Jiexiang Zhao, Kang Tang, Gurong Jiang, Xinyan Yang, Manman Cui, Cong Wan, Zhaoxiang Ouyang, Yi Zheng, Zhaoting Liu, Mei Wang, Xiao-Yang Zhao, Gang Chang
The transition from fetal primordial germ cells (PGCs) to spermatogonia (SPG) is critical for male germ cell development; however, the detailed transcriptomic dynamics and regulation underlying this transition remain poorly understood. Here by interrogating the comprehensive transcriptome atlas dataset of mouse male germ cells and gonadal cells development, we elucidated the regulatory networks underlying this transition. Our single-cell transcriptome analysis revealed that the transition from PGCs to SPG was characterized by global hypertranscription. A total of 315 highly active regulators were identified to be potentially involved in this transition, among which a non-transcription factor (TF) regulator TAGLN2 was validated to be essential for spermatogonial stem cells (SSCs) maintenance and differentiation. Metabolism profiling analysis also revealed dynamic changes in metabolism-related gene expression during PGC to SPG transition. Furthermore, we uncovered that intricate cell-cell communication exerted potential functions in the regulation of hypertranscription in germ cells by collaborating with stage-specific active regulators. Collectively, our work extends the understanding of molecular mechanisms underlying male germ cell development, offering insights into the recapitulation of germ cell generation in vitro.
{"title":"Dynamic transcriptomic and regulatory networks underpinning the transition from fetal primordial germ cells to spermatogonia in mice.","authors":"Jiexiang Zhao, Kang Tang, Gurong Jiang, Xinyan Yang, Manman Cui, Cong Wan, Zhaoxiang Ouyang, Yi Zheng, Zhaoting Liu, Mei Wang, Xiao-Yang Zhao, Gang Chang","doi":"10.1111/cpr.13755","DOIUrl":"https://doi.org/10.1111/cpr.13755","url":null,"abstract":"<p><p>The transition from fetal primordial germ cells (PGCs) to spermatogonia (SPG) is critical for male germ cell development; however, the detailed transcriptomic dynamics and regulation underlying this transition remain poorly understood. Here by interrogating the comprehensive transcriptome atlas dataset of mouse male germ cells and gonadal cells development, we elucidated the regulatory networks underlying this transition. Our single-cell transcriptome analysis revealed that the transition from PGCs to SPG was characterized by global hypertranscription. A total of 315 highly active regulators were identified to be potentially involved in this transition, among which a non-transcription factor (TF) regulator TAGLN2 was validated to be essential for spermatogonial stem cells (SSCs) maintenance and differentiation. Metabolism profiling analysis also revealed dynamic changes in metabolism-related gene expression during PGC to SPG transition. Furthermore, we uncovered that intricate cell-cell communication exerted potential functions in the regulation of hypertranscription in germ cells by collaborating with stage-specific active regulators. Collectively, our work extends the understanding of molecular mechanisms underlying male germ cell development, offering insights into the recapitulation of germ cell generation in vitro.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13755"},"PeriodicalIF":5.9,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chang Li, Yuning Zhou, Yinping Jiang, Zhijie Yin, Heidi L Weiss, Qingding Wang, B Mark Evers
Intestinal stem cells differentiate into absorptive enterocytes, characterised by increased brush border enzymes such as intestinal alkaline phosphatase (IAP), making up the majority (95%) of the terminally differentiated cells in the villus. Loss of integrity of the intestinal epithelium plays a key role in inflammatory diseases and gastrointestinal infection. Here, we show that the intestinal microRNA (miR)-27a-3p is an important regulator of intestinal epithelial cell proliferation and enterocyte differentiation. Repression of endogenous miR-27a-3p leads to increased enterocyte differentiation and decreased intestinal epithelial cell proliferation in mouse and human small intestinal organoids. Mechanistically, miR-27a-3p regulates intestinal cell differentiation and proliferation at least in part through the regulation of retinoic acid receptor α (RXRα), a modulator of Wnt/β-catenin signalling. Repression of miR-27a-3p increases the expression of RXRα and concomitantly, decreases the expression of active β-catenin and cyclin D1. In contrast, overexpression of miR-27a-3p mimic decreases the expression of RXRα and increases the expression of active β-catenin and cyclin D1. Moreover, overexpression of the miR-27a-3p mimic results in impaired enterocyte differentiation and increases intestinal epithelial cell proliferation. These alterations were attenuated or blocked by Wnt inhibition. Our study demonstrates an miR-27a-3p/RXRα/Wnt/β-catenin pathway that is important for the maintenance of enterocyte homeostasis in the small intestine.
{"title":"miR-27a-3p regulates intestinal cell proliferation and differentiation through Wnt/β-catenin signalling.","authors":"Chang Li, Yuning Zhou, Yinping Jiang, Zhijie Yin, Heidi L Weiss, Qingding Wang, B Mark Evers","doi":"10.1111/cpr.13757","DOIUrl":"https://doi.org/10.1111/cpr.13757","url":null,"abstract":"<p><p>Intestinal stem cells differentiate into absorptive enterocytes, characterised by increased brush border enzymes such as intestinal alkaline phosphatase (IAP), making up the majority (95%) of the terminally differentiated cells in the villus. Loss of integrity of the intestinal epithelium plays a key role in inflammatory diseases and gastrointestinal infection. Here, we show that the intestinal microRNA (miR)-27a-3p is an important regulator of intestinal epithelial cell proliferation and enterocyte differentiation. Repression of endogenous miR-27a-3p leads to increased enterocyte differentiation and decreased intestinal epithelial cell proliferation in mouse and human small intestinal organoids. Mechanistically, miR-27a-3p regulates intestinal cell differentiation and proliferation at least in part through the regulation of retinoic acid receptor α (RXRα), a modulator of Wnt/β-catenin signalling. Repression of miR-27a-3p increases the expression of RXRα and concomitantly, decreases the expression of active β-catenin and cyclin D1. In contrast, overexpression of miR-27a-3p mimic decreases the expression of RXRα and increases the expression of active β-catenin and cyclin D1. Moreover, overexpression of the miR-27a-3p mimic results in impaired enterocyte differentiation and increases intestinal epithelial cell proliferation. These alterations were attenuated or blocked by Wnt inhibition. Our study demonstrates an miR-27a-3p/RXRα/Wnt/β-catenin pathway that is important for the maintenance of enterocyte homeostasis in the small intestine.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13757"},"PeriodicalIF":5.9,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhiming Shen, Yang Gao, Xuedong Sun, Min Chen, Changhuo Cen, Mengyue Wang, Nan Wang, Bowen Liu, Jiayi Li, Xiuhong Cui, Jian Hou, Yuhua Shi, Fei Gao
As major somatic cells in the testis, Sertoli cell development is precisely regulated by numerous factors, and aberrant development of these cells is associated with male reproductive diseases. JNK signalling is evolutionarily conserved and involved in multiple critical biological processes. Here, we found that the double knockout of Jnk1 and Jnk2 resulted in aberrant localisation of Sertoli cells at early developmental stages, with most Sertoli cells being lost at later stages. Further studies revealed that the inactivation of JNK signalling caused polarity loss in Sertoli cells. In vitro-cultured Jnk1/2-DKO Sertoli cells exhibited a senescence-associated phenotype. Mechanistic studies demonstrate that JNK signalling is likely involved in establishing Sertoli cell polarity by regulating the expression of TGF-β2, mediated by c-Jun. The senescence of Sertoli cells in JNKs-deficient mice is caused by aberrant proteolysis of P27KIP1, mediated by c-Myc. This study demonstrates the role of JNK signalling in Sertoli cell development and functional maintenance, which may also represent an aetiology of male infertility in humans.
{"title":"Inactivation of JNK signalling results in polarity loss and cell senescence of Sertoli cell.","authors":"Zhiming Shen, Yang Gao, Xuedong Sun, Min Chen, Changhuo Cen, Mengyue Wang, Nan Wang, Bowen Liu, Jiayi Li, Xiuhong Cui, Jian Hou, Yuhua Shi, Fei Gao","doi":"10.1111/cpr.13760","DOIUrl":"https://doi.org/10.1111/cpr.13760","url":null,"abstract":"<p><p>As major somatic cells in the testis, Sertoli cell development is precisely regulated by numerous factors, and aberrant development of these cells is associated with male reproductive diseases. JNK signalling is evolutionarily conserved and involved in multiple critical biological processes. Here, we found that the double knockout of Jnk1 and Jnk2 resulted in aberrant localisation of Sertoli cells at early developmental stages, with most Sertoli cells being lost at later stages. Further studies revealed that the inactivation of JNK signalling caused polarity loss in Sertoli cells. In vitro-cultured Jnk1/2-DKO Sertoli cells exhibited a senescence-associated phenotype. Mechanistic studies demonstrate that JNK signalling is likely involved in establishing Sertoli cell polarity by regulating the expression of TGF-β2, mediated by c-Jun. The senescence of Sertoli cells in JNKs-deficient mice is caused by aberrant proteolysis of P27<sup>KIP1</sup>, mediated by c-Myc. This study demonstrates the role of JNK signalling in Sertoli cell development and functional maintenance, which may also represent an aetiology of male infertility in humans.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":" ","pages":"e13760"},"PeriodicalIF":5.9,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142342554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhou X, Yu R, Long Y, et al. BMAL1 deficiency promotes skeletal mandibular hypoplasia via OPG downregulation. Cell Prolif. 2018;51:e12470. doi:10.1111/cpr.12470.
The Western blot bands of OPG in Figure 4A of BMAL1-overexpressed BMSCs and BMAL1 in Figure 4B of BMAL1-overexpressed MC3T3-E1 cell line were incorrectly copied.
We apologize for this error.
Zhou X, Yu R, Long Y, et al. BMAL1缺乏通过OPG下调促进骨骼下颌骨发育不良。Cell Prolif. 2018;51:e12470. doi:10.1111/cpr.12470.图4A中BMAL1-overexpressed BMSCs的OPG和图4B中BMAL1-overexpressed MC3T3-E1细胞系的BMAL1的Western blot条带复制有误,现将更正后的图4提供如下。更正后的图 4 提供如下。更正并不改变本文报告的任何结果和结论。我们对此错误深表歉意。
{"title":"Correction to ‘BMAL1 deficiency promotes skeletal mandibular hypoplasia via OPG downregulation’","authors":"","doi":"10.1111/cpr.13750","DOIUrl":"10.1111/cpr.13750","url":null,"abstract":"<p>Zhou X, Yu R, Long Y, et al. BMAL1 deficiency promotes skeletal mandibular hypoplasia via OPG downregulation. <i>Cell Prolif</i>. 2018;51:e12470. doi:10.1111/cpr.12470.</p><p>The Western blot bands of OPG in Figure 4A of BMAL1-overexpressed BMSCs and BMAL1 in Figure 4B of BMAL1-overexpressed MC3T3-E1 cell line were incorrectly copied.</p><p>We apologize for this error.</p>","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":"57 12","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/cpr.13750","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lin Liu, Shihong Luo, Qiumei Li, Kui Huang, Yuan Jiang, Lu Zeng, Xiaorong Lan, Qing Li, Jingang Xiao
Osteoporosis, a condition marked by the deterioration of bone microarchitecture and increased facture risk, arises from a disruption in bone metabolism, with osteoclasts surpassing osteoblasts in bone resorption versus formation. The Wnt signalling pathway, a key regulator of bone maintenance, remains partially understood in osteoporosis. Our research delves into the role of Wnt-related molecules in this disease. In osteoporotic adipose-derived stem cells (OP-ASCs), we detected a significant decrease in Ctnnb1 and Frizzled-6 (Fzd6), contrasted by an increase in Gsk-3β and Wnt5a. Activation of the Wnt pathway by LiCl resulted in elevated Ctnnb1 and Fzd6, but decreased Gsk-3β and Wnt5a levels, promoting OP-ASCs' bone-formation capacity. In contrast, inhibition of this pathway by DKK-1 led to diminished Ctnnb1 and Fzd6, and increased Gsk-3β and Wnt5a, adversely affecting osteogenesis. Furthermore, our findings show that overexpressing Wnt5a impedes, while silencing it enhances the bone-forming capability of OP-ASCs. In a cranial bone defect model, the implantation of Wnt5a-silenced OP-ASCs with biphasic calcium phosphate scaffolds significantly promoted new bone formation. These observations indicated a repression of the canonical Wnt pathway and a stimulation of the non-canonical pathway in OP-ASCs. Silencing Wnt5a increased the osteogenic and regenerative abilities of OP-ASCs. Our study suggests targeting Wnt5a could be a promising strategy for enhancing bone regeneration in post-menopausal osteoporosis.
{"title":"Role of Wnt5a in modulation of osteoporotic adipose-derived stem cells and osteogenesis","authors":"Lin Liu, Shihong Luo, Qiumei Li, Kui Huang, Yuan Jiang, Lu Zeng, Xiaorong Lan, Qing Li, Jingang Xiao","doi":"10.1111/cpr.13747","DOIUrl":"https://doi.org/10.1111/cpr.13747","url":null,"abstract":"Osteoporosis, a condition marked by the deterioration of bone microarchitecture and increased facture risk, arises from a disruption in bone metabolism, with osteoclasts surpassing osteoblasts in bone resorption versus formation. The Wnt signalling pathway, a key regulator of bone maintenance, remains partially understood in osteoporosis. Our research delves into the role of Wnt-related molecules in this disease. In osteoporotic adipose-derived stem cells (OP-ASCs), we detected a significant decrease in <i>Ctnnb1</i> and <i>Frizzled-6</i> (<i>Fzd6</i>), contrasted by an increase in <i>Gsk-3β</i> and <i>Wnt5a</i>. Activation of the Wnt pathway by LiCl resulted in elevated <i>Ctnnb1</i> and <i>Fzd6</i>, but decreased <i>Gsk-3β</i> and <i>Wnt5a</i> levels, promoting OP-ASCs' bone-formation capacity. In contrast, inhibition of this pathway by DKK-1 led to diminished <i>Ctnnb1</i> and <i>Fzd6</i>, and increased <i>Gsk-3β</i> and <i>Wnt5a</i>, adversely affecting osteogenesis. Furthermore, our findings show that overexpressing <i>Wnt5a</i> impedes, while silencing it enhances the bone-forming capability of OP-ASCs. In a cranial bone defect model, the implantation of <i>Wnt5a</i>-silenced OP-ASCs with biphasic calcium phosphate scaffolds significantly promoted new bone formation. These observations indicated a repression of the canonical Wnt pathway and a stimulation of the non-canonical pathway in OP-ASCs. Silencing <i>Wnt5a</i> increased the osteogenic and regenerative abilities of OP-ASCs. Our study suggests targeting Wnt5a could be a promising strategy for enhancing bone regeneration in post-menopausal osteoporosis.","PeriodicalId":9760,"journal":{"name":"Cell Proliferation","volume":"64 1","pages":""},"PeriodicalIF":8.5,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}