首页 > 最新文献

Cellular and Molecular Neurobiology最新文献

英文 中文
Enlarged Perivascular Space and Index for Diffusivity Along the Perivascular Space as Emerging Neuroimaging Biomarkers of Neurological Diseases 扩大的血管周围空间和血管周围空间扩散指数是神经系统疾病的新兴神经影像生物标志物
IF 4 4区 医学 Q3 CELL BIOLOGY Pub Date : 2023-12-29 DOI: 10.1007/s10571-023-01440-7
Jun Zhang, Shengwen Liu, Yaqi Wu, Zhijian Tang, Yasong Wu, Yiwei Qi, Fangyong Dong, Yu Wang

The existence of lymphatic vessels or similar clearance systems in the central nervous system (CNS) that transport nutrients and remove cellular waste is a neuroscientific question of great significance. As the brain is the most metabolically active organ in the body, there is likely to be a potential correlation between its clearance system and the pathological state of the CNS. Until recently the successive discoveries of the glymphatic system and the meningeal lymphatics solved this puzzle. This article reviews the basic anatomy and physiology of the glymphatic system. Imaging techniques to visualize the function of the glymphatic system mainly including post-contrast imaging techniques, indirect lymphatic assessment by detecting increased perivascular space, and diffusion tensor image analysis along the perivascular space (DTI-ALPS) are discussed. The pathological link between glymphatic system dysfunction and neurological disorders is the key point, focusing on the enlarged perivascular space (EPVS) and the index of diffusivity along the perivascular space (ALPS index), which may represent the activity of the glymphatic system as possible clinical neuroimaging biomarkers of neurological disorders.

Graphical Abstract

The pathological link between glymphatic system dysfunction and neurological disorders is the key point, focusing on the enlarged perivascular space (EPVS) and the index for of diffusivity along the perivascular space (ALPS index), which may represent the activity of the glymphatic system as possible clinical neuroimaging biomarkers of neurological disorders

中枢神经系统(CNS)中是否存在淋巴管或类似的清除系统来运输营养物质和清除细胞废物,这是一个具有重大意义的神经科学问题。由于大脑是人体新陈代谢最活跃的器官,其清除系统与中枢神经系统的病理状态之间很可能存在潜在的关联。直到最近,甘液系统和脑膜淋巴管的相继发现才解决了这一难题。本文回顾了甘液系统的基本解剖学和生理学。文章讨论了观察甘淋巴系统功能的成像技术,主要包括对比后成像技术、通过检测增加的血管周围间隙进行间接淋巴评估,以及沿血管周围间隙的弥散张量图像分析(DTI-ALPS)。重点探讨了甘淋巴系统功能障碍与神经系统疾病之间的病理联系,重点关注血管周围间隙增大(EPVS)和沿血管周围间隙的弥散指数(ALPS指数),它们可能代表甘淋巴系统的活性,是神经系统疾病的临床神经影像生物标志物。图解摘要甘回流系统功能障碍与神经系统疾病之间的病理联系是关键点,重点是扩大的血管周围间隙(EPVS)和沿血管周围间隙的弥散指数(ALPS指数),它们可能代表甘回流系统的活动,是神经系统疾病的临床神经影像学生物标志物。
{"title":"Enlarged Perivascular Space and Index for Diffusivity Along the Perivascular Space as Emerging Neuroimaging Biomarkers of Neurological Diseases","authors":"Jun Zhang, Shengwen Liu, Yaqi Wu, Zhijian Tang, Yasong Wu, Yiwei Qi, Fangyong Dong, Yu Wang","doi":"10.1007/s10571-023-01440-7","DOIUrl":"https://doi.org/10.1007/s10571-023-01440-7","url":null,"abstract":"<p>The existence of lymphatic vessels or similar clearance systems in the central nervous system (CNS) that transport nutrients and remove cellular waste is a neuroscientific question of great significance. As the brain is the most metabolically active organ in the body, there is likely to be a potential correlation between its clearance system and the pathological state of the CNS. Until recently the successive discoveries of the glymphatic system and the meningeal lymphatics solved this puzzle. This article reviews the basic anatomy and physiology of the glymphatic system. Imaging techniques to visualize the function of the glymphatic system mainly including post-contrast imaging techniques, indirect lymphatic assessment by detecting increased perivascular space, and diffusion tensor image analysis along the perivascular space (DTI-ALPS) are discussed. The pathological link between glymphatic system dysfunction and neurological disorders is the key point, focusing on the enlarged perivascular space (EPVS) and the index of diffusivity along the perivascular space (ALPS index), which may represent the activity of the glymphatic system as possible clinical neuroimaging biomarkers of neurological disorders.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3><p>The pathological link between glymphatic system dysfunction and neurological disorders is the key point, focusing on the enlarged perivascular space (EPVS) and the index for of diffusivity along the perivascular space (ALPS index), which may represent the activity of the glymphatic system as possible clinical neuroimaging biomarkers of neurological disorders</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"20 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139071657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Roles of Macrophages and Their Interactions with Schwann Cells After Peripheral Nerve Injury. 周围神经损伤后巨噬细胞的作用及其与许旺细胞的相互作用
IF 3.6 4区 医学 Q3 CELL BIOLOGY Pub Date : 2023-12-27 DOI: 10.1007/s10571-023-01442-5
Guanggeng Wu, Xiaoyue Wen, Rui Kuang, KoonHei Winson Lui, Bo He, Ge Li, Zhaowei Zhu

The adult peripheral nervous system has a significant ability for regeneration compared to the central nervous system. This is related to the unique neuroimmunomodulation after peripheral nerve injury (PNI). Unlike the repair of other tissues after injury, Schwann cells (SCs) respond immediately to the trauma and send out signals to precisely recruit macrophages to the injured site. Then, macrophages promote the degradation of the damaged myelin sheath by phagocytosis of local debris. At the same time, macrophages and SCs jointly secrete various cytokines to reconstruct a microenvironment suitable for nerve regeneration. This unique pathophysiological process associated with macrophages provides important targets for the repair and treatment of PNI, as well as an important reference for guiding the repair of other nerve injuries. To understand these processes more systematically, this paper describes the characteristics of macrophage activation and metabolism in PNI, discusses the underlying molecular mechanism of interaction between macrophages and SCs, and reviews the latest research progress of crosstalk regulation between macrophages and SCs. These concepts and therapeutic strategies are summarized to provide a reference for the more effective use of macrophages in the repair of PNI.

与中枢神经系统相比,成人周围神经系统的再生能力很强。这与周围神经损伤(PNI)后独特的神经免疫调节有关。与其他组织损伤后的修复不同,许旺细胞(SCs)会立即对创伤做出反应,并发出信号将巨噬细胞精确地招募到损伤部位。然后,巨噬细胞通过吞噬局部碎片促进受损髓鞘的降解。与此同时,巨噬细胞和自细胞共同分泌各种细胞因子,重建适合神经再生的微环境。这种与巨噬细胞相关的独特病理生理过程为 PNI 的修复和治疗提供了重要靶点,也为指导其他神经损伤的修复提供了重要参考。为了更系统地了解这些过程,本文阐述了 PNI 中巨噬细胞活化和新陈代谢的特点,讨论了巨噬细胞与 SCs 相互作用的潜在分子机制,并回顾了巨噬细胞与 SCs 之间串联调控的最新研究进展。本文总结了这些概念和治疗策略,为更有效地利用巨噬细胞修复 PNI 提供参考。
{"title":"Roles of Macrophages and Their Interactions with Schwann Cells After Peripheral Nerve Injury.","authors":"Guanggeng Wu, Xiaoyue Wen, Rui Kuang, KoonHei Winson Lui, Bo He, Ge Li, Zhaowei Zhu","doi":"10.1007/s10571-023-01442-5","DOIUrl":"10.1007/s10571-023-01442-5","url":null,"abstract":"<p><p>The adult peripheral nervous system has a significant ability for regeneration compared to the central nervous system. This is related to the unique neuroimmunomodulation after peripheral nerve injury (PNI). Unlike the repair of other tissues after injury, Schwann cells (SCs) respond immediately to the trauma and send out signals to precisely recruit macrophages to the injured site. Then, macrophages promote the degradation of the damaged myelin sheath by phagocytosis of local debris. At the same time, macrophages and SCs jointly secrete various cytokines to reconstruct a microenvironment suitable for nerve regeneration. This unique pathophysiological process associated with macrophages provides important targets for the repair and treatment of PNI, as well as an important reference for guiding the repair of other nerve injuries. To understand these processes more systematically, this paper describes the characteristics of macrophage activation and metabolism in PNI, discusses the underlying molecular mechanism of interaction between macrophages and SCs, and reviews the latest research progress of crosstalk regulation between macrophages and SCs. These concepts and therapeutic strategies are summarized to provide a reference for the more effective use of macrophages in the repair of PNI.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"44 1","pages":"11"},"PeriodicalIF":3.6,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139039544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Discovery and Characterization of Ephrin B2 and EphB4 Dysregulation and Novel Mutations in Cerebral Cavernous Malformations: In Vitro and Patient-Derived Evidence of Ephrin-Mediated Endothelial Cell Pathophysiology. 脑海绵畸形中 Ephrin B2 和 EphB4 失调及新型突变的发现和特征描述:Ephrin介导的内皮细胞病理生理学的体外和患者证据。
IF 3.6 4区 医学 Q3 CELL BIOLOGY Pub Date : 2023-12-27 DOI: 10.1007/s10571-023-01447-0
Julie Sesen, Aram Ghalali, Jessica Driscoll, Tyra Martinez, Adrien Lupieri, David Zurakowski, Sanda Alexandrescu, Edward R Smith, Katie P Fehnel

Intracranial vascular malformations manifest on a continuum ranging from predominantly arterial to predominantly venous in pathology. Cerebral cavernous malformations (CCMs) are capillary malformations that exist at the midpoint of this continuum. The axon guidance factor Ephrin B2 and its receptor EphB4 are critical regulators of vasculogenesis in the developing central nervous system. Ephrin B2/EphB4 dysregulation has been implicated in the pathogenesis of arterial-derived arteriovenous malformations and vein-based vein of Galen malformations. Increasing evidence supports the hypothesis that aberrant Ephrin B2/EphB4 signaling may contribute to developing vascular malformations, but their role in CCMs remains largely uncharacterized. Evidence of Ephrin dysregulation in CCMs would be important to establish a common link in the pathogenic spectrum of EphrinB2/Ephb4 dysregulation. By studying patient-derived primary CCM endothelial cells (CCMECs), we established that CCMECs are functionally distinct from healthy endothelial cell controls; CCMECs demonstrated altered patterns of migration, motility, and impaired tube formation. In addition to the altered phenotype, the CCMECs also displayed an increased ratio of EphrinB2/EphB4 compared to the healthy endothelial control cells. Furthermore, whole exome sequencing identified mutations in both EphrinB2 and EphB4 in the CCMECs. These findings identify functional alterations in the EphrinB2/EphB4 ratio as a feature linking pathophysiology across the spectrum of arterial, capillary, and venous structural malformations in the central nervous system while revealing a putative therapeutic target.

颅内血管畸形在病理上表现为从动脉为主到静脉为主的连续过程。脑海绵畸形(CCMs)属于毛细血管畸形,处于这一连续体的中点。轴突导向因子 Ephrin B2 及其受体 EphB4 是发育中中枢神经系统血管生成的关键调节因子。Ephrin B2/EphB4 失调与动脉源性动静脉畸形和静脉源性盖伦静脉畸形的发病机制有关。越来越多的证据支持 Ephrin B2/EphB4 信号异常可能导致血管畸形的假说,但它们在 CCMs 中的作用在很大程度上仍未定性。CCMs中Ephrin失调的证据对于确定EphrinB2/Ephb4失调致病谱中的共同环节非常重要。通过研究来源于患者的原发性 CCM 内皮细胞(CCMECs),我们确定 CCMECs 在功能上有别于健康内皮细胞对照组;CCMECs 表现出迁移、运动和管道形成受损模式的改变。除了表型改变外,与健康内皮对照细胞相比,CCMECs 的 EphrinB2/EphB4 比率也有所增加。此外,全外显子组测序发现了CCMECs中EphrinB2和EphB4的突变。这些研究结果发现,EphrinB2/EphB4比例的功能性改变是中枢神经系统动脉、毛细血管和静脉结构畸形的一个病理生理学特征,同时也揭示了一个潜在的治疗靶点。
{"title":"Discovery and Characterization of Ephrin B2 and EphB4 Dysregulation and Novel Mutations in Cerebral Cavernous Malformations: In Vitro and Patient-Derived Evidence of Ephrin-Mediated Endothelial Cell Pathophysiology.","authors":"Julie Sesen, Aram Ghalali, Jessica Driscoll, Tyra Martinez, Adrien Lupieri, David Zurakowski, Sanda Alexandrescu, Edward R Smith, Katie P Fehnel","doi":"10.1007/s10571-023-01447-0","DOIUrl":"10.1007/s10571-023-01447-0","url":null,"abstract":"<p><p>Intracranial vascular malformations manifest on a continuum ranging from predominantly arterial to predominantly venous in pathology. Cerebral cavernous malformations (CCMs) are capillary malformations that exist at the midpoint of this continuum. The axon guidance factor Ephrin B2 and its receptor EphB4 are critical regulators of vasculogenesis in the developing central nervous system. Ephrin B2/EphB4 dysregulation has been implicated in the pathogenesis of arterial-derived arteriovenous malformations and vein-based vein of Galen malformations. Increasing evidence supports the hypothesis that aberrant Ephrin B2/EphB4 signaling may contribute to developing vascular malformations, but their role in CCMs remains largely uncharacterized. Evidence of Ephrin dysregulation in CCMs would be important to establish a common link in the pathogenic spectrum of EphrinB2/Ephb4 dysregulation. By studying patient-derived primary CCM endothelial cells (CCMECs), we established that CCMECs are functionally distinct from healthy endothelial cell controls; CCMECs demonstrated altered patterns of migration, motility, and impaired tube formation. In addition to the altered phenotype, the CCMECs also displayed an increased ratio of EphrinB2/EphB4 compared to the healthy endothelial control cells. Furthermore, whole exome sequencing identified mutations in both EphrinB2 and EphB4 in the CCMECs. These findings identify functional alterations in the EphrinB2/EphB4 ratio as a feature linking pathophysiology across the spectrum of arterial, capillary, and venous structural malformations in the central nervous system while revealing a putative therapeutic target.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"44 1","pages":"12"},"PeriodicalIF":3.6,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139039542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic Discrimination of Grade 3 and Grade 4 Gliomas by Artificial Neural Network. 人工神经网络对 3 级和 4 级胶质瘤的基因判别
IF 3.6 4区 医学 Q3 CELL BIOLOGY Pub Date : 2023-12-27 DOI: 10.1007/s10571-023-01448-z
Aleksei A Mekler, Dmitry R Schwartz, Olga E Savelieva

Gliomas, including anaplastic gliomas (AG; grade 3) and glioblastomas (GBM; grade 4), are malignant brain tumors associated with poor prognosis and low survival rates. Current classification systems based on histopathology have limitations due to intratumoral heterogeneity. The treatment and prognosis are distinctly different between grade 3 and grade 4 gliomas patients. Therefore, there is a need for molecular markers to differentiate these tumors accurately. In this study, we aimed to identify a gene expression signature using an artificial neural network (ANN) in application to microarray and serial analysis of gene expression (SAGE) data for grade 3 (AG) and grade 4 (GBM) gliomas discrimination. We acquired gene expression data from publicly available datasets on glial tumors of grades 3 and 4-a total of 93 grade 3 gliomas and 224 grade 4 gliomas. To select genes for classification, we implemented an artificial neural network-based method using a combination of self-organized maps (SOM) and perceptron. In general, we implemented a multi-stage procedure that involved multiple runs of a genetic algorithm to identify genes that provided optimal clusterization on the SOM. We performed this procedure multiple times, resulting in different sets of genes each time. Eventually, we selected several genes that appeared most frequently in the reduced sets and performed classification using them. Our analysis identified a set of seven genes (BCAS4, GLUD2, KCNJ10, KCND2, AKR7A2, FOLR1, and KIAA0319). The classification accuracy using this gene set was 87.5%. These findings suggest the potential of this gene set as a molecular marker for distinguishing grade 3 (AG) from grade 4 (GBM) gliomas.

胶质瘤,包括无弹性胶质瘤(AG;3级)和胶质母细胞瘤(GBM;4级),是一种预后差、存活率低的恶性脑肿瘤。由于瘤内异质性,目前基于组织病理学的分类系统存在局限性。3 级和 4 级胶质瘤患者的治疗和预后明显不同。因此,需要分子标记物来准确区分这些肿瘤。本研究旨在利用人工神经网络(ANN)识别基因表达特征,并将其应用于 3 级(AG)和 4 级(GBM)胶质瘤的微阵列和基因表达序列分析(SAGE)数据。我们从公开的 3 级和 4 级胶质瘤数据集中获取了基因表达数据--共有 93 个 3 级胶质瘤和 224 个 4 级胶质瘤。为了选择基因进行分类,我们采用了一种基于人工神经网络的方法,将自组织图(SOM)和感知器相结合。一般来说,我们采用多阶段程序,包括多次运行遗传算法,以确定在自组织图上提供最佳聚类的基因。我们多次执行这一程序,每次都会产生不同的基因集。最终,我们选出了在缩小后的基因集中出现频率最高的几个基因,并用它们进行了分类。我们的分析确定了一组七个基因(BCAS4、GLUD2、KCNJ10、KCND2、AKR7A2、FOLR1 和 KIAA0319)。该基因组的分类准确率为 87.5%。这些研究结果表明,该基因组有可能成为区分3级(AG)和4级(GBM)胶质瘤的分子标记。
{"title":"Genetic Discrimination of Grade 3 and Grade 4 Gliomas by Artificial Neural Network.","authors":"Aleksei A Mekler, Dmitry R Schwartz, Olga E Savelieva","doi":"10.1007/s10571-023-01448-z","DOIUrl":"10.1007/s10571-023-01448-z","url":null,"abstract":"<p><p>Gliomas, including anaplastic gliomas (AG; grade 3) and glioblastomas (GBM; grade 4), are malignant brain tumors associated with poor prognosis and low survival rates. Current classification systems based on histopathology have limitations due to intratumoral heterogeneity. The treatment and prognosis are distinctly different between grade 3 and grade 4 gliomas patients. Therefore, there is a need for molecular markers to differentiate these tumors accurately. In this study, we aimed to identify a gene expression signature using an artificial neural network (ANN) in application to microarray and serial analysis of gene expression (SAGE) data for grade 3 (AG) and grade 4 (GBM) gliomas discrimination. We acquired gene expression data from publicly available datasets on glial tumors of grades 3 and 4-a total of 93 grade 3 gliomas and 224 grade 4 gliomas. To select genes for classification, we implemented an artificial neural network-based method using a combination of self-organized maps (SOM) and perceptron. In general, we implemented a multi-stage procedure that involved multiple runs of a genetic algorithm to identify genes that provided optimal clusterization on the SOM. We performed this procedure multiple times, resulting in different sets of genes each time. Eventually, we selected several genes that appeared most frequently in the reduced sets and performed classification using them. Our analysis identified a set of seven genes (BCAS4, GLUD2, KCNJ10, KCND2, AKR7A2, FOLR1, and KIAA0319). The classification accuracy using this gene set was 87.5%. These findings suggest the potential of this gene set as a molecular marker for distinguishing grade 3 (AG) from grade 4 (GBM) gliomas.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"44 1","pages":"13"},"PeriodicalIF":3.6,"publicationDate":"2023-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139039543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Zika Virus Infection Alters the Circadian Clock Expression in Human Neuronal Monolayer and Neurosphere Cultures. 寨卡病毒感染改变人类神经元单层和神经球培养物的昼夜节律钟表达
IF 3.6 4区 医学 Q3 CELL BIOLOGY Pub Date : 2023-12-23 DOI: 10.1007/s10571-023-01445-2
Thaíse Yasmine Vasconcelos de Lima Cavalcanti, Morganna Costa Lima, Paula Bargi-Souza, Rafael Freitas Oliveira Franca, Rodrigo Antonio Peliciari-Garcia

Rhythmic regulations are virtually described in all physiological processes, including central nervous system development and immunologic responses. Zika virus (ZIKV), a neurotropic arbovirus, has been recently linked to a series of birth defects and neurodevelopmental disorders. Given the well-characterized role of the intrinsic cellular circadian clock within neurogenesis, cellular metabolism, migration, and differentiation among other processes, this study aimed to characterize the influence of ZIKV infection in the circadian clock expression in human neuronal cells. For this, in vitro models of human-induced neuroprogenitor cells (hiNPCs) and neuroblastoma cell line SH-SY5Y, cultured as monolayer and neurospheres, were infected by ZIKV, followed by RNA-Seq and RT-qPCR investigation, respectively. Targeted circadian clock components presented mRNA oscillations only after exogenous synchronizing stimuli (Forskolin) in SH-SY5Y monolayer culture. Interestingly, when these cells were grown as 3D-arranged neurospheres, an intrinsic oscillatory expression pattern was observed for some core clock components without any exogenous stimulation. The ZIKV infection significantly disturbed the mRNA expression pattern of core clock components in both neuroblastoma cell culture models, which was also observed in hiNPCs infected with different strains of ZIKV. The ZIKV-mediated desynchronization of the circadian clock expression in human cells might further contribute to the virus impairment of neuronal metabolism and function observed in adults and ZIKV-induced congenital syndrome. In vitro models of Zika virus (ZIKV) neuronal infection. Human neuroprogenitor cells were cultured as monolayer and neurospheres and infected by ZIKV. Monolayer-cultured cells received forskolin (FSK) as a coupling factor for the circadian clock rhythmicity, while 3D-arranged neurospheres showed an intrinsic oscillatory pattern in the circadian clock expression. The ZIKV infection affected the mRNA expression pattern of core clock components in both cell culture models. The ZIKV-mediated desynchronization of the circadian clock machinery might contribute to the impairment of neuronal metabolism and function observed in both adults (e.g., Guillain-Barré syndrome) and ZIKV-induced congenital syndrome (microcephaly). The graphical abstract has been created with Canva at the canva.com website.

在所有生理过程中,包括中枢神经系统发育和免疫反应,几乎都有节奏性调节的描述。寨卡病毒(ZIKV)是一种侵袭神经的虫媒病毒,最近与一系列先天缺陷和神经发育障碍有关。鉴于细胞内在昼夜节律钟在神经发生、细胞新陈代谢、迁移和分化等过程中的作用已被充分描述,本研究旨在描述寨卡病毒感染对人类神经细胞昼夜节律钟表达的影响。为此,ZIKV 感染了体外培养的人类诱导神经祖细胞(hiNPCs)和神经母细胞瘤细胞系 SH-SY5Y(单层培养和神经球培养),然后分别进行了 RNA-Seq 和 RT-qPCR 研究。在SH-SY5Y单层培养中,只有在外源性同步刺激(佛司可林)后,靶向昼夜节律钟成分才会出现mRNA振荡。有趣的是,当这些细胞培养成三维排列的神经球时,在没有任何外源刺激的情况下也能观察到一些核心时钟成分的内在振荡表达模式。在这两种神经母细胞瘤细胞培养模型中,ZIKV 感染都明显干扰了核心时钟成分的 mRNA 表达模式,在感染了不同株 ZIKV 的 hiNPCs 中也观察到了这种情况。ZIKV 介导的人体细胞昼夜节律钟表达不同步可能进一步导致在成人中观察到的病毒对神经元代谢和功能的损害以及 ZIKV 引起的先天性综合征。寨卡病毒(ZIKV)神经元感染的体外模型。将人类神经祖细胞培养成单层细胞和神经球,并用 ZIKV 感染。单层培养的细胞接受福斯可林(FSK)作为昼夜节律钟节律的耦合因子,而三维排列的神经球则显示出昼夜节律钟表达的内在振荡模式。ZIKV感染影响了两种细胞培养模型中核心时钟成分的mRNA表达模式。ZIKV介导的昼夜节律时钟机制不同步可能是成人(如格林-巴利综合征)和ZIKV诱导的先天综合征(小头畸形)中观察到的神经元代谢和功能受损的原因。该图表摘要是在 canva.com 网站上使用 Canva 制作的。
{"title":"Zika Virus Infection Alters the Circadian Clock Expression in Human Neuronal Monolayer and Neurosphere Cultures.","authors":"Thaíse Yasmine Vasconcelos de Lima Cavalcanti, Morganna Costa Lima, Paula Bargi-Souza, Rafael Freitas Oliveira Franca, Rodrigo Antonio Peliciari-Garcia","doi":"10.1007/s10571-023-01445-2","DOIUrl":"10.1007/s10571-023-01445-2","url":null,"abstract":"<p><p>Rhythmic regulations are virtually described in all physiological processes, including central nervous system development and immunologic responses. Zika virus (ZIKV), a neurotropic arbovirus, has been recently linked to a series of birth defects and neurodevelopmental disorders. Given the well-characterized role of the intrinsic cellular circadian clock within neurogenesis, cellular metabolism, migration, and differentiation among other processes, this study aimed to characterize the influence of ZIKV infection in the circadian clock expression in human neuronal cells. For this, in vitro models of human-induced neuroprogenitor cells (hiNPCs) and neuroblastoma cell line SH-SY5Y, cultured as monolayer and neurospheres, were infected by ZIKV, followed by RNA-Seq and RT-qPCR investigation, respectively. Targeted circadian clock components presented mRNA oscillations only after exogenous synchronizing stimuli (Forskolin) in SH-SY5Y monolayer culture. Interestingly, when these cells were grown as 3D-arranged neurospheres, an intrinsic oscillatory expression pattern was observed for some core clock components without any exogenous stimulation. The ZIKV infection significantly disturbed the mRNA expression pattern of core clock components in both neuroblastoma cell culture models, which was also observed in hiNPCs infected with different strains of ZIKV. The ZIKV-mediated desynchronization of the circadian clock expression in human cells might further contribute to the virus impairment of neuronal metabolism and function observed in adults and ZIKV-induced congenital syndrome. In vitro models of Zika virus (ZIKV) neuronal infection. Human neuroprogenitor cells were cultured as monolayer and neurospheres and infected by ZIKV. Monolayer-cultured cells received forskolin (FSK) as a coupling factor for the circadian clock rhythmicity, while 3D-arranged neurospheres showed an intrinsic oscillatory pattern in the circadian clock expression. The ZIKV infection affected the mRNA expression pattern of core clock components in both cell culture models. The ZIKV-mediated desynchronization of the circadian clock machinery might contribute to the impairment of neuronal metabolism and function observed in both adults (e.g., Guillain-Barré syndrome) and ZIKV-induced congenital syndrome (microcephaly). The graphical abstract has been created with Canva at the canva.com website.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"44 1","pages":"10"},"PeriodicalIF":3.6,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138884603","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Patch-seq: Advances and Biological Applications 斑块芯片:进展与生物应用
IF 4 4区 医学 Q3 CELL BIOLOGY Pub Date : 2023-12-20 DOI: 10.1007/s10571-023-01436-3
Mingting Shao, Wei Zhang, Ye Li, Lei Tang, Zhao-Zhe Hao, Sheng Liu

Multimodal analysis of gene-expression patterns, electrophysiological properties, and morphological phenotypes at the single-cell/single-nucleus level has been arduous because of the diversity and complexity of neurons. The emergence of Patch-sequencing (Patch-seq) directly links transcriptomics, morphology, and electrophysiology, taking neuroscience research to a multimodal era. In this review, we summarized the development of Patch-seq and recent applications in the cortex, hippocampus, and other nervous systems. Through generating multimodal cell type atlases, targeting specific cell populations, and correlating transcriptomic data with phenotypic information, Patch-seq has provided new insight into outstanding questions in neuroscience. We highlight the challenges and opportunities of Patch-seq in neuroscience and hope to shed new light on future neuroscience research.

由于神经元的多样性和复杂性,在单细胞/单核水平对基因表达模式、电生理特性和形态表型进行多模态分析一直是一项艰巨的任务。补丁测序(Patch-sequencing,Patch-seq)的出现将转录组学、形态学和电生理学直接联系起来,将神经科学研究带入了多模态时代。在这篇综述中,我们总结了 Patch-seq 的发展以及最近在大脑皮层、海马和其他神经系统中的应用。通过生成多模态细胞类型图谱、靶向特定细胞群以及将转录组数据与表型信息关联起来,Patch-seq 为神经科学领域的未决问题提供了新的见解。我们强调了 Patch-seq 在神经科学领域的挑战和机遇,希望能为未来的神经科学研究带来新的启示。
{"title":"Patch-seq: Advances and Biological Applications","authors":"Mingting Shao, Wei Zhang, Ye Li, Lei Tang, Zhao-Zhe Hao, Sheng Liu","doi":"10.1007/s10571-023-01436-3","DOIUrl":"https://doi.org/10.1007/s10571-023-01436-3","url":null,"abstract":"<p>Multimodal analysis of gene-expression patterns, electrophysiological properties, and morphological phenotypes at the single-cell/single-nucleus level has been arduous because of the diversity and complexity of neurons. The emergence of Patch-sequencing (Patch-seq) directly links transcriptomics, morphology, and electrophysiology, taking neuroscience research to a multimodal era. In this review, we summarized the development of Patch-seq and recent applications in the cortex, hippocampus, and other nervous systems. Through generating multimodal cell type atlases, targeting specific cell populations, and correlating transcriptomic data with phenotypic information, Patch-seq has provided new insight into outstanding questions in neuroscience. We highlight the challenges and opportunities of Patch-seq in neuroscience and hope to shed new light on future neuroscience research.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138823433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Liposome-Mediated Anti-Viral Drug Delivery Across Blood-Brain Barrier: Can Lipid Droplet Target Be Game Changers? 脂质体介导的血脑屏障抗病毒药物递送:脂滴靶点能否改变游戏规则?
IF 3.6 4区 医学 Q3 CELL BIOLOGY Pub Date : 2023-12-20 DOI: 10.1007/s10571-023-01443-4
Sourav Mondal, Sourish Ghosh

Lipid droplets (LDs) are subcellular organelles secreted from the endoplasmic reticulum (ER) that play a major role in lipid homeostasis. Recent research elucidates additional roles of LDs in cellular bioenergetics and innate immunity. LDs activate signaling cascades for interferon response and secretion of pro-inflammatory cytokines. Since balanced lipid homeostasis is critical for neuronal health, LDs play a crucial role in neurodegenerative diseases. RNA viruses enhance the secretion of LDs to support various phases of their life cycle in neurons which further leads to neurodegeneration. Targeting the excess LD formation in the brain could give us a new arsenal of antiviral therapeutics against neuroviruses. Liposomes are a suitable drug delivery system that could be used for drug delivery in the brain by crossing the Blood-Brain Barrier. Utilizing this, various pharmacological inhibitors and non-coding RNAs can be delivered that could inhibit the biogenesis of LDs or reduce their sizes, reversing the excess lipid-related imbalance in neurons. Liposome-Mediated Antiviral Drug Delivery Across Blood-Brain Barrier. Developing effective antiviral drug is challenging and it doubles against neuroviruses that needs delivery across the Blood-Brain Barrier (BBB). Lipid Droplets (LDs) are interesting targets for developing antivirals, hence targeting LD formation by drugs delivered using Liposomes can be game changers.

脂滴(LDs)是内质网(ER)分泌的亚细胞器,在脂质平衡中发挥着重要作用。最新研究阐明了脂滴在细胞生物能和先天性免疫中的其他作用。低密度脂蛋白可激活干扰素反应和促炎细胞因子分泌的信号级联。由于平衡的脂质平衡对神经元的健康至关重要,因此低密度脂蛋白在神经退行性疾病中发挥着关键作用。RNA 病毒会增强低密度脂蛋白的分泌,以支持其在神经元中生命周期的各个阶段,从而进一步导致神经退行性疾病。针对大脑中过量 LD 的形成,可以为我们提供针对神经病毒的新的抗病毒疗法。脂质体是一种合适的给药系统,可用于穿过血脑屏障在大脑中给药。利用这种方法,可以输送各种药理抑制剂和非编码 RNA,从而抑制 LDs 的生物生成或缩小其大小,扭转神经元中与脂质相关的过度失衡。脂质体介导的跨血脑屏障抗病毒药物递送。开发有效的抗病毒药物极具挑战性,它能加倍对抗需要通过血脑屏障(BBB)输送的神经病毒。脂滴(LDs)是开发抗病毒药物的有趣靶点,因此使用脂质体递送药物来靶向形成脂滴可能会改变游戏规则。
{"title":"Liposome-Mediated Anti-Viral Drug Delivery Across Blood-Brain Barrier: Can Lipid Droplet Target Be Game Changers?","authors":"Sourav Mondal, Sourish Ghosh","doi":"10.1007/s10571-023-01443-4","DOIUrl":"10.1007/s10571-023-01443-4","url":null,"abstract":"<p><p>Lipid droplets (LDs) are subcellular organelles secreted from the endoplasmic reticulum (ER) that play a major role in lipid homeostasis. Recent research elucidates additional roles of LDs in cellular bioenergetics and innate immunity. LDs activate signaling cascades for interferon response and secretion of pro-inflammatory cytokines. Since balanced lipid homeostasis is critical for neuronal health, LDs play a crucial role in neurodegenerative diseases. RNA viruses enhance the secretion of LDs to support various phases of their life cycle in neurons which further leads to neurodegeneration. Targeting the excess LD formation in the brain could give us a new arsenal of antiviral therapeutics against neuroviruses. Liposomes are a suitable drug delivery system that could be used for drug delivery in the brain by crossing the Blood-Brain Barrier. Utilizing this, various pharmacological inhibitors and non-coding RNAs can be delivered that could inhibit the biogenesis of LDs or reduce their sizes, reversing the excess lipid-related imbalance in neurons. Liposome-Mediated Antiviral Drug Delivery Across Blood-Brain Barrier. Developing effective antiviral drug is challenging and it doubles against neuroviruses that needs delivery across the Blood-Brain Barrier (BBB). Lipid Droplets (LDs) are interesting targets for developing antivirals, hence targeting LD formation by drugs delivered using Liposomes can be game changers.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"44 1","pages":"9"},"PeriodicalIF":3.6,"publicationDate":"2023-12-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138828355","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drivers of Chronic Pathology Following Ischemic Stroke: A Descriptive Review 缺血性脑卒中后慢性病变的驱动因素:描述性综述
IF 4 4区 医学 Q3 CELL BIOLOGY Pub Date : 2023-12-19 DOI: 10.1007/s10571-023-01437-2
Grant W. Goodman, Trang H. Do, Chunfeng Tan, Rodney M. Ritzel

Stroke is the third leading cause of death and long-term disability in the world. Considered largely a disease of aging, its global economic and healthcare burden is expected to rise as more people survive into advanced age. With recent advances in acute stroke management, including the expansion of time windows for treatment with intravenous thrombolysis and mechanical thrombectomy, we are likely to see an increase in survival rates. It is therefore critically important to understand the complete pathophysiology of ischemic stroke, both in the acute and subacute stages and during the chronic phase in the months and years following an ischemic event. One of the most clinically relevant aspects of the chronic sequelae of stroke is its extended negative effect on cognition. Cognitive impairment may be related to the deterioration and dysfunctional reorganization of white matter seen at later timepoints after stroke, as well as ongoing progressive neurodegeneration. The vasculature of the brain also undergoes significant insult and remodeling following stroke, undergoing changes which may further contribute to chronic stroke pathology. While inflammation and the immune response are well established drivers of acute stroke pathology, the chronicity and functional role of innate and adaptive immune responses in the post-ischemic brain and in the peripheral environment remain largely uncharacterized. In this review, we summarize the current literature on post-stroke injury progression, its chronic pathological features, and the putative secondary injury mechanisms underlying the development of cognitive impairment and dementia. We present findings from clinical and experimental studies and discuss the long-term effects of ischemic stroke on both brain anatomy and functional outcome. Identifying mechanisms that occur months to years after injury could lead to treatment strategies in the chronic phase of stroke to help mitigate stroke-associated cognitive decline in patients.

中风是全球第三大死亡和长期残疾原因。脑卒中主要被认为是一种老龄化疾病,随着越来越多的人步入晚年,预计脑卒中对全球经济和医疗造成的负担将会增加。随着急性中风治疗的最新进展,包括静脉溶栓和机械取栓术治疗时间窗口的扩大,我们很可能会看到存活率的提高。因此,了解缺血性卒中的完整病理生理学至关重要,包括急性和亚急性阶段以及缺血性事件后数月和数年的慢性阶段。中风慢性后遗症与临床最相关的方面之一是其对认知的长期负面影响。认知障碍可能与中风后晚期出现的白质退化和功能障碍重组以及持续的进行性神经变性有关。脑血管在中风后也会受到严重损伤和重塑,其变化可能会进一步导致慢性中风病理。虽然炎症和免疫反应是急性中风病理的既定驱动因素,但缺血后大脑和外周环境中先天性和适应性免疫反应的慢性化和功能性作用在很大程度上仍未得到描述。在这篇综述中,我们总结了目前有关脑卒中后损伤进展、其慢性病理特征以及认知障碍和痴呆发生的潜在继发性损伤机制的文献。我们介绍了临床和实验研究的结果,并讨论了缺血性中风对大脑解剖和功能结果的长期影响。确定损伤后数月至数年内发生的机制可为中风慢性期的治疗策略提供依据,帮助减轻中风相关患者的认知功能下降。
{"title":"Drivers of Chronic Pathology Following Ischemic Stroke: A Descriptive Review","authors":"Grant W. Goodman, Trang H. Do, Chunfeng Tan, Rodney M. Ritzel","doi":"10.1007/s10571-023-01437-2","DOIUrl":"https://doi.org/10.1007/s10571-023-01437-2","url":null,"abstract":"<p>Stroke is the third leading cause of death and long-term disability in the world. Considered largely a disease of aging, its global economic and healthcare burden is expected to rise as more people survive into advanced age. With recent advances in acute stroke management, including the expansion of time windows for treatment with intravenous thrombolysis and mechanical thrombectomy, we are likely to see an increase in survival rates. It is therefore critically important to understand the complete pathophysiology of ischemic stroke, both in the acute and subacute stages and during the chronic phase in the months and years following an ischemic event. One of the most clinically relevant aspects of the chronic sequelae of stroke is its extended negative effect on cognition. Cognitive impairment may be related to the deterioration and dysfunctional reorganization of white matter seen at later timepoints after stroke, as well as ongoing progressive neurodegeneration. The vasculature of the brain also undergoes significant insult and remodeling following stroke, undergoing changes which may further contribute to chronic stroke pathology. While inflammation and the immune response are well established drivers of acute stroke pathology, the chronicity and functional role of innate and adaptive immune responses in the post-ischemic brain and in the peripheral environment remain largely uncharacterized. In this review, we summarize the current literature on post-stroke injury progression, its chronic pathological features, and the putative secondary injury mechanisms underlying the development of cognitive impairment and dementia. We present findings from clinical and experimental studies and discuss the long-term effects of ischemic stroke on both brain anatomy and functional outcome. Identifying mechanisms that occur months to years after injury could lead to treatment strategies in the chronic phase of stroke to help mitigate stroke-associated cognitive decline in patients.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"30 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138744504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overexpress miR-132 in the Brain Parenchyma by a Non-invasive Way Improves Tissue Repairment and Releases Memory Impairment After Traumatic Brain Injury 以非侵入性方式在脑实质中过表达 miR-132 改善组织修复并解除脑外伤后的记忆损伤
IF 4 4区 医学 Q3 CELL BIOLOGY Pub Date : 2023-12-17 DOI: 10.1007/s10571-023-01435-4
Meng Jia, Xi Guo, Ru Liu, Lei Sun, Qun Wang, Jianping Wu

Traumatic brain injury (TBI) is a serious public health problem worldwide, which could lead to an extremely high percentage of mortality and disability. Current treatment strategies mainly concentrate on neuronal protection and reconstruction, among them, exogenous neural stem cell (NSC) transplantation has long been regarded as the most effective curative treatment. However, due to secondary trauma, transplant rejection, and increased incidence of brain malignant tumor, a non-invasive therapy that enhanced endogenous neurogenesis was more suitable for TBI treatment. Our previous work has shown that miR-132 overexpression could improve neuronal differentiation of NSCs in vitro and in vivo. So, we engineered a new kind of AAV vector named AAV-PHP.eB which can transfect brain parenchyma through intravenous injection to overexpress miR-132 in brain after TBI. We found that miR-132 overexpression could reduce impact volume, promote neurogenesis in the dentate gyrus (DG), accelerate neuroblast migrating into the impact cortex, ameliorate microglia-mediated inflammatory reaction, and ultimately restore learning memory function. Our results revealed that AAV-PHP.eB-based miR-132 overexpression could improve endogenous tissue repairment and release clinical symptoms after traumatic brain injury. This work would provide a new therapeutic strategy for TBI treatment and other neurological disorders characterized by markable neuronal loss and memory impairment.

Graphical Abstract

miR-132 overexpression accelerates endogenous neurogenesis and releases TBI-induced tissue repairment and memory impairment. Controlled cortical impact onto the cortex would induce serious cortical injury and microglia accumulation in both cortex and hippocampus. Moreover, endogenous neuroblast could migrate around the injury core. miR-132 overexpression could accelerate neuroblast migration toward the injury core and decreased microglia accumulation in the ipsilateral cortex and hippocampus. miR-132 could be a suitable target on neuroprotective therapy after TBI.

创伤性脑损伤(TBI)是全球严重的公共卫生问题,可导致极高比例的死亡和残疾。目前的治疗策略主要集中于神经元的保护和重建,其中外源性神经干细胞(NSC)移植一直被认为是最有效的治疗方法。然而,由于继发性创伤、移植排斥和脑恶性肿瘤发病率的增加,一种能增强内源性神经发生的非侵入性疗法更适合于创伤性脑损伤的治疗。我们之前的研究表明,miR-132 的过表达可以改善 NSCs 在体外和体内的神经元分化。因此,我们设计了一种名为AAV-PHP.eB的新型AAV载体,通过静脉注射转染脑实质,在TBI后的大脑中过表达miR-132。我们发现,miR-132的过表达可以减少撞击体积,促进齿状回(DG)的神经发生,加速神经母细胞向撞击皮层迁移,改善小胶质细胞介导的炎症反应,并最终恢复学习记忆功能。我们的研究结果表明,基于AAV-PHP.eB的miR-132过表达可以改善内源性组织修复,缓解脑外伤后的临床症状。这项工作将为创伤性脑损伤治疗和其他以明显神经元缺失和记忆损伤为特征的神经系统疾病提供一种新的治疗策略。可控的皮质撞击会引起严重的皮质损伤,并在皮质和海马中积累小胶质细胞。miR-132 的过表达可加速神经母细胞向损伤核心迁移,减少小胶质细胞在同侧皮层和海马的聚集。
{"title":"Overexpress miR-132 in the Brain Parenchyma by a Non-invasive Way Improves Tissue Repairment and Releases Memory Impairment After Traumatic Brain Injury","authors":"Meng Jia, Xi Guo, Ru Liu, Lei Sun, Qun Wang, Jianping Wu","doi":"10.1007/s10571-023-01435-4","DOIUrl":"https://doi.org/10.1007/s10571-023-01435-4","url":null,"abstract":"<p>Traumatic brain injury (TBI) is a serious public health problem worldwide, which could lead to an extremely high percentage of mortality and disability. Current treatment strategies mainly concentrate on neuronal protection and reconstruction, among them, exogenous neural stem cell (NSC) transplantation has long been regarded as the most effective curative treatment. However, due to secondary trauma, transplant rejection, and increased incidence of brain malignant tumor, a non-invasive therapy that enhanced endogenous neurogenesis was more suitable for TBI treatment. Our previous work has shown that miR-132 overexpression could improve neuronal differentiation of NSCs in vitro and in vivo. So, we engineered a new kind of AAV vector named AAV-PHP.eB which can transfect brain parenchyma through intravenous injection to overexpress miR-132 in brain after TBI. We found that miR-132 overexpression could reduce impact volume, promote neurogenesis in the dentate gyrus (DG), accelerate neuroblast migrating into the impact cortex, ameliorate microglia-mediated inflammatory reaction, and ultimately restore learning memory function. Our results revealed that AAV-PHP.eB-based miR-132 overexpression could improve endogenous tissue repairment and release clinical symptoms after traumatic brain injury. This work would provide a new therapeutic strategy for TBI treatment and other neurological disorders characterized by markable neuronal loss and memory impairment.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3><p>miR-132 overexpression accelerates endogenous neurogenesis and releases TBI-induced tissue repairment and memory impairment. Controlled cortical impact onto the cortex would induce serious cortical injury and microglia accumulation in both cortex and hippocampus. Moreover, endogenous neuroblast could migrate around the injury core. miR-132 overexpression could accelerate neuroblast migration toward the injury core and decreased microglia accumulation in the ipsilateral cortex and hippocampus. miR-132 could be a suitable target on neuroprotective therapy after TBI.</p>\u0000","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"2 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138688861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potential of Nano-Engineered Stem Cells in the Treatment of Multiple Sclerosis: A Comprehensive Review 纳米工程干细胞治疗多发性硬化症的潜力:全面综述
IF 4 4区 医学 Q3 CELL BIOLOGY Pub Date : 2023-12-17 DOI: 10.1007/s10571-023-01434-5
Sushruta Ghosh, Gurjit Kaur Bhatti, Pushpender Kumar Sharma, Ramesh Kandimalla, Sarabjit Singh Mastana, Jasvinder Singh Bhatti

Multiple sclerosis (MS) is a chronic and degrading autoimmune disorder mainly targeting the central nervous system, leading to progressive neurodegeneration, demyelination, and axonal damage. Current treatment options for MS are limited in efficacy, generally linked to adverse side effects, and do not offer a cure. Stem cell therapies have emerged as a promising therapeutic strategy for MS, potentially promoting remyelination, exerting immunomodulatory effects and protecting against neurodegeneration. Therefore, this review article focussed on the potential of nano-engineering in stem cells as a therapeutic approach for MS, focusing on the synergistic effects of combining stem cell biology with nanotechnology to stimulate the proliferation of oligodendrocytes (OLs) from neural stem cells and OL precursor cells, by manipulating neural signalling pathways-PDGF, BMP, Wnt, Notch and their essential genes such as Sox, bHLH, Nkx. Here we discuss the pathophysiology of MS, the use of various types of stem cells in MS treatment and their mechanisms of action. In the context of nanotechnology, we present an overview of its applications in the medical and research field and discuss different methods and materials used to nano-engineer stem cells, including surface modification, biomaterials and scaffolds, and nanoparticle-based delivery systems. We further elaborate on nano-engineered stem cell techniques, such as nano script, nano-exosome hybrid, nano-topography and their potentials in MS. The article also highlights enhanced homing, engraftment, and survival of nano-engineered stem cells, targeted and controlled release of therapeutic agents, and immunomodulatory and tissue repair effects with their challenges and limitations.

Graphical Abstract

This visual illustration depicts the process of utilizing nano-engineering in stem cells and exosomes for the purpose of delivering more accurate and improved treatments for Multiple Sclerosis (MS). This approach targets specifically the creation of oligodendrocytes, the breakdown of which is the primary pathological factor in MS.

多发性硬化症(MS)是一种主要针对中枢神经系统的慢性退化性自身免疫性疾病,会导致进行性神经变性、脱髓鞘和轴突损伤。目前治疗多发性硬化症的方法疗效有限,通常会产生不良副作用,而且无法治愈。干细胞疗法已成为治疗多发性硬化症的一种有前途的治疗策略,有可能促进再髓鞘化,发挥免疫调节作用,防止神经变性。因此,这篇综述文章聚焦干细胞纳米工程作为多发性硬化症治疗方法的潜力,重点关注干细胞生物学与纳米技术的协同作用,通过操纵神经信号通路--PDGF、BMP、Wnt、Notch及其重要基因(如Sox、bHLH、Nkx),刺激神经干细胞和少突胶质细胞前体细胞增殖。在此,我们将讨论多发性硬化症的病理生理学、各种干细胞在多发性硬化症治疗中的应用及其作用机制。在纳米技术方面,我们概述了纳米技术在医疗和研究领域的应用,并讨论了用于干细胞纳米工程的不同方法和材料,包括表面修饰、生物材料和支架,以及基于纳米颗粒的传输系统。我们进一步阐述了纳米工程干细胞技术,如纳米脚本、纳米外泌体杂交、纳米形貌及其在多发性硬化症中的潜力。这篇文章还强调了纳米工程干细胞增强的归巢、移植和存活能力,治疗药物的定向和控制释放,免疫调节和组织修复效果,以及它们所面临的挑战和局限性。这种方法特别针对少突胶质细胞的形成,而少突胶质细胞的破坏是多发性硬化症的主要病理因素。
{"title":"Potential of Nano-Engineered Stem Cells in the Treatment of Multiple Sclerosis: A Comprehensive Review","authors":"Sushruta Ghosh, Gurjit Kaur Bhatti, Pushpender Kumar Sharma, Ramesh Kandimalla, Sarabjit Singh Mastana, Jasvinder Singh Bhatti","doi":"10.1007/s10571-023-01434-5","DOIUrl":"https://doi.org/10.1007/s10571-023-01434-5","url":null,"abstract":"<p>Multiple sclerosis (MS) is a chronic and degrading autoimmune disorder mainly targeting the central nervous system, leading to progressive neurodegeneration, demyelination, and axonal damage. Current treatment options for MS are limited in efficacy, generally linked to adverse side effects, and do not offer a cure. Stem cell therapies have emerged as a promising therapeutic strategy for MS, potentially promoting remyelination, exerting immunomodulatory effects and protecting against neurodegeneration. Therefore, this review article focussed on the potential of nano-engineering in stem cells as a therapeutic approach for MS, focusing on the synergistic effects of combining stem cell biology with nanotechnology to stimulate the proliferation of oligodendrocytes (OLs) from neural stem cells and OL precursor cells, by manipulating neural signalling pathways-PDGF, BMP, Wnt, Notch and their essential genes such as Sox, bHLH, Nkx. Here we discuss the pathophysiology of MS, the use of various types of stem cells in MS treatment and their mechanisms of action. In the context of nanotechnology, we present an overview of its applications in the medical and research field and discuss different methods and materials used to nano-engineer stem cells, including surface modification, biomaterials and scaffolds, and nanoparticle-based delivery systems. We further elaborate on nano-engineered stem cell techniques, such as nano script, nano-exosome hybrid, nano-topography and their potentials in MS. The article also highlights enhanced homing, engraftment, and survival of nano-engineered stem cells, targeted and controlled release of therapeutic agents, and immunomodulatory and tissue repair effects with their challenges and limitations.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3><p>This visual illustration depicts the process of utilizing nano-engineering in stem cells and exosomes for the purpose of delivering more accurate and improved treatments for Multiple Sclerosis (MS). This approach targets specifically the creation of oligodendrocytes, the breakdown of which is the primary pathological factor in MS.</p>","PeriodicalId":9742,"journal":{"name":"Cellular and Molecular Neurobiology","volume":"1 1","pages":""},"PeriodicalIF":4.0,"publicationDate":"2023-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138688791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Cellular and Molecular Neurobiology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1