Pub Date : 2025-03-26DOI: 10.1016/j.celrep.2025.115461
Juliana Y Rhee, César Echavarría, Edward Soucy, Joel Greenwood, Javier A Masís, David D Cox
Invariant object recognition-the ability to recognize objects across size, rotation, or context-is fundamental for making sense of a dynamic visual world. Though traditionally studied in primates, emerging evidence suggests rodents recognize objects across a range of identity-preserving transformations. We demonstrate that rats robustly perform visual object recognition and explore a neural pathway that may underlie this capacity by developing a pipeline from high-throughput behavior training to cellular resolution imaging in awake, head-fixed animals. Leveraging our optical approach, we systematically profile neurons in primary and higher-order visual areas and their spatial organization. We find that rat visual cortex exhibits several features similar to those observed in the primate ventral stream but also marked deviations, suggesting species-specific differences in how brains solve visual object recognition. This work reinforces the sophisticated visual abilities of rats and offers the technical foundation to use them as a powerful model for mechanistic perception.
{"title":"Neural correlates of visual object recognition in rats.","authors":"Juliana Y Rhee, César Echavarría, Edward Soucy, Joel Greenwood, Javier A Masís, David D Cox","doi":"10.1016/j.celrep.2025.115461","DOIUrl":"https://doi.org/10.1016/j.celrep.2025.115461","url":null,"abstract":"<p><p>Invariant object recognition-the ability to recognize objects across size, rotation, or context-is fundamental for making sense of a dynamic visual world. Though traditionally studied in primates, emerging evidence suggests rodents recognize objects across a range of identity-preserving transformations. We demonstrate that rats robustly perform visual object recognition and explore a neural pathway that may underlie this capacity by developing a pipeline from high-throughput behavior training to cellular resolution imaging in awake, head-fixed animals. Leveraging our optical approach, we systematically profile neurons in primary and higher-order visual areas and their spatial organization. We find that rat visual cortex exhibits several features similar to those observed in the primate ventral stream but also marked deviations, suggesting species-specific differences in how brains solve visual object recognition. This work reinforces the sophisticated visual abilities of rats and offers the technical foundation to use them as a powerful model for mechanistic perception.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 4","pages":"115461"},"PeriodicalIF":7.5,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143735597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-26DOI: 10.1016/j.celrep.2025.115480
Liang Luo, Fenghua Yuan, Anna Palovcak, Fang Li, Qingqi Yuan, Daniel Calkins, Zoe Manalo, Yan Li, Dazhi Wang, Mike Zhou, Catherine Zhou, Matthew Li, Yuan-De Tan, Feng Bai, Yuguang Ban, Christian Mason, Evan Roberts, Daniel Bilbao, Zhao-Jun Liu, Karoline Briegel, Scott M Welford, Xin-Hai Pei, Sylvia Daunert, Wenjun Liu, Yanbin Zhang
FANCA is one of the 23 genes whose deficiencies lead to defective DNA interstrand crosslink repair and cancer-prone Fanconi anemia disease. Beyond its functions in DNA repair and tumor suppression, we report that high FANCA expression is strongly associated with breast cancer development. Overexpression of WT-FANCA significantly promotes breast cancer cell proliferation and tumor growth both in vitro and in vivo, while FANCA deficiency severely compromises the proliferation of breast cancer cells, but not non-tumorigenic breast epithelial cells. Heterozygous knockout of FANCA in breast cancer mouse models is sufficient to cause significant reduction of breast tumor growth in vivo. Furthermore, we have shown that high FANCA expression in breast cancer correlates with promoter hypomethylation in a TET-dependent manner, and TET inhibition recapitulates the proliferation defects caused by FANCA deficiency. Our study identifies the oncogenic properties of WT-FANCA and shows that FANCA is a promising target for breast cancer intervention.
FANCA 是 23 个基因之一,其缺失会导致 DNA 链间交联修复缺陷和易患癌症的范可尼贫血病。除了在 DNA 修复和肿瘤抑制方面的功能外,我们还发现 FANCA 的高表达与乳腺癌的发生密切相关。WT-FANCA 的过表达在体外和体内都能显著促进乳腺癌细胞的增殖和肿瘤的生长,而 FANCA 的缺乏则会严重影响乳腺癌细胞的增殖,但不会影响非致瘤性乳腺上皮细胞的增殖。乳腺癌小鼠模型中 FANCA 的杂合子敲除足以导致体内乳腺肿瘤生长的显著减少。此外,我们还发现,FANCA在乳腺癌中的高表达与启动子低甲基化相关,而启动子低甲基化又依赖于TET,TET抑制再现了FANCA缺乏导致的增殖缺陷。我们的研究确定了WT-FANCA的致癌特性,并表明FANCA是一个很有希望的乳腺癌干预靶点。
{"title":"Oncogenic properties of wild-type DNA repair gene FANCA in breast cancer.","authors":"Liang Luo, Fenghua Yuan, Anna Palovcak, Fang Li, Qingqi Yuan, Daniel Calkins, Zoe Manalo, Yan Li, Dazhi Wang, Mike Zhou, Catherine Zhou, Matthew Li, Yuan-De Tan, Feng Bai, Yuguang Ban, Christian Mason, Evan Roberts, Daniel Bilbao, Zhao-Jun Liu, Karoline Briegel, Scott M Welford, Xin-Hai Pei, Sylvia Daunert, Wenjun Liu, Yanbin Zhang","doi":"10.1016/j.celrep.2025.115480","DOIUrl":"https://doi.org/10.1016/j.celrep.2025.115480","url":null,"abstract":"<p><p>FANCA is one of the 23 genes whose deficiencies lead to defective DNA interstrand crosslink repair and cancer-prone Fanconi anemia disease. Beyond its functions in DNA repair and tumor suppression, we report that high FANCA expression is strongly associated with breast cancer development. Overexpression of WT-FANCA significantly promotes breast cancer cell proliferation and tumor growth both in vitro and in vivo, while FANCA deficiency severely compromises the proliferation of breast cancer cells, but not non-tumorigenic breast epithelial cells. Heterozygous knockout of FANCA in breast cancer mouse models is sufficient to cause significant reduction of breast tumor growth in vivo. Furthermore, we have shown that high FANCA expression in breast cancer correlates with promoter hypomethylation in a TET-dependent manner, and TET inhibition recapitulates the proliferation defects caused by FANCA deficiency. Our study identifies the oncogenic properties of WT-FANCA and shows that FANCA is a promising target for breast cancer intervention.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 4","pages":"115480"},"PeriodicalIF":7.5,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143728988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-26DOI: 10.1016/j.celrep.2025.115470
Gio Fidelito, Izabela Todorovski, Leonie Cluse, Stephin J Vervoort, Renea A Taylor, Matthew J Watt
Dysregulated lipid metabolism plays an important role in prostate cancer, although the understanding of the essential regulatory processes in tumorigenesis is incomplete. We employ a CRISPR-Cas9 screen using a custom human lipid metabolism knockout library to identify essential genes for prostate cancer survival. Screening in three prostate cancer cell lines reveals 63 shared dependencies, with enrichment in terpenoid backbone synthesis and N-glycan biosynthesis. Independent knockout of key genes of the mevalonate pathway reduces cell proliferation. Further investigation focuses on NUS1, a subunit of cis-prenyltransferase required for dolichol synthesis. NUS1 knockout decreases tumor growth in vivo and viability in patient-derived xenograft (PDX)-derived organoids. Mechanistic studies reveal that loss of NUS1 promotes oxidative stress, lipid peroxidation and ferroptosis sensitivity, endoplasmic reticulum (ER) stress, and G1 cell-cycle arrest, and it dampens androgen receptor (AR) signaling, collectively leading to growth arrest. This study highlights the critical role of the mevalonate-dolichol-N-glycan biosynthesis pathway, particularly NUS1, in prostate cancer survival and growth.
脂质代谢失调在前列腺癌中起着重要作用,尽管对肿瘤发生的基本调节过程的理解尚不完整。我们采用CRISPR-Cas9筛选,使用定制的人类脂质代谢敲除文库来鉴定前列腺癌生存的必需基因。在三种前列腺癌细胞系中筛选发现63种共同依赖,萜类主干合成和n -聚糖生物合成富集。甲羟戊酸途径关键基因的独立敲除可减少细胞增殖。进一步的研究集中在NUS1上,它是合成醇所需的顺-戊烯基转移酶的一个亚基。NUS1敲除可降低肿瘤在体内的生长和患者来源的异种移植(PDX)来源的类器官的生存能力。机制研究表明,NUS1的缺失促进氧化应激、脂质过氧化和铁中毒敏感性、内质网(ER)应激和G1细胞周期阻滞,并抑制雄激素受体(AR)信号传导,共同导致生长停滞。这项研究强调了甲羟戊酸-多酚- n -聚糖生物合成途径,特别是NUS1在前列腺癌生存和生长中的关键作用。
{"title":"Lipid-metabolism-focused CRISPR screens identify enzymes of the mevalonate pathway as essential for prostate cancer growth.","authors":"Gio Fidelito, Izabela Todorovski, Leonie Cluse, Stephin J Vervoort, Renea A Taylor, Matthew J Watt","doi":"10.1016/j.celrep.2025.115470","DOIUrl":"https://doi.org/10.1016/j.celrep.2025.115470","url":null,"abstract":"<p><p>Dysregulated lipid metabolism plays an important role in prostate cancer, although the understanding of the essential regulatory processes in tumorigenesis is incomplete. We employ a CRISPR-Cas9 screen using a custom human lipid metabolism knockout library to identify essential genes for prostate cancer survival. Screening in three prostate cancer cell lines reveals 63 shared dependencies, with enrichment in terpenoid backbone synthesis and N-glycan biosynthesis. Independent knockout of key genes of the mevalonate pathway reduces cell proliferation. Further investigation focuses on NUS1, a subunit of cis-prenyltransferase required for dolichol synthesis. NUS1 knockout decreases tumor growth in vivo and viability in patient-derived xenograft (PDX)-derived organoids. Mechanistic studies reveal that loss of NUS1 promotes oxidative stress, lipid peroxidation and ferroptosis sensitivity, endoplasmic reticulum (ER) stress, and G1 cell-cycle arrest, and it dampens androgen receptor (AR) signaling, collectively leading to growth arrest. This study highlights the critical role of the mevalonate-dolichol-N-glycan biosynthesis pathway, particularly NUS1, in prostate cancer survival and growth.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 4","pages":"115470"},"PeriodicalIF":7.5,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143728973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-26DOI: 10.1016/j.celrep.2025.115468
Stephen Sakuma, Marcela Raices, Ethan Y S Zhu, Dana Mamriev, Charles I Fisher, Susanne Heynen-Genel, Maximiliano A D'Angelo
Nuclear pore complexes (NPCs) are channels that control access to the genome. The number of NPCs that cells assemble varies between different cell types and in disease. However, the mechanisms regulating NPC formation in mammalian cells remain unclear. Using a genome-wide small interfering RNA (siRNA) screen, we identify translation-related factors, proteasome components, and the CCR4-NOT complex as top regulators of NPC assembly and numbers. While inhibition of ribosomal function and protein translation reduces NPC formation, blocking protein degradation or CCR4-NOT function increases NPC numbers. We demonstrate that CCR4-NOT inhibition raises global mRNA levels, increasing the pool of nucleoporin mRNAs available for translation. Upregulation of nucleoporin complexes in CCR4-NOT-inhibited cells allows for higher NPC formation, increasing total NPC numbers in normal and cancer cells. Our findings uncover that nucleoporin mRNA stability and protein homeostasis are major determinants of NPC formation and highlight a role for the CCR4-NOT complex in negatively regulating NPC assembly.
{"title":"Homeostatic regulation of nucleoporins is a central driver of nuclear pore biogenesis.","authors":"Stephen Sakuma, Marcela Raices, Ethan Y S Zhu, Dana Mamriev, Charles I Fisher, Susanne Heynen-Genel, Maximiliano A D'Angelo","doi":"10.1016/j.celrep.2025.115468","DOIUrl":"https://doi.org/10.1016/j.celrep.2025.115468","url":null,"abstract":"<p><p>Nuclear pore complexes (NPCs) are channels that control access to the genome. The number of NPCs that cells assemble varies between different cell types and in disease. However, the mechanisms regulating NPC formation in mammalian cells remain unclear. Using a genome-wide small interfering RNA (siRNA) screen, we identify translation-related factors, proteasome components, and the CCR4-NOT complex as top regulators of NPC assembly and numbers. While inhibition of ribosomal function and protein translation reduces NPC formation, blocking protein degradation or CCR4-NOT function increases NPC numbers. We demonstrate that CCR4-NOT inhibition raises global mRNA levels, increasing the pool of nucleoporin mRNAs available for translation. Upregulation of nucleoporin complexes in CCR4-NOT-inhibited cells allows for higher NPC formation, increasing total NPC numbers in normal and cancer cells. Our findings uncover that nucleoporin mRNA stability and protein homeostasis are major determinants of NPC formation and highlight a role for the CCR4-NOT complex in negatively regulating NPC assembly.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":" ","pages":"115468"},"PeriodicalIF":7.5,"publicationDate":"2025-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143763188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-25DOI: 10.1016/j.celrep.2025.115463
Naokazu Inoue, Takako Saito, Ikuo Wada
In many forms of sexual reproduction, only the most robust spermatozoa, which overcome multiple physiological challenges, reach the oocyte. However, the exact mechanisms of gamete recognition and fusion are unknown. In the present study, we demonstrated that with the onset of gamete recognition, oocyte microvilli form lamellipodium-like structures, activate actin polymerization, and subsequently engulf spermatozoa to initiate gamete fusion. Gamete fusion occurred via a phagocytosis-like process we termed "sperm engulfment activated by IZUMO1-JUNO linkage and gamete fusion-related factors" (SEAL). Gamete adhesion was strictly regulated by binding of sperm IZUMO1 to oocyte JUNO, while SEAL was primarily mediated by sperm DCST1/2, SPACA6, TMEM95, FIMP, and TMEM81, the essential factors for gamete fusion. Interestingly, JUNO was almost depleted from oocyte surfaces in the region where SEAL enveloped spermatozoa by microvilli without actin polymerization. SEAL formation was recapitulated using JUNO-expressing K562 lymphocytic cells rather than oocytes. Together, these findings suggest that dynamic rearrangement of membrane components facilitates SEAL prior to successful fertilization.
在许多有性生殖形式中,只有克服了多种生理挑战的最强壮精子才能到达卵母细胞。然而,配子识别和融合的确切机制尚不清楚。在本研究中,我们证明了随着配子识别的开始,卵母细胞微绒毛会形成薄壁基质样结构,激活肌动蛋白聚合,随后吞噬精子,启动配子融合。配子融合是通过一种类似吞噬的过程发生的,我们称之为 "IZUMO1-JUNO连接和配子融合相关因子激活的精子吞噬"(SEAL)。配子粘附受精子 IZUMO1 与卵母细胞 JUNO 结合的严格调控,而 SEAL 则主要由精子 DCST1/2、SPACA6、TMEM95、FIMP 和 TMEM81(配子融合的基本因子)介导。有趣的是,在 SEAL 通过微绒毛包裹精子而不发生肌动蛋白聚合的区域,JUNO 几乎从卵母细胞表面耗尽。使用表达 JUNO 的 K562 淋巴细胞而不是卵母细胞可以重现 SEAL 的形成。这些发现共同表明,在成功受精之前,膜成分的动态重排有助于 SEAL 的形成。
{"title":"Noncanonical phagocytosis-like SEAL establishes mammalian fertilization.","authors":"Naokazu Inoue, Takako Saito, Ikuo Wada","doi":"10.1016/j.celrep.2025.115463","DOIUrl":"https://doi.org/10.1016/j.celrep.2025.115463","url":null,"abstract":"<p><p>In many forms of sexual reproduction, only the most robust spermatozoa, which overcome multiple physiological challenges, reach the oocyte. However, the exact mechanisms of gamete recognition and fusion are unknown. In the present study, we demonstrated that with the onset of gamete recognition, oocyte microvilli form lamellipodium-like structures, activate actin polymerization, and subsequently engulf spermatozoa to initiate gamete fusion. Gamete fusion occurred via a phagocytosis-like process we termed \"sperm engulfment activated by IZUMO1-JUNO linkage and gamete fusion-related factors\" (SEAL). Gamete adhesion was strictly regulated by binding of sperm IZUMO1 to oocyte JUNO, while SEAL was primarily mediated by sperm DCST1/2, SPACA6, TMEM95, FIMP, and TMEM81, the essential factors for gamete fusion. Interestingly, JUNO was almost depleted from oocyte surfaces in the region where SEAL enveloped spermatozoa by microvilli without actin polymerization. SEAL formation was recapitulated using JUNO-expressing K562 lymphocytic cells rather than oocytes. Together, these findings suggest that dynamic rearrangement of membrane components facilitates SEAL prior to successful fertilization.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 4","pages":"115463"},"PeriodicalIF":7.5,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143728980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-25Epub Date: 2025-03-19DOI: 10.1016/j.celrep.2025.115442
Liubov Nikitashina, Xiuqiang Chen, Lukas Radosa, Kexin Li, Maria Straßburger, Bastian Seelbinder, Wibke Böhnke, Sarah Vielreicher, Sandor Nietzsche, Thorsten Heinekamp, Ilse D Jacobsen, Gianni Panagiotou, Axel A Brakhage
Here, we report significant changes in the composition of the lung microbiome and metabolome of mice under immune suppression, infection of immunosuppressed mice with virulent and avirulent strains of the clinically important human-pathogenic fungus Aspergillus fumigatus, and treatment with the clinically used antifungal drug voriconazole. Our data also indicate the important role of the gut microbiome for lung homeostasis mediated by the plasma metabolome. In the lung microbiome, DNA sequencing indicates that infection by A. fumigatus leads to a significant increase of anaerobic bacteria, most prominently of Ligilactobacillus murinus; the latter has been confirmed by qPCR analyses. We also isolated live bacteria, including L. murinus, from the murine lower respiratory tract. Co-cultivation of L. murinus and A. fumigatus leads to a reduction in oxygen concentration accompanied by an increase of L. murinus cells, suggesting that A. fumigatus establishes a microaerophilic niche, thereby promoting growth of anaerobic bacteria.
{"title":"The murine lung microbiome is disbalanced by the human-pathogenic fungus Aspergillus fumigatus resulting in enrichment of anaerobic bacteria.","authors":"Liubov Nikitashina, Xiuqiang Chen, Lukas Radosa, Kexin Li, Maria Straßburger, Bastian Seelbinder, Wibke Böhnke, Sarah Vielreicher, Sandor Nietzsche, Thorsten Heinekamp, Ilse D Jacobsen, Gianni Panagiotou, Axel A Brakhage","doi":"10.1016/j.celrep.2025.115442","DOIUrl":"10.1016/j.celrep.2025.115442","url":null,"abstract":"<p><p>Here, we report significant changes in the composition of the lung microbiome and metabolome of mice under immune suppression, infection of immunosuppressed mice with virulent and avirulent strains of the clinically important human-pathogenic fungus Aspergillus fumigatus, and treatment with the clinically used antifungal drug voriconazole. Our data also indicate the important role of the gut microbiome for lung homeostasis mediated by the plasma metabolome. In the lung microbiome, DNA sequencing indicates that infection by A. fumigatus leads to a significant increase of anaerobic bacteria, most prominently of Ligilactobacillus murinus; the latter has been confirmed by qPCR analyses. We also isolated live bacteria, including L. murinus, from the murine lower respiratory tract. Co-cultivation of L. murinus and A. fumigatus leads to a reduction in oxygen concentration accompanied by an increase of L. murinus cells, suggesting that A. fumigatus establishes a microaerophilic niche, thereby promoting growth of anaerobic bacteria.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 3","pages":"115442"},"PeriodicalIF":7.5,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143669232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Classical models of efficient coding in neurons assume simple mean responses-"tuning curves"- such as bell-shaped or monotonic functions of a stimulus feature. Real neurons, however, can be more complex: grid cells, for example, exhibit periodic responses that impart the neural population code with high accuracy. But do highly accurate codes require fine-tuning of the response properties? We address this question with the use of a simple model: a population of neurons with random, spatially extended, and irregular tuning curves. Irregularity enhances the local resolution of the code but gives rise to catastrophic, global errors. For optimal smoothness of the tuning curves, when local and global errors balance out, the neural population compresses information about a continuous stimulus into a low-dimensional representation, and the resulting distributed code achieves exponential accuracy. An analysis of recordings from monkey motor cortex points to such "compressed efficient coding." Efficient codes do not require a finely tuned design-they emerge robustly from irregularity or randomness.
{"title":"Random compressed coding with neurons.","authors":"Simone Blanco Malerba, Mirko Pieropan, Yoram Burak, Rava Azeredo da Silveira","doi":"10.1016/j.celrep.2025.115412","DOIUrl":"10.1016/j.celrep.2025.115412","url":null,"abstract":"<p><p>Classical models of efficient coding in neurons assume simple mean responses-\"tuning curves\"- such as bell-shaped or monotonic functions of a stimulus feature. Real neurons, however, can be more complex: grid cells, for example, exhibit periodic responses that impart the neural population code with high accuracy. But do highly accurate codes require fine-tuning of the response properties? We address this question with the use of a simple model: a population of neurons with random, spatially extended, and irregular tuning curves. Irregularity enhances the local resolution of the code but gives rise to catastrophic, global errors. For optimal smoothness of the tuning curves, when local and global errors balance out, the neural population compresses information about a continuous stimulus into a low-dimensional representation, and the resulting distributed code achieves exponential accuracy. An analysis of recordings from monkey motor cortex points to such \"compressed efficient coding.\" Efficient codes do not require a finely tuned design-they emerge robustly from irregularity or randomness.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 3","pages":"115412"},"PeriodicalIF":7.5,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143669231","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-25Epub Date: 2025-02-17DOI: 10.1016/j.celrep.2025.115294
Vijay Raaj Ravi, Filiz T Korkmaz, Carolina Lyon De Ana, Lu Lu, Feng-Zhi Shao, Christine V Odom, Kimberly A Barker, Aditya Ramanujan, Emma N Niszczak, Wesley N Goltry, Ian M C Martin, Catherine T Ha, Lee J Quinton, Matthew R Jones, Alan Fine, Joshua D Welch, Felicia Chen, Anna C Belkina, Joseph P Mizgerd, Anukul T Shenoy
Neutrophilic asthma is a vexing disease, but mechanistic and therapeutic advancements will require better models of allergy-induced airway neutrophilia. Here, we find that periodic ovalbumin (OVA) inhalation in sensitized mice elicits rapid allergic airway inflammation and pathophysiology mimicking neutrophilic asthma. OVA-experienced murine lungs harbor diverse clusters of CD4+ resident memory T (TRM) cells, including unconventional RORγtnegative/low T helper 17 (TH17) cells. Acute OVA challenge instigates interleukin (IL)-17A secretion from these TRM cells, driving CXCL5 production from Muc5achigh airway secretory cells, leading to destructive airway neutrophilia. The TRM and epithelial cell signals discovered herein are also observed in adult human asthmatic airways. Epithelial antigen presentation regulates this biology by skewing TRM cells toward TH2 and TH1 fates so that TH1-related interferon (IFN)-γ suppresses IL-17A-driven, CXCL5-mediated airway neutrophilia. Concordantly, in vivo IFN-γ supplementation improves disease outcomes. Thus, using our model of neutrophilic asthma, we identify lung epithelial-CD4+ TRM cell crosstalk as a key rheostat of allergic airway neutrophilia.
{"title":"Lung CD4<sup>+</sup> resident memory T cells use airway secretory cells to stimulate and regulate onset of allergic airway neutrophilic disease.","authors":"Vijay Raaj Ravi, Filiz T Korkmaz, Carolina Lyon De Ana, Lu Lu, Feng-Zhi Shao, Christine V Odom, Kimberly A Barker, Aditya Ramanujan, Emma N Niszczak, Wesley N Goltry, Ian M C Martin, Catherine T Ha, Lee J Quinton, Matthew R Jones, Alan Fine, Joshua D Welch, Felicia Chen, Anna C Belkina, Joseph P Mizgerd, Anukul T Shenoy","doi":"10.1016/j.celrep.2025.115294","DOIUrl":"10.1016/j.celrep.2025.115294","url":null,"abstract":"<p><p>Neutrophilic asthma is a vexing disease, but mechanistic and therapeutic advancements will require better models of allergy-induced airway neutrophilia. Here, we find that periodic ovalbumin (OVA) inhalation in sensitized mice elicits rapid allergic airway inflammation and pathophysiology mimicking neutrophilic asthma. OVA-experienced murine lungs harbor diverse clusters of CD4<sup>+</sup> resident memory T (T<sub>RM</sub>) cells, including unconventional RORγt<sup>negative/low</sup> T helper 17 (T<sub>H</sub>17) cells. Acute OVA challenge instigates interleukin (IL)-17A secretion from these T<sub>RM</sub> cells, driving CXCL5 production from Muc5ac<sup>high</sup> airway secretory cells, leading to destructive airway neutrophilia. The T<sub>RM</sub> and epithelial cell signals discovered herein are also observed in adult human asthmatic airways. Epithelial antigen presentation regulates this biology by skewing T<sub>RM</sub> cells toward T<sub>H</sub>2 and T<sub>H</sub>1 fates so that T<sub>H</sub>1-related interferon (IFN)-γ suppresses IL-17A-driven, CXCL5-mediated airway neutrophilia. Concordantly, in vivo IFN-γ supplementation improves disease outcomes. Thus, using our model of neutrophilic asthma, we identify lung epithelial-CD4<sup>+</sup> T<sub>RM</sub> cell crosstalk as a key rheostat of allergic airway neutrophilia.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":" ","pages":"115294"},"PeriodicalIF":7.5,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143448334","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Piezo1, which maintains the integrity and function of the intestinal epithelial barrier, is essential for colonic epithelial homeostasis. However, whether and how Piezo1 regulates colon stem cell fate remains unclear. Here, we show that Piezo1 inhibition promotes colon stem cell proliferation. Mechanistically, stearoyl-CoA 9-desaturase 1 (SCD1) is downstream of Piezo1 to affect colon stem cell stemness by acting on the Wnt-β-catenin pathway. For mice, the altered colon stem cell stemness after Piezo1 knockdown and activation was accompanied by a reprogrammed fatty acid (FA) metabolism in colon crypts. Notably, we found that GsMTX4 protects injured colon stem cell stemness in mouse and human colitis organoids. Our results elucidated the role of Piezo1 in regulating normal and postinjury colon stem cell fates through SCD1-Wnt-β-catenin and the SCD1-mediated FA desaturation process. These results provide fresh perspectives on the mechanical factors regulating colon stem cell fate and therapeutic strategies for related intestinal diseases.
{"title":"Piezo1 regulates colon stem cells to maintain epithelial homeostasis through SCD1-Wnt-β-catenin and programming fatty acid metabolism.","authors":"Feifei Fang, Gangping Li, Xueyan Li, Jiandi Wu, Ying Liu, Haoren Xin, Zhe Wang, Jianhua Fang, Yudong Jiang, Wei Qian, Xiaohua Hou, Jun Song","doi":"10.1016/j.celrep.2025.115400","DOIUrl":"10.1016/j.celrep.2025.115400","url":null,"abstract":"<p><p>Piezo1, which maintains the integrity and function of the intestinal epithelial barrier, is essential for colonic epithelial homeostasis. However, whether and how Piezo1 regulates colon stem cell fate remains unclear. Here, we show that Piezo1 inhibition promotes colon stem cell proliferation. Mechanistically, stearoyl-CoA 9-desaturase 1 (SCD1) is downstream of Piezo1 to affect colon stem cell stemness by acting on the Wnt-β-catenin pathway. For mice, the altered colon stem cell stemness after Piezo1 knockdown and activation was accompanied by a reprogrammed fatty acid (FA) metabolism in colon crypts. Notably, we found that GsMTX4 protects injured colon stem cell stemness in mouse and human colitis organoids. Our results elucidated the role of Piezo1 in regulating normal and postinjury colon stem cell fates through SCD1-Wnt-β-catenin and the SCD1-mediated FA desaturation process. These results provide fresh perspectives on the mechanical factors regulating colon stem cell fate and therapeutic strategies for related intestinal diseases.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 3","pages":"115400"},"PeriodicalIF":7.5,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143623825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-03-25Epub Date: 2025-03-08DOI: 10.1016/j.celrep.2025.115394
Himanshu Chhillar, Hoang Hung Nguyen, Pei-Min Yeh, Jonathan D G Jones, Pingtao Ding
Excessive activation of effector-triggered immunity (ETI) in plants inhibits plant growth and activates cell death. ETI mediated by intracellular Toll/interleukin-1 receptor/resistance protein (TIR) nucleotide-binding, leucine-rich repeat receptors (NLRs) involves two partially redundant signaling nodes in Arabidopsis, ENHANCED DISEASE SUSCEPTIBILITY 1-PHYTOALEXIN DEFICIENT 4-ACTIVATED DISEASE RESISTANCE 1 (EDS1-PAD4-ADR1) and EDS1-SENESCENCE-ASSOCIATED GENE 101-N REQUIREMENT GENE 1 (EDS1-SAG101-NRG1). Genetic and transcriptomic analyses show that EDS1-PAD4-ADR1 primarily enhances immune component abundance and is critical for limiting pathogen growth, whereas EDS1-SAG101-NRG1 mainly activates the hypersensitive response (HR) cell death but is dispensable for immune priming. This study enhances our understanding of the distinct contributions of these two signaling modules to ETI and suggests molecular principles and potential strategies for improving disease resistance in crops without compromising yield.
{"title":"Modular mechanisms of immune priming and growth inhibition mediated by plant effector-triggered immunity.","authors":"Himanshu Chhillar, Hoang Hung Nguyen, Pei-Min Yeh, Jonathan D G Jones, Pingtao Ding","doi":"10.1016/j.celrep.2025.115394","DOIUrl":"10.1016/j.celrep.2025.115394","url":null,"abstract":"<p><p>Excessive activation of effector-triggered immunity (ETI) in plants inhibits plant growth and activates cell death. ETI mediated by intracellular Toll/interleukin-1 receptor/resistance protein (TIR) nucleotide-binding, leucine-rich repeat receptors (NLRs) involves two partially redundant signaling nodes in Arabidopsis, ENHANCED DISEASE SUSCEPTIBILITY 1-PHYTOALEXIN DEFICIENT 4-ACTIVATED DISEASE RESISTANCE 1 (EDS1-PAD4-ADR1) and EDS1-SENESCENCE-ASSOCIATED GENE 101-N REQUIREMENT GENE 1 (EDS1-SAG101-NRG1). Genetic and transcriptomic analyses show that EDS1-PAD4-ADR1 primarily enhances immune component abundance and is critical for limiting pathogen growth, whereas EDS1-SAG101-NRG1 mainly activates the hypersensitive response (HR) cell death but is dispensable for immune priming. This study enhances our understanding of the distinct contributions of these two signaling modules to ETI and suggests molecular principles and potential strategies for improving disease resistance in crops without compromising yield.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 3","pages":"115394"},"PeriodicalIF":7.5,"publicationDate":"2025-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143582213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}