Pub Date : 2024-03-05DOI: 10.1016/j.cellimm.2024.104816
Alexandra Giatromanolaki , Georgios D. Michos , Erasmia Xanthopoulou , Michael I. Koukourakis
Loss of HLA-class-I molecule expression by cancer cells is a frequent event in human tumors that may lead to immune evasion from cytotoxic T-cells. We examined the expression patterns of HLA-class-I molecules in a series of 175 patients with operable breast cancer (BCa). Extensive loss of BCa cell HLA-class-I expression was noted 76.6 % of patients (27.5 % complete loss). A significant association of HLA-preservation with high TIL-density (p = 0.001) was documented. Preservation of HLA was evident only in BCa carcinomas with low HIF1α expression and high TIL-density. Cell line experiments (MCF7 and T47D) showed that induction of HLAs in cancer cells following incubation with lymphocytes or IFNγ, was abrogated under hypoxic conditions. HLA-preservation was linked with better distant metastasis-free survival (p = 0.01), which was confirmed also in multivariate analysis (p = 0.02, HR 3.17). Studying the expression of HLA-class-I molecules in parallel with TIL-density and HIF1α expression may identify subgroups of BCa patients who would benefit from immunotherapy.
{"title":"HLA-class-I expression loss, tumor microenvironment and breast cancer prognosis","authors":"Alexandra Giatromanolaki , Georgios D. Michos , Erasmia Xanthopoulou , Michael I. Koukourakis","doi":"10.1016/j.cellimm.2024.104816","DOIUrl":"10.1016/j.cellimm.2024.104816","url":null,"abstract":"<div><p>Loss of HLA-class-I molecule expression by cancer cells is a frequent event in human tumors that may lead to immune evasion from cytotoxic <em>T</em>-cells. We examined the expression patterns of HLA-class-I molecules in a series of 175 patients with operable breast cancer (BCa). Extensive loss of BCa cell HLA-class-I expression was noted 76.6 % of patients (27.5 % complete loss). A significant association of HLA-preservation with high TIL-density (p = 0.001) was documented. Preservation of HLA was evident only in BCa carcinomas with low HIF1α expression and high TIL-density. Cell line experiments (MCF7 and T47D) showed that induction of HLAs in cancer cells following incubation with lymphocytes or IFNγ, was abrogated under hypoxic conditions. HLA-preservation was linked with better distant metastasis-free survival (p = 0.01), which was confirmed also in multivariate analysis (p = 0.02, HR 3.17). Studying the expression of HLA-class-I molecules in parallel with TIL-density and HIF1α expression may identify subgroups of BCa patients who would benefit from immunotherapy.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"399 ","pages":"Article 104816"},"PeriodicalIF":4.3,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140056050","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01DOI: 10.1016/j.cellimm.2024.104815
Guillaume Lezmi , Clément Poirault , Marta Grauso , Céline Dietrich , Karine Adel-Patient , Maria Leite-de-Moraes
Severe asthma (SA) affects 2% to 5% of asthmatic children. Atopic dermatitis can affect up to 34% of children with SA (cwSA). Atopic dermatitis and asthma share common genetic and immunological features. However, not all children with SA suffer from AD, and it remains unclear whether the overall immune profiles of these children are similar. In this study, seventeen cwSA (9.8 [7.1–13.2] years; seven with and ten without AD) were enrolled. Bronchoalveolar lavage (BAL) and blood samples were collected from these patients. Seventy-three cytokines/chemokines and distinct immune T cell populations were evaluated in blood and BAL. We found that BAL and blood immune profiles of cwSA with and without AD were globally similar. However, specific differences were observed, namely lower frequency of Tc2, Th17 and IL-17-producing mucosal associated invariant T (MAIT-17) cells and higher CD8/CD4 ratio and IL-22 concentrations in BAL and of CCL19 concentrations in plasma from cwSA with AD. Further, in contrast with cwSA without AD, we found a positive correlation between a set of plasma cytokines and almost all cytokines in BAL in cwSA with AD. In conclusion, this study shows the major immune differences between cwSA with and without AD in BAL and blood suggesting that distinct endotypes may be implicated in the inflammatory responses observed in these pediatric patients.
严重哮喘(SA)影响 2%至 5%的哮喘儿童。特应性皮炎可影响高达 34% 的哮喘患儿(cwSA)。特应性皮炎和哮喘具有共同的遗传学和免疫学特征。然而,并非所有哮喘患儿都患有特应性皮炎,而且这些患儿的总体免疫特征是否相似仍不清楚。在这项研究中,17 名儿童哮喘患者(9.8 [7.1-13.2] 岁;7 名患有过敏性皮炎,10 名不患有过敏性哮喘)参加了研究。研究人员收集了这些患者的支气管肺泡灌洗液(BAL)和血液样本。对血液和 BAL 中的 73 种细胞因子/凝血因子和不同的免疫 T 细胞群进行了评估。我们发现,患有和未患有注意力缺陷症的 cwSA 患者的 BAL 和血液免疫特征总体上相似。但是,我们也观察到了一些特殊的差异,即患有 AD 的 cwSA 的 BAL 中 Tc2、Th17 和产生 IL-17 的粘膜相关不变 T 细胞(MAIT-17)的频率较低,CD8/CD4 比率和 IL-22 浓度较高,血浆中 CCL19 浓度较高。此外,与无 AD 的 cwSA 相反,我们发现在患有 AD 的 cwSA 中,一组血浆细胞因子与 BAL 中几乎所有细胞因子之间存在正相关。总之,本研究显示了患有和不患有 AD 的 cwSA 在 BAL 和血液中的主要免疫差异,这表明在这些儿科患者身上观察到的炎症反应可能与不同的内型有关。
{"title":"Identification of the major immune differences in severe asthmatic children according to their atopic dermatitis status","authors":"Guillaume Lezmi , Clément Poirault , Marta Grauso , Céline Dietrich , Karine Adel-Patient , Maria Leite-de-Moraes","doi":"10.1016/j.cellimm.2024.104815","DOIUrl":"https://doi.org/10.1016/j.cellimm.2024.104815","url":null,"abstract":"<div><p>Severe asthma (SA) affects 2% to 5% of asthmatic children. Atopic dermatitis can affect up to 34% of children with SA (cwSA). Atopic dermatitis and asthma share common genetic and immunological features. However, not all children with SA suffer from AD, and it remains unclear whether the overall immune profiles of these children are similar. In this study, seventeen cwSA (9.8 [7.1–13.2] years; seven with and ten without AD) were enrolled. Bronchoalveolar lavage (BAL) and blood samples were collected from these patients. Seventy-three cytokines/chemokines and distinct immune T cell populations were evaluated in blood and BAL. We found that BAL and blood immune profiles of cwSA with and without AD were globally similar. However, specific differences were observed, namely lower frequency of Tc2, Th17 and IL-17-producing mucosal associated invariant T (MAIT-17) cells and higher CD8/CD4 ratio and IL-22 concentrations in BAL and of CCL19 concentrations in plasma from cwSA with AD. Further, in contrast with cwSA without AD, we found a positive correlation between a set of plasma cytokines and almost all cytokines in BAL in cwSA with AD. In conclusion, this study shows the major immune differences between cwSA with and without AD in BAL and blood suggesting that distinct endotypes may be implicated in the inflammatory responses observed in these pediatric patients.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"397 ","pages":"Article 104815"},"PeriodicalIF":4.3,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139999627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-24DOI: 10.1016/j.cellimm.2024.104814
Iliana K. Kerzeli , Aikaterini Nasi , Erika Fletcher , Aikaterini Chourlia , Anders Kallin , Niklas Finnberg , Karolina Ersmark , Maria Lampinen , Mark Albertella , Fredrik Öberg , Sara M. Mangsbo
The aim of this study was to assess the potential use of a selective small molecule MALT1 inhibitor in solid tumor treatment as an immunotherapy targeting regulatory T-cells (Tregs). In vitro, MALT1 inhibition suppressed the proteolytic cleavage of the MALT1-substrate HOIL1 and blocked IL-2 secretion in Jurkat cells. It selectively suppressed the proliferation of PBMC-derived Tregs, with no effect on conventional CD4+T-cells. In vivo, however, no evident anti-tumor effect was achieved by MALT1 inhibition monotherapy or in combination with anti-CTLA4 in the MB49 cancer model. Despite decreased Treg-frequencies in lymph nodes of tumor-bearing animals, intratumoral Treg depletion was not observed. We also showed that MALT1-inhibition caused a reduction of antigen-specific CD8+T-cells in an adoptive T-cell transfer model. Thus, selective targeting of Tregs would be required to improve the immunotherapeutic effect of MALT1-inhibition. Also, various dosing schedules and combination therapy strategies should be carefully designed and evaluated further.
本研究旨在评估一种选择性小分子 MALT1 抑制剂在实体瘤治疗中作为靶向调节性 T 细胞(Tregs)的免疫疗法的潜在用途。在体外,MALT1抑制剂抑制了MALT1底物HOIL1的蛋白水解,并阻断了Jurkat细胞中IL-2的分泌。它能选择性地抑制源自 PBMC 的 Treg 的增殖,而对传统的 CD4+ T 细胞没有影响。然而,在 MB49 癌症模型中,MALT1 抑制剂单药治疗或与抗 CTLA4 联合治疗均未取得明显的抗肿瘤效果。尽管肿瘤动物淋巴结中的Treg频率下降,但并未观察到瘤内Treg耗竭。我们还发现,在采纳性 T 细胞转移模型中,抑制 MALT1 会导致抗原特异性 CD8+ T 细胞减少。因此,需要选择性地靶向Tregs,以提高MALT1抑制的免疫治疗效果。此外,还应该仔细设计并进一步评估各种给药方案和联合治疗策略。
{"title":"MALT1 inhibition suppresses antigen-specific T cell responses","authors":"Iliana K. Kerzeli , Aikaterini Nasi , Erika Fletcher , Aikaterini Chourlia , Anders Kallin , Niklas Finnberg , Karolina Ersmark , Maria Lampinen , Mark Albertella , Fredrik Öberg , Sara M. Mangsbo","doi":"10.1016/j.cellimm.2024.104814","DOIUrl":"https://doi.org/10.1016/j.cellimm.2024.104814","url":null,"abstract":"<div><p>The aim of this study was to assess the potential use of a selective small molecule MALT1 inhibitor in solid tumor treatment as an immunotherapy targeting regulatory <em>T</em>-cells (Tregs). In vitro, MALT1 inhibition suppressed the proteolytic cleavage of the MALT1-substrate HOIL1 and blocked IL-2 secretion in Jurkat cells. It selectively suppressed the proliferation of PBMC-derived Tregs, with no effect on conventional CD4<sup>+</sup> <em>T</em>-cells. In vivo, however, no evident anti-tumor effect was achieved by MALT1 inhibition monotherapy or in combination with anti-CTLA4 in the MB49 cancer model. Despite decreased Treg-frequencies in lymph nodes of tumor-bearing animals, intratumoral Treg depletion was not observed. We also showed that MALT1-inhibition caused a reduction of antigen-specific CD8<sup>+</sup> <em>T</em>-cells in an adoptive <em>T</em>-cell transfer model. Thus, selective targeting of Tregs would be required to improve the immunotherapeutic effect of MALT1-inhibition. Also, various dosing schedules and combination therapy strategies should be carefully designed and evaluated further.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"397 ","pages":"Article 104814"},"PeriodicalIF":4.3,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0008874924000170/pdfft?md5=62eb291a5ca460edaa986e72945f54c4&pid=1-s2.0-S0008874924000170-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139985895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to their immunomodulatory capacities, mesenchymal stem cells (MSCs) have been extensively used as therapeutic approaches in cell-based therapy for various inflammatory diseases. Several lines of studies have shown that the most beneficial effects of MSCs are associated with MSC-derived exosomes. Exosomes are nanoscale extracellular vesicles that contain important biomolecules such as RNA, microRNAs (miRNAs), DNA, growth factors, enzymes, chemokines, and cytokines that regulate immune cell functions and parenchymal cell survival. Recently, exosomes, especially MSC-derived exosomes, have been shown to have protective effects in allergic airway inflammation. This review focused on the immune-regulatory potential of MSC-derived exosomes as nanoscale delivery systems in the treatment of allergic airway inflammation.
{"title":"Therapeutic potential of mesenchymal stem cell-derived exosomes for allergic airway inflammation","authors":"Mahvash Sadeghi , Mojgan Mohammadi , Jalil Tavakol Afshari , Sara Iranparast , Bahareh Ansari , Sajad Dehnavi","doi":"10.1016/j.cellimm.2024.104813","DOIUrl":"https://doi.org/10.1016/j.cellimm.2024.104813","url":null,"abstract":"<div><p>Due to their immunomodulatory capacities, mesenchymal stem cells (MSCs) have been extensively used as therapeutic approaches in cell-based therapy for various inflammatory diseases. Several lines of studies have shown that the most beneficial effects of MSCs are associated with MSC-derived exosomes. Exosomes are nanoscale extracellular vesicles that contain important biomolecules such as RNA, microRNAs (miRNAs), DNA, growth factors, enzymes, chemokines, and cytokines that regulate immune cell functions and parenchymal cell survival. Recently, exosomes, especially MSC-derived exosomes, have been shown to have protective effects in allergic airway inflammation. This review focused on the immune-regulatory potential of MSC-derived exosomes as nanoscale delivery systems in the treatment of allergic airway inflammation.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"397 ","pages":"Article 104813"},"PeriodicalIF":4.3,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139743895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-03DOI: 10.1016/j.cellimm.2024.104811
Sandeep Kumar , Monisha Dhiman
<div><p><em>Helicobacter pylori</em>-associated stomach infection is a leading cause of gastric ulcer and related cancer. <em>H. pylori</em> modulates the functions of infiltrated immune cells to survive the killing by reactive oxygen and nitrogen species (ROS and RNS) produced by these cells. Uncontrolled immune responses further produce excess ROS and RNS which lead to mucosal damage. The persistent oxidative stress is a major cause of gastric cancer. <em>H. pylori</em> regulates nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs), nitric oxide synthase 2 (NOS2), and polyamines to control ROS and RNS release through lesser-known mechanisms. ROS and RNS produced by these pathways differentiate macrophages and T cells from protective to inflammatory phenotype. Pathogens-associated molecular patterns (PAMPs) induced ROS activates nuclear oligomerization domain (NOD), leucine rich repeats (LRR) and pyrin domain-containing protein 3 (NLRP3) inflammasome for the release of pro-inflammatory cytokines. This study evaluates the role of <em>H. pylori</em> secreted concentrated proteins (HPSCP) related oxidative stress role in NLRP3 inflammasome activation and macrophage differentiation. To perceive the role of ROS/RNS, THP-1 and AGS cells were treated with 10 μM diphenyleneiodonium (DPI), 50 μM salicyl hydroxamic acid (SHX), 5 μM Carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP), which are specific inhibitors of NADPH oxidase (NOX), Myeloperoxidase (MPO), and mitochondrial oxidative phosphorylation respectively. Cells were also treated with 10 μM of NOS2 inhibitor <span>l</span>-NMMA and 10 μM of <em>N</em>-acetyl cysteine (NAC), a free radical scavenger·H<sub>2</sub>O<sub>2</sub> (100 μM) treated and untreated cells were used as positive controls and negative control respectively. The expression of gp91<sup>phox</sup> (NOX2), NOS2, NLRP3, CD86 and CD163 was analyzed through fluorescent microscopy. THP-1 macrophages growth was unaffected whereas the gastric epithelial AGS cells proliferated in response to higher concentration of HPSCP. ROS and myeloperoxidase (MPO) level increased in THP-1 cells and nitric oxide (NO) and lipid peroxidation significantly decreased in AGS cells. gp91<sup>phox</sup> expression was unchanged, whereas NOS2 and NLRP3 downregulated in response to HPSCP, but increased after inhibition of NO, ROS and MPO in THP-1 cells. HPSCP upregulated the expression of M1 and M2 macrophage markers, CD86 and CD163 respectively, which was decreased after the inhibition of ROS.</p><p>This study concludes that there are multiple pathways which are generating ROS during <em>H. pylori</em> infection which further regulates other cellular processes. NO is closely associated with MPO and inhibition of NLRP3 inflammasome. The low levels of NO and MPO regulates gastrointestinal tract homeostasis and overcomes the inflammatory response of NLRP3. The ROS also plays crucial role in macrophage polarization hence alter the immune r
{"title":"Helicobacter pylori secretary Proteins-Induced oxidative stress and its role in NLRP3 inflammasome activation","authors":"Sandeep Kumar , Monisha Dhiman","doi":"10.1016/j.cellimm.2024.104811","DOIUrl":"10.1016/j.cellimm.2024.104811","url":null,"abstract":"<div><p><em>Helicobacter pylori</em>-associated stomach infection is a leading cause of gastric ulcer and related cancer. <em>H. pylori</em> modulates the functions of infiltrated immune cells to survive the killing by reactive oxygen and nitrogen species (ROS and RNS) produced by these cells. Uncontrolled immune responses further produce excess ROS and RNS which lead to mucosal damage. The persistent oxidative stress is a major cause of gastric cancer. <em>H. pylori</em> regulates nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs), nitric oxide synthase 2 (NOS2), and polyamines to control ROS and RNS release through lesser-known mechanisms. ROS and RNS produced by these pathways differentiate macrophages and T cells from protective to inflammatory phenotype. Pathogens-associated molecular patterns (PAMPs) induced ROS activates nuclear oligomerization domain (NOD), leucine rich repeats (LRR) and pyrin domain-containing protein 3 (NLRP3) inflammasome for the release of pro-inflammatory cytokines. This study evaluates the role of <em>H. pylori</em> secreted concentrated proteins (HPSCP) related oxidative stress role in NLRP3 inflammasome activation and macrophage differentiation. To perceive the role of ROS/RNS, THP-1 and AGS cells were treated with 10 μM diphenyleneiodonium (DPI), 50 μM salicyl hydroxamic acid (SHX), 5 μM Carbonyl cyanide-4-(trifluoromethoxy) phenylhydrazone (FCCP), which are specific inhibitors of NADPH oxidase (NOX), Myeloperoxidase (MPO), and mitochondrial oxidative phosphorylation respectively. Cells were also treated with 10 μM of NOS2 inhibitor <span>l</span>-NMMA and 10 μM of <em>N</em>-acetyl cysteine (NAC), a free radical scavenger·H<sub>2</sub>O<sub>2</sub> (100 μM) treated and untreated cells were used as positive controls and negative control respectively. The expression of gp91<sup>phox</sup> (NOX2), NOS2, NLRP3, CD86 and CD163 was analyzed through fluorescent microscopy. THP-1 macrophages growth was unaffected whereas the gastric epithelial AGS cells proliferated in response to higher concentration of HPSCP. ROS and myeloperoxidase (MPO) level increased in THP-1 cells and nitric oxide (NO) and lipid peroxidation significantly decreased in AGS cells. gp91<sup>phox</sup> expression was unchanged, whereas NOS2 and NLRP3 downregulated in response to HPSCP, but increased after inhibition of NO, ROS and MPO in THP-1 cells. HPSCP upregulated the expression of M1 and M2 macrophage markers, CD86 and CD163 respectively, which was decreased after the inhibition of ROS.</p><p>This study concludes that there are multiple pathways which are generating ROS during <em>H. pylori</em> infection which further regulates other cellular processes. NO is closely associated with MPO and inhibition of NLRP3 inflammasome. The low levels of NO and MPO regulates gastrointestinal tract homeostasis and overcomes the inflammatory response of NLRP3. The ROS also plays crucial role in macrophage polarization hence alter the immune r","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"399 ","pages":"Article 104811"},"PeriodicalIF":4.3,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139669313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-24DOI: 10.1016/j.cellimm.2024.104810
Xiu Chen, Pingping Zhang, Yu Zhang, Mengzhu Wei, Tian Tian, Dacheng Zhu, Yanling Guan, Wei Wei, Yang Ma
The NLRP3 inflammasome represents a cytoplasmic multiprotein complex with the capability to recognize a wide range of pathogen-derived, environmental, and endogenous stress-related factors. Dysregulated activation of the NLRP3 inflammasome has been implicated in the development of various inflammasome-associated disorders, highlighting its significance as a pivotal target for the treatment of inflammatory diseases. Nonetheless, despite its clinical importance, there is currently a lack of specific drugs available for directly targeting the NLRP3 inflammasome. Several strategies have been explored to target different facets of the NLRP3 inflammasome, with interventions aimed at directly inhibiting NLRP3 demonstrating the most promising efficacy and safety profiles. In this review, we provide a summary of direct inhibitors targeting NLRP3, elucidating their inhibitory mechanisms, clinical trial phases, and potential applications. Through this discussion, we aim to shed light on the implications of NLRP3 inhibition for the treatment of inflammatory diseases.
{"title":"The research progression of direct NLRP3 inhibitors to treat inflammatory disorders","authors":"Xiu Chen, Pingping Zhang, Yu Zhang, Mengzhu Wei, Tian Tian, Dacheng Zhu, Yanling Guan, Wei Wei, Yang Ma","doi":"10.1016/j.cellimm.2024.104810","DOIUrl":"10.1016/j.cellimm.2024.104810","url":null,"abstract":"<div><p>The NLRP3 inflammasome represents a cytoplasmic multiprotein complex with the capability to recognize a wide range of pathogen-derived, environmental, and endogenous stress-related factors. Dysregulated activation of the NLRP3 inflammasome has been implicated in the development of various inflammasome-associated disorders, highlighting its significance as a pivotal target for the treatment of inflammatory diseases. Nonetheless, despite its clinical importance, there is currently a lack of specific drugs available for directly targeting the NLRP3 inflammasome. Several strategies have been explored to target different facets of the NLRP3 inflammasome, with interventions aimed at directly inhibiting NLRP3 demonstrating the most promising efficacy and safety profiles. In this review, we provide a summary of direct inhibitors targeting NLRP3, elucidating their inhibitory mechanisms, clinical trial phases, and potential applications. Through this discussion, we aim to shed light on the implications of NLRP3 inhibition for the treatment of inflammatory diseases.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"397 ","pages":"Article 104810"},"PeriodicalIF":4.3,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139556090","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-17DOI: 10.1016/j.cellimm.2024.104812
Christa M. Frodella , Liyuan Liu , Wei Tan , Stephen B. Pruett , Barbara L.F. Kaplan
Cannabidiol (CBD) is a phytocannabinoid derived from Cannabis sativa that exerts anti-inflammatory mechanisms. CBD is being examined for its putative effects on the neuroinflammatory disease, multiple sclerosis (MS). One of the major immune mediators that propagates MS and its mouse model experimental autoimmune encephalomyelitis (EAE) are macrophages. Macrophages can polarize into an inflammatory phenotype (M1) or an anti-inflammatory phenotype (M2a). Therefore, elucidating the impact on macrophage polarization with CBD pre-treatment is necessary to understand its anti-inflammatory mechanisms. To study this effect, murine macrophages (RAW 264.7) were pre-treated with CBD (10 µM) or vehicle (ethanol 0.1 %) and were either left untreated (naive; cell media only), or stimulated under M1 (IFN-γ + lipopolysaccharide, LPS) or M2a (IL-4) conditions for 24 hr. Cells were analyzed for macrophage polarization markers, and supernatants were analyzed for cytokines and chemokines. Immunofluorescence staining was performed on M1-polarized cells for the metalloprotease, tumor necrosis factor-α-converting enzyme (TACE), as this enzyme is responsible for the secretion of TNF-α. Overall results showed that CBD decreased several markers associated with the M1 phenotype while exhibiting less effects on the M2a phenotype. Significantly, under M1 conditions, CBD increased the percentage of intracellular and surface TNF-α but decreased secreted TNF-α. This phenomenon might be mediated by TACE as staining showed that CBD sequestered TACE intracellularly. CBD also prevented RelA nuclear translocation. These results suggest that CBD may exert its anti-inflammatory effects by reducing M1 polarization and decreasing TNF-α secretion via inappropriate localization of TACE and RelA.
{"title":"The mechanism by which cannabidiol (CBD) suppresses TNF-α secretion involves inappropriate localization of TNF-α converting enzyme (TACE)","authors":"Christa M. Frodella , Liyuan Liu , Wei Tan , Stephen B. Pruett , Barbara L.F. Kaplan","doi":"10.1016/j.cellimm.2024.104812","DOIUrl":"10.1016/j.cellimm.2024.104812","url":null,"abstract":"<div><p>Cannabidiol (CBD) is a phytocannabinoid derived from <em>Cannabis sativa</em> that exerts anti-inflammatory mechanisms. CBD is being examined for its putative effects on the neuroinflammatory disease, multiple sclerosis (MS). One of the major immune mediators that propagates MS and its mouse model experimental autoimmune encephalomyelitis (EAE) are macrophages. Macrophages can polarize into an inflammatory phenotype (M1) or an anti-inflammatory phenotype (M2a). Therefore, elucidating the impact on macrophage polarization with CBD pre-treatment is necessary to understand its anti-inflammatory mechanisms. To study this effect, murine macrophages (RAW 264.7) were pre-treated with CBD (10 µM) or vehicle (ethanol 0.1 %) and were either left untreated (naive; cell media only), or stimulated under M1 (IFN-γ + lipopolysaccharide, LPS) or M2a (IL-4) conditions for 24 hr. Cells were analyzed for macrophage polarization markers, and supernatants were analyzed for cytokines and chemokines. Immunofluorescence staining was performed on M1-polarized cells for the metalloprotease, tumor necrosis factor-α-converting enzyme (TACE), as this enzyme is responsible for the secretion of TNF-α. Overall results showed that CBD decreased several markers associated with the M1 phenotype while exhibiting less effects on the M2a phenotype. Significantly, under M1 conditions, CBD increased the percentage of intracellular and surface TNF-α but decreased secreted TNF-α. This phenomenon might be mediated by TACE as staining showed that CBD sequestered TACE intracellularly. CBD also prevented RelA nuclear translocation. These results suggest that CBD may exert its anti-inflammatory effects by reducing M1 polarization and decreasing TNF-α secretion via inappropriate localization of TACE and RelA.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"397 ","pages":"Article 104812"},"PeriodicalIF":4.3,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139498654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-13DOI: 10.1016/j.cellimm.2024.104806
Cristina D. Gaddie , Kevin G. Senior , Christopher Chan , Brad E. Hoffman , Geoffrey D. Keeler
Liver-directed AAV gene therapy represents a unique treatment modality for a host of diseases. This is due, in part, to the induction of tolerance to transgene products. Despite the plethora of recognized regulatory cells in the body, there is currently a lack of literature supporting the induction of non-CD4+ regulatory cells following hepatic AAV gene transfer. In this work, we show that CD8+ regulatory T cells are up-regulated in PBMCs of mice following capsid only and therapeutic transgene AAV administration. Further, we demonstrate that hepatic AAV gene transfer results in a significant increase in CD8+ regulatory T cells following experimental autoimmune encephalomyelitis induction. Notably, this response occurred only in therapeutic vector treated animals, not capsid only controls. Understanding the role these cells play in treatment efficacy will result in the development of improved AAV vectors that take advantage of the full gamut of regulatory cells within the body.
{"title":"Upregulation of CD8+ regulatory T cells following liver-directed AAV gene therapy","authors":"Cristina D. Gaddie , Kevin G. Senior , Christopher Chan , Brad E. Hoffman , Geoffrey D. Keeler","doi":"10.1016/j.cellimm.2024.104806","DOIUrl":"10.1016/j.cellimm.2024.104806","url":null,"abstract":"<div><p>Liver-directed AAV gene therapy represents a unique treatment modality for a host of diseases. This is due, in part, to the induction of tolerance to transgene products. Despite the plethora of recognized regulatory cells in the body, there is currently a lack of literature supporting the induction of non-CD4<sup>+</sup> regulatory cells following hepatic AAV gene transfer. In this work, we show that CD8<sup>+</sup> regulatory T cells are up-regulated in PBMCs of mice following capsid only and therapeutic transgene AAV administration. Further, we demonstrate that hepatic AAV gene transfer results in a significant increase in CD8<sup>+</sup> regulatory T cells following experimental autoimmune encephalomyelitis induction. Notably, this response occurred only in therapeutic vector treated animals, not capsid only controls. Understanding the role these cells play in treatment efficacy will result in the development of improved AAV vectors that take advantage of the full gamut of regulatory cells within the body.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"397 ","pages":"Article 104806"},"PeriodicalIF":4.3,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0008874924000091/pdfft?md5=5af61897d3bc203ac6d9ec559746b9d8&pid=1-s2.0-S0008874924000091-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139461194","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-13DOI: 10.1016/j.cellimm.2024.104807
Alessandro Borghesi
In humans, the interindividual variability of clinical outcome following exposure to a microorganism is immense, ranging from silent infection to life-threatening disease. Age-specific immune responses partially account for the high incidence of infection during the first 28 days of life and the related high mortality at population level. However, the occurrence of life-threatening disease in individual newborns remains unexplained. By contrast, inborn errors of immunity and their immune phenocopies are increasingly being discovered in children and adults with life-threatening viral, bacterial, mycobacterial and fungal infections. There is a need for convergence between the fields of neonatal immunology, with its in-depth population-wide characterization of newborn-specific immune responses, and clinical immunology, with its investigations of infections in patients at the cellular and molecular levels, to facilitate identification of the mechanisms of susceptibility to infection in individual newborns and the design of novel preventive and therapeutic strategies.
{"title":"Life-threatening infections in human newborns: Reconciling age-specific vulnerability and interindividual variability","authors":"Alessandro Borghesi","doi":"10.1016/j.cellimm.2024.104807","DOIUrl":"10.1016/j.cellimm.2024.104807","url":null,"abstract":"<div><p>In humans, the interindividual variability of clinical outcome following exposure to a microorganism is immense, ranging from silent infection to life-threatening disease. Age-specific immune responses partially account for the high incidence of infection during the first 28 days of life and the related high mortality at population level. However, the occurrence of life-threatening disease in individual newborns remains unexplained. By contrast, inborn errors of immunity and their immune phenocopies are increasingly being discovered in children and adults with life-threatening viral, bacterial, mycobacterial and fungal infections. There is a need for convergence between the fields of neonatal immunology, with its in-depth population-wide characterization of newborn-specific immune responses, and clinical immunology, with its investigations of infections in patients at the cellular and molecular levels, to facilitate identification of the mechanisms of susceptibility to infection in individual newborns and the design of novel preventive and therapeutic strategies.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"397 ","pages":"Article 104807"},"PeriodicalIF":4.3,"publicationDate":"2024-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139461324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-08DOI: 10.1016/j.cellimm.2024.104805
Ariel Anwar , Carissa Lepore , Brian J. Czerniecki , Gary K. Koski , Loral E. Showalter
PIM kinases are over-expressed by a number of solid malignancies including breast cancer, and are thought to regulate proliferation, survival, and resistance to treatment, making them attractive therapeutic targets. Because PIM kinases sit at the nexus of multiple oncodriver pathways, PIM antagonist drugs are being tested alone and in conjunction with other therapies to optimize outcomes. We therefore sought to test the combination of pharmacological PIM antagonism and Th1-associated immunotherapy. We show that the pan PIM antagonist, AZD1208, when combined in vitro with Th1 cytokines IFN-γ and TNF-α, potentiates metabolic suppression, overall cell death, and expression of apoptotic markers in human breast cancer cell lines of diverse phenotypes (HER-2pos/ERneg, HER-2pos/ERpos and triple-negative). Interestingly, AZD1208 was shown to moderately inhibit IFN-γ secretion by stimulated T lymphocytes of both human and murine origin, suggesting some inherent immunosuppressive activity of the drug. Nonetheless, when multiplexed therapies were tested in a murine model of HER-2pos breast cancer, combinations of HER-2 peptide-pulsed DCs and AZD1208, as well as recombinant IFN-γ plus AZD1208 significantly suppressed tumor outgrowth compared with single-treatment and control groups. These studies suggest that PIM antagonism may combine productively with certain immunotherapies to improve responsiveness.
{"title":"PIM kinase inhibitor AZD1208 in conjunction with Th1 cytokines potentiate death of breast cancer cells in vitro while also maximizing suppression of tumor growth in vivo when combined with immunotherapy","authors":"Ariel Anwar , Carissa Lepore , Brian J. Czerniecki , Gary K. Koski , Loral E. Showalter","doi":"10.1016/j.cellimm.2024.104805","DOIUrl":"10.1016/j.cellimm.2024.104805","url":null,"abstract":"<div><p>PIM kinases are over-expressed by a number of solid malignancies including breast cancer, and are thought to regulate proliferation, survival, and resistance to treatment, making them attractive therapeutic targets. Because PIM kinases sit at the nexus of multiple oncodriver pathways, PIM antagonist drugs are being tested alone and in conjunction with other therapies to optimize outcomes. We therefore sought to test the combination of pharmacological PIM antagonism and Th1-associated immunotherapy. We show that the pan PIM antagonist, AZD1208, when combined in vitro with Th1 cytokines IFN-γ and TNF-α, potentiates metabolic suppression, overall cell death, and expression of apoptotic markers in human breast cancer cell lines of diverse phenotypes (HER-2<sup>pos</sup>/ER<sup>neg</sup>, HER-2<sup>pos</sup>/ER<sup>pos</sup> and triple-negative). Interestingly, AZD1208 was shown to moderately inhibit IFN-γ secretion by stimulated T lymphocytes of both human and murine origin, suggesting some inherent immunosuppressive activity of the drug. Nonetheless, when multiplexed therapies were tested in a murine model of HER-2<sup>pos</sup> breast cancer, combinations of HER-2 peptide-pulsed DCs and AZD1208, as well as recombinant IFN-γ plus AZD1208 significantly suppressed tumor outgrowth compared with single-treatment and control groups. These studies suggest that PIM antagonism may combine productively with certain immunotherapies to improve responsiveness.</p></div>","PeriodicalId":9795,"journal":{"name":"Cellular immunology","volume":"397 ","pages":"Article 104805"},"PeriodicalIF":4.3,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139409659","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}