-driven and substrate-promoted three-component alkenyltrifluoromethylation of alkenes is developed. This approach uses easily available alkenes, 2-arylamino-1,4-naphthoquinones and Togni reagent as the reactants, and describes good functionality tolerance. The reaction offers a precise synthesis of valuable CF<sub>3</sub>-functionalized 1,4-naphthoquinones and can be applied in late-stage modification of natural products and pharmaceuticals. Experimental results imply that bifunctional 2-arylamino-1,4-naphthoquinones serve as both substrates and catalysts. In terms of this autocatalytic system, the protocol enables a straightforward intermolecular difunctionalization of alkenes under visible light irradiation without external catalysts.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Macrocyclic aromatic amides 2, in which the meta-positions of all four benzene rings are linked by tertiary amide bonds, were successfully synthesized by a one-step condensation reaction of two monomers using dichlorotriphenylphosphorane or triphenylphosphine/hexachloroethane (dehydration-condensation reagents for carboxy and amino groups), or LiHMDS (aminolysis for esters) as coupling reagents. Single crystal X-ray analyses of the N-methyl and N-ethyl derivatives were performed and revealed that each compound adopted a spherical structure with chirality because of the fixed axis rotation and combined polarity of the amide bonds. Enantiomers of each spherical macrocycle were separated by chiral column chromatography and showed mirror-imaged CD spectra to each other.
以二氯三苯基膦或三苯基膦/六氯乙烷(羧基和氨基的脱水缩合试剂)或 LiHMDS(酯的氨解试剂)为偶联试剂,通过两种单体的一步缩合反应,成功合成了大环芳香族酰胺 2,其中所有四个苯环的元位均由三级酰胺键连接。对 N-甲基和 N-乙基衍生物进行的单晶 X 射线分析表明,由于酰胺键的固定轴旋转和组合极性,每种化合物都具有手性球形结构。每种球形大环的对映体都通过手性柱层析进行了分离,并显示出彼此镜像的 CD 光谱。
{"title":"Chiral spherical aromatic amides: one-step synthesis and their stereochemical/chiroptical properties.","authors":"Daiki Koike, Hyuma Masu, Shoko Kikkawa, Ayako Chiba, Kaho Kamohara, Arisa Okuda, Hidemasa Hikawa, Isao Azumaya","doi":"10.1039/d4ob01458h","DOIUrl":"https://doi.org/10.1039/d4ob01458h","url":null,"abstract":"<p><p>Macrocyclic aromatic amides 2, in which the <i>meta</i>-positions of all four benzene rings are linked by tertiary amide bonds, were successfully synthesized by a one-step condensation reaction of two monomers using dichlorotriphenylphosphorane or triphenylphosphine/hexachloroethane (dehydration-condensation reagents for carboxy and amino groups), or LiHMDS (aminolysis for esters) as coupling reagents. Single crystal X-ray analyses of the <i>N</i>-methyl and <i>N</i>-ethyl derivatives were performed and revealed that each compound adopted a spherical structure with chirality because of the fixed axis rotation and combined polarity of the amide bonds. Enantiomers of each spherical macrocycle were separated by chiral column chromatography and showed mirror-imaged CD spectra to each other.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Since the beginning of this century, there has been a great deal of research on homogeneous gold-catalyzed alkyne fluorination due to the precious values of fluorinated scaffolds in many bioactive natural products, drugs, and agrochemicals. This area of research, which originally took advantage of gold's mild Lewis acidity and tendency to form π-complexes with alkynes, has gained new momentum after Sadighi's discovery in 2007 of Au-catalyzed hydrofluorination of internal alkynes. The methods have enabled direct access to valuable fluoroalkanes, fluoroalkenes, α-fluorocarbonyls, and fluorinated carbo- and hetero-cycles in one pot from readily available alkyne precursors. Both nucleophilic and electrophilic fluorination modes with versatile reactivity have been used to achieve several new cascade reactions. This study covers the literature reports published since 2007 and provides a comprehensive summary of the methods, applications, and mechanistic insights into gold-catalyzed alkyne fluorination using electrophilic and nucleophilic fluorinating reagents.
{"title":"Gold-catalyzed fluorination of alkynes/allenes: mechanistic explanations and reaction scope.","authors":"Deblina Singha Roy, Yogesh Bhaskar Singh Tanwer, Snigdha Rani Patra, Shivam Kumar, Sabyasachi Bhunia, Debjit Das","doi":"10.1039/d4ob01579g","DOIUrl":"https://doi.org/10.1039/d4ob01579g","url":null,"abstract":"<p><p>Since the beginning of this century, there has been a great deal of research on homogeneous gold-catalyzed alkyne fluorination due to the precious values of fluorinated scaffolds in many bioactive natural products, drugs, and agrochemicals. This area of research, which originally took advantage of gold's mild Lewis acidity and tendency to form π-complexes with alkynes, has gained new momentum after Sadighi's discovery in 2007 of Au-catalyzed hydrofluorination of internal alkynes. The methods have enabled direct access to valuable fluoroalkanes, fluoroalkenes, α-fluorocarbonyls, and fluorinated carbo- and hetero-cycles in one pot from readily available alkyne precursors. Both nucleophilic and electrophilic fluorination modes with versatile reactivity have been used to achieve several new cascade reactions. This study covers the literature reports published since 2007 and provides a comprehensive summary of the methods, applications, and mechanistic insights into gold-catalyzed alkyne fluorination using electrophilic and nucleophilic fluorinating reagents.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602439","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karina Ervik, Yi-Ze Li, Ru-Rong Ji, Charles N Serhan, Trond V Hansen
The synthesis and biological evaluation of 17(R/S)-Me-RvD5n-3 DPA, an analog of the specialized pro-resolving mediators RvD5 and RvD5n-3 DPA, are presented. The synthesis was successfully accomplished utilizing Midland Alpine borane reduction, Sonogashira cross-coupling and a one-pot hydrozirconation/iodination protocol. In vivo evaluation of RvD5, RvD5n-3 DPA and 17(R/S)-Me-RvD5n-3 DPA in a mouse model of fracture revealed that all three compounds inhibited postoperative pain in male mice, but not in female mice.
{"title":"Synthesis of the methyl ester of 17(<i>R</i>/<i>S</i>)-Me-RvD5<sub>n-3 DPA</sub> and relief of postoperative pain in male mice.","authors":"Karina Ervik, Yi-Ze Li, Ru-Rong Ji, Charles N Serhan, Trond V Hansen","doi":"10.1039/d4ob01534g","DOIUrl":"10.1039/d4ob01534g","url":null,"abstract":"<p><p>The synthesis and biological evaluation of 17(<i>R</i>/<i>S</i>)-Me-RvD5<sub>n-3 DPA</sub>, an analog of the specialized pro-resolving mediators RvD5 and RvD5<sub>n-3 DPA</sub>, are presented. The synthesis was successfully accomplished utilizing Midland Alpine borane reduction, Sonogashira cross-coupling and a one-pot hydrozirconation/iodination protocol. <i>In vivo</i> evaluation of RvD5, RvD5<sub>n-3 DPA</sub> and 17(<i>R</i>/<i>S</i>)-Me-RvD5<sub>n-3 DPA</sub> in a mouse model of fracture revealed that all three compounds inhibited postoperative pain in male mice, but not in female mice.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563200/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pari Keerthana, Sundararajan Suresh, Fazlur Rahman Nawaz Khan
A facile and green chemical approach was successfully developed to construct functionalized quinolinones utilizing substituted alcohols, alkyl acetoacetate, and α-bromo ketones. Various quinolinones bearing either electron-rich or electron-deficient groups at different positions were synthesized in moderate to good yields under mild reaction conditions. The plausible mechanistic pathway for this transformation is supported by experimental evidence and control experiments. This simple approach for synthesizing quinolinones could open new avenues for discovering novel biological and pharmaceutical compounds. The use of affordable nickel catalysts, mild reaction conditions, operational simplicity, and high atom economy are attractive features of this method. Furthermore, the synthetic efficiency has been demonstrated through gram-scale experiments. Our research also provides valuable insights into the photophysical properties of the synthesized derivatives. Notably, compound 6n exhibited the highest Stokes shift (216 nm) in DCM solvent. Furthermore, compounds 5d and 6j showed positive solvatochromism, displaying a stronger emission as the solvent polarity increased. Additionally, compound 6j displayed aggregation-induced emission (AIE) properties in a DMSO : water mixture, making it suitable for use as a security ink, highlighting its potential applications in various fields.
{"title":"Facile synthesis of functionalized quinolinones in a green reaction medium and their photophysical properties.","authors":"Pari Keerthana, Sundararajan Suresh, Fazlur Rahman Nawaz Khan","doi":"10.1039/d4ob01390e","DOIUrl":"https://doi.org/10.1039/d4ob01390e","url":null,"abstract":"<p><p>A facile and green chemical approach was successfully developed to construct functionalized quinolinones utilizing substituted alcohols, alkyl acetoacetate, and α-bromo ketones. Various quinolinones bearing either electron-rich or electron-deficient groups at different positions were synthesized in moderate to good yields under mild reaction conditions. The plausible mechanistic pathway for this transformation is supported by experimental evidence and control experiments. This simple approach for synthesizing quinolinones could open new avenues for discovering novel biological and pharmaceutical compounds. The use of affordable nickel catalysts, mild reaction conditions, operational simplicity, and high atom economy are attractive features of this method. Furthermore, the synthetic efficiency has been demonstrated through gram-scale experiments. Our research also provides valuable insights into the photophysical properties of the synthesized derivatives. Notably, compound 6n exhibited the highest Stokes shift (216 nm) in DCM solvent. Furthermore, compounds 5d and 6j showed positive solvatochromism, displaying a stronger emission as the solvent polarity increased. Additionally, compound 6j displayed aggregation-induced emission (AIE) properties in a DMSO : water mixture, making it suitable for use as a security ink, highlighting its potential applications in various fields.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Camille Blayo, Beatrice E Jones, Michael J Bennison, Rachel C Evans
The micellar catalysis of a model Claisen-Schmidt aldol condensation reaction using heterogeneous nanoreactors based on cationic azobenzene trimethylammonium bromide (AzoTAB) photosurfactants is investigated. Under UV irradiation, AzoTABs undergo a trans-cis photoisomerisation, which changes not only the critical micelle concentration, but also the shape and size of the micelle. The effect of surfactant structure (tail and spacer lengths), concentration and temperature on the reaction yield were investigated. Monitoring of the zeta potential during the reaction indicated that it proceeds at the micelle/water interface for AzoTABs, with the enolate intermediate stabilised in micelle/water interface (i.e. the Stern layer). The reaction yield was found to correlate directly to micellar shape and size, with smaller, more spherical micelles typical of cis-AzoTABs favouring higher reaction efficiencies.
{"title":"Size and shape matter for micellar catalysis using light-responsive azobenzene surfactants.","authors":"Camille Blayo, Beatrice E Jones, Michael J Bennison, Rachel C Evans","doi":"10.1039/d4ob01587h","DOIUrl":"10.1039/d4ob01587h","url":null,"abstract":"<p><p>The micellar catalysis of a model Claisen-Schmidt aldol condensation reaction using heterogeneous nanoreactors based on cationic azobenzene trimethylammonium bromide (AzoTAB) photosurfactants is investigated. Under UV irradiation, AzoTABs undergo a <i>trans</i>-<i>cis</i> photoisomerisation, which changes not only the critical micelle concentration, but also the shape and size of the micelle. The effect of surfactant structure (tail and spacer lengths), concentration and temperature on the reaction yield were investigated. Monitoring of the zeta potential during the reaction indicated that it proceeds at the micelle/water interface for AzoTABs, with the enolate intermediate stabilised in micelle/water interface (<i>i.e.</i> the Stern layer). The reaction yield was found to correlate directly to micellar shape and size, with smaller, more spherical micelles typical of <i>cis</i>-AzoTABs favouring higher reaction efficiencies.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":4.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11563304/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142602445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A paired electrocatalysis strategy for intermolecular oxidative cross-dehydrocoupling between styrenes and ethers or p-methylphenol derivatives using ketone as a mild oxidant is described. This approach enables the generation of Csp3 carbon-centered radicals through anodic oxidation, followed by reductive coupling of ketones at the cathode, ultimately yielding valuable oxidative alkylation products.
{"title":"Paired electrocatalysis enabled oxidative coupling of styrenes with alkyl radicals.","authors":"Dong Li, Ling Zhang, Daixi Li, Peng Yu, Tao Shen","doi":"10.1039/d4ob01605j","DOIUrl":"10.1039/d4ob01605j","url":null,"abstract":"<p><p>A paired electrocatalysis strategy for intermolecular oxidative cross-dehydrocoupling between styrenes and ethers or <i>p</i>-methylphenol derivatives using ketone as a mild oxidant is described. This approach enables the generation of Csp<sup>3</sup> carbon-centered radicals through anodic oxidation, followed by reductive coupling of ketones at the cathode, ultimately yielding valuable oxidative alkylation products.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142589638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sunbum Kwon, Vasily Morozov, Lingfei Wang, Pradeep K Mandal, Stéphane Chaignepain, Céline Douat, Ivan Huc
A biotinylated helical aromatic oligoamide foldamer equivalent in size to a 24mer peptide was designed without any prejudice other than to display various polar and hydrophobic side chains at its surface. It was synthesized on solid phase, its P- and M-helical conformers were separated by HPLC on a chiral stationary phase, and the solid state structure of a non-biotinylated analogue was elucidated by X-ray crystallography. Pull-down experiments from a yeast cell lysate using the foldamer as a bait followed by proteomic analysis revealed potential protein binding partners. Three of these proteins were recombinantly expressed. Biolayer interferometry showed submicromolar binding demonstrating the potential of a given foldamer to have affinity for certain proteins in the absence of design considerations. Yet, binding selectivity was low in all three cases since both P- and M-conformers bound to the proteins with similar affinities.
除了在其表面显示各种极性和疏水侧链外,我们还设计了一种生物素化的螺旋芳香族寡酰胺折叠聚合物,其大小相当于 24 聚肽。该产品在固相上合成,其 P-和 M-螺旋构象在手性固定相上通过高效液相色谱进行分离,并通过 X 射线晶体学阐明了非生物素化类似物的固态结构。以折叠酶为诱饵从酵母细胞裂解物中进行拉取实验,然后进行蛋白质组分析,发现了潜在的蛋白质结合伙伴。其中三种蛋白质被重组表达。生物层干涉测量法显示了亚摩尔级的结合力,这表明在没有设计考虑的情况下,特定的折叠聚合体对某些蛋白质具有亲和力。然而,这三种情况下的结合选择性都很低,因为 P 型和 M 型折叠体与蛋白质的结合亲和力相似。
{"title":"Interrogating the potential of helical aromatic foldamers for protein recognition.","authors":"Sunbum Kwon, Vasily Morozov, Lingfei Wang, Pradeep K Mandal, Stéphane Chaignepain, Céline Douat, Ivan Huc","doi":"10.1039/d4ob01436g","DOIUrl":"https://doi.org/10.1039/d4ob01436g","url":null,"abstract":"<p><p>A biotinylated helical aromatic oligoamide foldamer equivalent in size to a 24mer peptide was designed without any prejudice other than to display various polar and hydrophobic side chains at its surface. It was synthesized on solid phase, its <i>P</i>- and <i>M</i>-helical conformers were separated by HPLC on a chiral stationary phase, and the solid state structure of a non-biotinylated analogue was elucidated by X-ray crystallography. Pull-down experiments from a yeast cell lysate using the foldamer as a bait followed by proteomic analysis revealed potential protein binding partners. Three of these proteins were recombinantly expressed. Biolayer interferometry showed submicromolar binding demonstrating the potential of a given foldamer to have affinity for certain proteins in the absence of design considerations. Yet, binding selectivity was low in all three cases since both <i>P</i>- and <i>M</i>-conformers bound to the proteins with similar affinities.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ankush Banerjee, Tiffany A Brisco, Sneha Ray, Arani Datta, Xiaoyu Zhang, Zhen Zhang, Alexander A Busse, Hanspeter Niederstrasser, Krissty Sumida, Bruce A Posner, Dawn M Wetzel, Margaret A Phillips, Myles W Smith
We describe the development of a unified synthetic strategy for the preparation of all known 5/5-spirocyclic spiroindimicin (SPM) alkaloids, namely spiroindimicins B-G. The present synthetic route relies on four fundamental transformations: Grignard-based fragment coupling between halogenated pyrrolemetal and isatin partners, Suzuki coupling to generate a triaryl scaffold encompassing all requisite skeletal atoms of the natural products, Lewis acid-mediated spirocyclization to construct the 5/5-spirocyclic core, and chemoselective lactam reduction. The developed syntheses are step-economic (6-7 steps from commercial materials), scalable, and amenable to analogue synthesis. Preliminary investigations into a catalytic asymmetric spirocyclization towards an enantioselective SPM synthesis are also described. Further studies of the antiparasitic properties of this class have revealed promising activity against T. brucei for certain congeners. Together with our prior approach to the 6/5-family members, our work constitutes a synthetic solution to all known spiroindimicin natural products.
{"title":"Synthesis of the 5/5-spiroindimicin alkaloids: development of a general synthetic approach and biological investigations.","authors":"Ankush Banerjee, Tiffany A Brisco, Sneha Ray, Arani Datta, Xiaoyu Zhang, Zhen Zhang, Alexander A Busse, Hanspeter Niederstrasser, Krissty Sumida, Bruce A Posner, Dawn M Wetzel, Margaret A Phillips, Myles W Smith","doi":"10.1039/d4ob01552e","DOIUrl":"https://doi.org/10.1039/d4ob01552e","url":null,"abstract":"<p><p>We describe the development of a unified synthetic strategy for the preparation of all known 5/5-spirocyclic spiroindimicin (SPM) alkaloids, namely spiroindimicins B-G. The present synthetic route relies on four fundamental transformations: Grignard-based fragment coupling between halogenated pyrrolemetal and isatin partners, Suzuki coupling to generate a triaryl scaffold encompassing all requisite skeletal atoms of the natural products, Lewis acid-mediated spirocyclization to construct the 5/5-spirocyclic core, and chemoselective lactam reduction. The developed syntheses are step-economic (6-7 steps from commercial materials), scalable, and amenable to analogue synthesis. Preliminary investigations into a catalytic asymmetric spirocyclization towards an enantioselective SPM synthesis are also described. Further studies of the antiparasitic properties of this class have revealed promising activity against <i>T. brucei</i> for certain congeners. Together with our prior approach to the 6/5-family members, our work constitutes a synthetic solution to all known spiroindimicin natural products.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142581308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A novel synthetic method has been developed for generating thio(seleno)cyanato-substituted thiazolidine-2-imines via an electrochemical one-pot cascade reaction. This reaction employs isothiocyanates, N-2-en-1-amines, and KSCN (or KSeCN) under mild conditions, obviating the need for metals, chemical oxidants, and external electrolytes. The protocol is effective with unactivated alkenes and facilitates the synthesis of five- and six-membered thio(seleno)cyanato-substituted thiazolidine-2-imines. The versatility is demonstrated by its straightforward operation and scalability to gram-scale production, underscoring its potential for broader application.
{"title":"Electrochemical one-pot cascade synthesis of thio(seleno)cyanato-substituted thiazolidine-2-imines without external electrolyte.","authors":"Xiao Yu, Liqiang Hao, Xian Liu, Shengkui Jin, Yangchen Li, Yiping Liu, Yafei Ji","doi":"10.1039/d4ob01626b","DOIUrl":"https://doi.org/10.1039/d4ob01626b","url":null,"abstract":"<p><p>A novel synthetic method has been developed for generating thio(seleno)cyanato-substituted thiazolidine-2-imines <i>via</i> an electrochemical one-pot cascade reaction. This reaction employs isothiocyanates, <i>N</i>-2-en-1-amines, and KSCN (or KSeCN) under mild conditions, obviating the need for metals, chemical oxidants, and external electrolytes. The protocol is effective with unactivated alkenes and facilitates the synthesis of five- and six-membered thio(seleno)cyanato-substituted thiazolidine-2-imines. The versatility is demonstrated by its straightforward operation and scalability to gram-scale production, underscoring its potential for broader application.</p>","PeriodicalId":96,"journal":{"name":"Organic & Biomolecular Chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142575500","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}