首页 > 最新文献

Cerebral Cortex (New York, NY)最新文献

英文 中文
Age-Dependent Effects of Catechol-O-Methyltransferase (COMT) Gene Val158Met Polymorphism on Language Function in Developing Children 儿茶酚o -甲基转移酶(COMT)基因Val158Met多态性对发育中儿童语言功能的年龄依赖性影响
Pub Date : 2016-11-30 DOI: 10.1093/cercor/bhw371
Lisa Sugiura, T. Toyota, Hiroko Matsuba-Kurita, Y. Iwayama, R. Mazuka, T. Yoshikawa, H. Hagiwara
Abstract The genetic basis controlling language development remains elusive. Previous studies of the catechol‐O‐methyltransferase (COMT) Val158Met genotype and cognition have focused on prefrontally guided executive functions involving dopamine. However, COMT may further influence posterior cortical regions implicated in language perception. We investigated whether COMT influences language ability and cortical language processing involving the posterior language regions in 246 children aged 6‐10 years. We assessed language ability using a language test and cortical responses recorded during language processing using a word repetition task and functional near‐infrared spectroscopy. The COMT genotype had significant effects on language performance and processing. Importantly, Met carriers outperformed Val homozygotes in language ability during the early elementary school years (6‐8 years), whereas Val homozygotes exhibited significant language development during the later elementary school years. Both genotype groups exhibited equal language performance at approximately 10 years of age. Val homozygotes exhibited significantly less cortical activation compared with Met carriers during word processing, particularly at older ages. These findings regarding dopamine transmission efficacy may be explained by a hypothetical inverted U‐shaped curve. Our findings indicate that the effects of the COMT genotype on language ability and cortical language processing may change in a narrow age window of 6‐10 years.
控制语言发展的遗传基础尚不明确。先前关于儿茶酚- O -甲基转移酶(COMT) Val158Met基因型和认知的研究主要集中在涉及多巴胺的前额叶引导执行功能上。然而,COMT可能进一步影响涉及语言感知的后皮层区域。我们研究了246名6 - 10岁儿童的COMT是否影响语言能力和涉及后语言区的皮质语言加工。我们使用语言测试来评估语言能力,并使用单词重复任务和功能性近红外光谱来记录语言处理过程中的皮层反应。COMT基因型对语言表现和语言加工有显著影响。重要的是,Met携带者在小学早期(6 - 8年)的语言能力优于Val纯合子,而Val纯合子在小学后期表现出显著的语言发展。两个基因型组在大约10岁时表现出相同的语言表现。与Met携带者相比,Val纯合子在文字处理过程中表现出明显更少的皮层激活,尤其是在老年时。这些关于多巴胺传递功效的发现可以用一个假设的倒U形曲线来解释。我们的研究结果表明,COMT基因型对语言能力和皮层语言加工的影响可能在6 - 10年的狭窄年龄窗口内发生变化。
{"title":"Age-Dependent Effects of Catechol-O-Methyltransferase (COMT) Gene Val158Met Polymorphism on Language Function in Developing Children","authors":"Lisa Sugiura, T. Toyota, Hiroko Matsuba-Kurita, Y. Iwayama, R. Mazuka, T. Yoshikawa, H. Hagiwara","doi":"10.1093/cercor/bhw371","DOIUrl":"https://doi.org/10.1093/cercor/bhw371","url":null,"abstract":"Abstract The genetic basis controlling language development remains elusive. Previous studies of the catechol‐O‐methyltransferase (COMT) Val158Met genotype and cognition have focused on prefrontally guided executive functions involving dopamine. However, COMT may further influence posterior cortical regions implicated in language perception. We investigated whether COMT influences language ability and cortical language processing involving the posterior language regions in 246 children aged 6‐10 years. We assessed language ability using a language test and cortical responses recorded during language processing using a word repetition task and functional near‐infrared spectroscopy. The COMT genotype had significant effects on language performance and processing. Importantly, Met carriers outperformed Val homozygotes in language ability during the early elementary school years (6‐8 years), whereas Val homozygotes exhibited significant language development during the later elementary school years. Both genotype groups exhibited equal language performance at approximately 10 years of age. Val homozygotes exhibited significantly less cortical activation compared with Met carriers during word processing, particularly at older ages. These findings regarding dopamine transmission efficacy may be explained by a hypothetical inverted U‐shaped curve. Our findings indicate that the effects of the COMT genotype on language ability and cortical language processing may change in a narrow age window of 6‐10 years.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"110 1","pages":"104 - 116"},"PeriodicalIF":0.0,"publicationDate":"2016-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78957893","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Association of Protein Distribution and Gene Expression Revealed by PET and Post-Mortem Quantification in the Serotonergic System of the Human Brain PET和死后定量揭示的人脑血清素能系统中蛋白质分布和基因表达的关系
Pub Date : 2016-11-30 DOI: 10.1093/cercor/bhw355
A. Komorowski, G. James, C. Philippe, G. Gryglewski, Andreas Bauer, M. Hienert, M. Spies, Alexander Kautzky, T. Vanicek, A. Hahn, T. Traub-Weidinger, D. Winkler, W. Wadsak, M. Mitterhauser, M. Hacker, Siegfried Kasper, Rupert Lanzenberger
Abstract Regional differences in posttranscriptional mechanisms may influence in vivo protein densities. The association of positron emission tomography (PET) imaging data from 112 healthy controls and gene expression values from the Allen Human Brain Atlas, based on post‐mortem brains, was investigated for key serotonergic proteins. PET binding values and gene expression intensities were correlated for the main inhibitory (5‐HT1A) and excitatory (5‐HT2A) serotonin receptor, the serotonin transporter (SERT) as well as monoamine oxidase‐A (MAO‐A), using Spearman's correlation coefficients (rs) in a voxel‐wise and region‐wise analysis. Correlations indicated a strong linear relationship between gene and protein expression for both the 5‐HT1A (voxel‐wise rs = 0.71; region‐wise rs = 0.93) and the 5‐HT2A receptor (rs = 0.66; 0.75), but only a weak association for MAO‐A (rs = 0.26; 0.66) and no clear correlation for SERT (rs = 0.17; 0.29). Additionally, region‐wise correlations were performed using mRNA expression from the HBT, yielding comparable results (5‐HT1Ars = 0.82; 5‐HT2Ars = 0.88; MAO‐A rs = 0.50; SERT rs = −0.01). The SERT and MAO‐A appear to be regulated in a region‐specific manner across the whole brain. In contrast, the serotonin‐1A and ‐2A receptors are presumably targeted by common posttranscriptional processes similar in all brain areas suggesting the applicability of mRNA expression as surrogate parameter for density of these proteins.
转录后机制的区域差异可能影响体内蛋白质密度。研究了112名健康对照者的正电子发射断层扫描(PET)成像数据与基于死后大脑的艾伦人脑图谱的基因表达值之间的关联,以寻找关键的血清素能蛋白。相关性表明5‐HT1A基因和蛋白表达之间存在很强的线性关系(体素方向rs = 0.71;区域方向rs = 0.93)和5‐HT2A受体(rs = 0.66;0.66), SERT无明显相关性(rs = 0.17;0.29)。此外,利用HBT的mRNA表达进行区域相关性分析,得出了可比较的结果(5‐HT1Ars = 0.82;5‐HT2Ars = 0.88;SERT rs =−0.01)。相反,5 -羟色胺‐1A和‐2A受体可能是所有脑区相似的共同转录后过程的目标,这表明mRNA表达作为这些蛋白质密度的替代参数的适用性。
{"title":"Association of Protein Distribution and Gene Expression Revealed by PET and Post-Mortem Quantification in the Serotonergic System of the Human Brain","authors":"A. Komorowski, G. James, C. Philippe, G. Gryglewski, Andreas Bauer, M. Hienert, M. Spies, Alexander Kautzky, T. Vanicek, A. Hahn, T. Traub-Weidinger, D. Winkler, W. Wadsak, M. Mitterhauser, M. Hacker, Siegfried Kasper, Rupert Lanzenberger","doi":"10.1093/cercor/bhw355","DOIUrl":"https://doi.org/10.1093/cercor/bhw355","url":null,"abstract":"Abstract Regional differences in posttranscriptional mechanisms may influence in vivo protein densities. The association of positron emission tomography (PET) imaging data from 112 healthy controls and gene expression values from the Allen Human Brain Atlas, based on post‐mortem brains, was investigated for key serotonergic proteins. PET binding values and gene expression intensities were correlated for the main inhibitory (5‐HT1A) and excitatory (5‐HT2A) serotonin receptor, the serotonin transporter (SERT) as well as monoamine oxidase‐A (MAO‐A), using Spearman's correlation coefficients (rs) in a voxel‐wise and region‐wise analysis. Correlations indicated a strong linear relationship between gene and protein expression for both the 5‐HT1A (voxel‐wise rs = 0.71; region‐wise rs = 0.93) and the 5‐HT2A receptor (rs = 0.66; 0.75), but only a weak association for MAO‐A (rs = 0.26; 0.66) and no clear correlation for SERT (rs = 0.17; 0.29). Additionally, region‐wise correlations were performed using mRNA expression from the HBT, yielding comparable results (5‐HT1Ars = 0.82; 5‐HT2Ars = 0.88; MAO‐A rs = 0.50; SERT rs = −0.01). The SERT and MAO‐A appear to be regulated in a region‐specific manner across the whole brain. In contrast, the serotonin‐1A and ‐2A receptors are presumably targeted by common posttranscriptional processes similar in all brain areas suggesting the applicability of mRNA expression as surrogate parameter for density of these proteins.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"61 1","pages":"117 - 130"},"PeriodicalIF":0.0,"publicationDate":"2016-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77668887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 30
Illusory Obesity Triggers Body Dissatisfaction Responses in the Insula and Anterior Cingulate Cortex 虚幻肥胖引发脑岛和前扣带皮层的身体不满反应
Pub Date : 2016-10-12 DOI: 10.1093/cercor/bhw313
C. Preston, H. Henrik Ehrsson
In today's Western society, concerns regarding body size and negative feelings toward one's body are all too common. However, little is known about the neural mechanisms underlying negative feelings toward the body and how they relate to body perception and eating-disorder pathology. Here, we used multisensory illusions to elicit illusory ownership of obese and slim bodies during functional magnetic resonance imaging. The results implicate the anterior insula and the anterior cingulate cortex in the development of negative feelings toward the body through functional interactions with the posterior parietal cortex, which mediates perceived obesity. Moreover, cingulate neural responses were modulated by nonclinical eating-disorder psychopathology and were attenuated in females. These results reveal how perceptual and affective body representations interact in the human brain and may help explain the neurobiological underpinnings of eating-disorder vulnerability in women.
在当今的西方社会,对体型的关注和对自己身体的负面情绪太普遍了。然而,人们对身体负面情绪背后的神经机制以及它们与身体感知和饮食失调病理的关系知之甚少。在这里,我们使用多感官幻觉在功能性磁共振成像中引起肥胖和苗条身体的错觉。研究结果表明,前脑岛和前扣带皮层通过与后顶叶皮层的功能相互作用,参与对身体产生负面情绪,后顶叶皮层介导感知肥胖。此外,扣带神经反应受到非临床饮食障碍精神病理的调节,并且在女性中减弱。这些结果揭示了感知和情感身体表征是如何在人脑中相互作用的,并可能有助于解释女性易患饮食失调症的神经生物学基础。
{"title":"Illusory Obesity Triggers Body Dissatisfaction Responses in the Insula and Anterior Cingulate Cortex","authors":"C. Preston, H. Henrik Ehrsson","doi":"10.1093/cercor/bhw313","DOIUrl":"https://doi.org/10.1093/cercor/bhw313","url":null,"abstract":"In today's Western society, concerns regarding body size and negative feelings toward one's body are all too common. However, little is known about the neural mechanisms underlying negative feelings toward the body and how they relate to body perception and eating-disorder pathology. Here, we used multisensory illusions to elicit illusory ownership of obese and slim bodies during functional magnetic resonance imaging. The results implicate the anterior insula and the anterior cingulate cortex in the development of negative feelings toward the body through functional interactions with the posterior parietal cortex, which mediates perceived obesity. Moreover, cingulate neural responses were modulated by nonclinical eating-disorder psychopathology and were attenuated in females. These results reveal how perceptual and affective body representations interact in the human brain and may help explain the neurobiological underpinnings of eating-disorder vulnerability in women.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"29 1","pages":"4450 - 4460"},"PeriodicalIF":0.0,"publicationDate":"2016-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81386431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 70
Reelin Regulates the Maturation of Dendritic Spines, Synaptogenesis and Glial Ensheathment of Newborn Granule Cells Reelin调节新生颗粒细胞树突棘的成熟、突触发生和胶质鞘的形成
Pub Date : 2016-10-01 DOI: 10.1093/cercor/bhw216
Carles Bosch, Núria Masachs, David Exposito-Alonso, Albert Martı́nez, C. Teixeira, I. Fernaud, Lluís Pujadas, Fausto Ulloa, J. Comella, J. DeFelipe, Á. Merchán-Pérez, E. Soriano
The Reelin pathway is essential for both neural migration and for the development and maturation of synaptic connections. However, its role in adult synaptic formation and remodeling is still being investigated. Here, we investigated the impact of the Reelin/Dab1 pathway on the synaptogenesis of newborn granule cells (GCs) in the young-adult mouse hippocampus. We show that neither Reelin overexpression nor the inactivation of its intracellular adapter, Dab1, substantially alters dendritic spine numbers in these neurons. In contrast, 3D-electron microscopy (focused ion beam milling/scanning electron microscope) revealed that dysregulation of the Reelin/Dab1 pathway leads to both transient and permanent changes in the types and morphology of dendritic spines, mainly altering mushroom, filopodial, and branched GC spines. We also found that the Reelin/Dab1 pathway controls synaptic configuration of presynaptic boutons in the dentate gyrus, with its dysregulation leading to a substantial decrease in multi-synaptic bouton innervation. Lastly, we show that the Reelin/Dab1 pathway controls astroglial ensheathment of synapses. Thus, the Reelin pathway is a key regulator of adult-generated GC integration, by controlling dendritic spine types and shapes, their synaptic innervation patterns, and glial ensheathment. These findings may help to better understanding of hippocampal circuit alterations in neurological disorders in which the Reelin pathway is implicated. Significance Statement The extracellular protein Reelin has an important role in neurological diseases, including epilepsy, Alzheimer's disease and psychiatric diseases, targeting hippocampal circuits. Here we address the role of Reelin in the development of synaptic contacts in adult-generated granule cells (GCs), a neuronal population that is crucial for learning and memory and implicated in neurological and psychiatric diseases. We found that the Reelin pathway controls the shapes, sizes, and types of dendritic spines, the complexity of multisynaptic innervations and the degree of the perisynaptic astroglial ensheathment that controls synaptic homeostasis. These findings show a pivotal role of Reelin in GC synaptogenesis and provide a foundation for structural circuit alterations caused by Reelin deregulation that may occur in neurological and psychiatric disorders.
Reelin通路对神经迁移和突触连接的发育和成熟都是必不可少的。然而,其在成人突触形成和重塑中的作用仍在研究中。在这里,我们研究了Reelin/Dab1通路对年轻成年小鼠海马新生颗粒细胞(GCs)突触发生的影响。我们发现,无论是Reelin的过表达还是其细胞内适配器Dab1的失活,都不会实质性地改变这些神经元中的树突棘数。相反,3d电子显微镜(聚焦离子束铣削/扫描电镜)显示,Reelin/Dab1通路的失调导致树突棘的类型和形态发生短暂和永久的变化,主要改变蘑菇棘、丝状棘和分枝GC棘。我们还发现Reelin/Dab1通路控制齿状回突触前钮扣的突触构型,其失调导致多突触钮扣神经支配的显著减少。最后,我们发现Reelin/Dab1通路控制突触的星形胶质鞘。因此,Reelin通路通过控制树突棘的类型和形状、突触神经支配模式和胶质鞘,是成人生成的GC整合的关键调节因子。这些发现可能有助于更好地理解在牵涉到Reelin通路的神经系统疾病中海马回路的改变。细胞外蛋白Reelin在以海马回路为靶点的神经系统疾病,包括癫痫、阿尔茨海默病和精神疾病中具有重要作用。在这里,我们讨论了Reelin在成人生成的颗粒细胞(GCs)突触接触发育中的作用,GCs是一种对学习和记忆至关重要的神经元群体,与神经和精神疾病有关。我们发现Reelin通路控制树突棘的形状、大小和类型,多突触神经支配的复杂性以及控制突触内稳态的突触周围星形胶质鞘的程度。这些发现表明Reelin在GC突触发生中的关键作用,并为神经和精神疾病中可能发生的Reelin失调引起的结构电路改变提供了基础。
{"title":"Reelin Regulates the Maturation of Dendritic Spines, Synaptogenesis and Glial Ensheathment of Newborn Granule Cells","authors":"Carles Bosch, Núria Masachs, David Exposito-Alonso, Albert Martı́nez, C. Teixeira, I. Fernaud, Lluís Pujadas, Fausto Ulloa, J. Comella, J. DeFelipe, Á. Merchán-Pérez, E. Soriano","doi":"10.1093/cercor/bhw216","DOIUrl":"https://doi.org/10.1093/cercor/bhw216","url":null,"abstract":"The Reelin pathway is essential for both neural migration and for the development and maturation of synaptic connections. However, its role in adult synaptic formation and remodeling is still being investigated. Here, we investigated the impact of the Reelin/Dab1 pathway on the synaptogenesis of newborn granule cells (GCs) in the young-adult mouse hippocampus. We show that neither Reelin overexpression nor the inactivation of its intracellular adapter, Dab1, substantially alters dendritic spine numbers in these neurons. In contrast, 3D-electron microscopy (focused ion beam milling/scanning electron microscope) revealed that dysregulation of the Reelin/Dab1 pathway leads to both transient and permanent changes in the types and morphology of dendritic spines, mainly altering mushroom, filopodial, and branched GC spines. We also found that the Reelin/Dab1 pathway controls synaptic configuration of presynaptic boutons in the dentate gyrus, with its dysregulation leading to a substantial decrease in multi-synaptic bouton innervation. Lastly, we show that the Reelin/Dab1 pathway controls astroglial ensheathment of synapses. Thus, the Reelin pathway is a key regulator of adult-generated GC integration, by controlling dendritic spine types and shapes, their synaptic innervation patterns, and glial ensheathment. These findings may help to better understanding of hippocampal circuit alterations in neurological disorders in which the Reelin pathway is implicated. Significance Statement The extracellular protein Reelin has an important role in neurological diseases, including epilepsy, Alzheimer's disease and psychiatric diseases, targeting hippocampal circuits. Here we address the role of Reelin in the development of synaptic contacts in adult-generated granule cells (GCs), a neuronal population that is crucial for learning and memory and implicated in neurological and psychiatric diseases. We found that the Reelin pathway controls the shapes, sizes, and types of dendritic spines, the complexity of multisynaptic innervations and the degree of the perisynaptic astroglial ensheathment that controls synaptic homeostasis. These findings show a pivotal role of Reelin in GC synaptogenesis and provide a foundation for structural circuit alterations caused by Reelin deregulation that may occur in neurological and psychiatric disorders.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"13 1","pages":"4282 - 4298"},"PeriodicalIF":0.0,"publicationDate":"2016-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84587335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 51
Distinct Corticostriatal and Intracortical Pathways Mediate Bilateral Sensory Responses in the Striatum 不同的皮质纹状体和皮质内通路介导纹状体的双侧感觉反应
Pub Date : 2016-09-24 DOI: 10.1093/cercor/bhw268
R. Reig, G. Silberberg
Individual striatal neurons integrate somatosensory information from both sides of the body, however, the afferent pathways mediating these bilateral responses are unclear. Whereas ipsilateral corticostriatal projections are prevalent throughout the neocortex, contralateral projections provide sparse input from primary sensory cortices, in contrast to the dense innervation from motor and frontal regions. There is, therefore, an apparent discrepancy between the observed anatomical pathways and the recorded striatal responses. We used simultaneous in vivo whole-cell and extracellular recordings combined with focal cortical silencing, to dissect the afferent pathways underlying bilateral sensory integration in the mouse striatum. We show that unlike direct corticostriatal projections mediating responses to contralateral whisker deflection, responses to ipsilateral stimuli are mediated mainly by intracortical projections from the contralateral somatosensory cortex (S1). The dominant pathway is the callosal projection from contralateral to ipsilateral S1. Our results suggest a functional difference between the cortico-basal ganglia pathways underlying bilateral sensory and motor processes.
单个纹状体神经元整合来自身体两侧的体感觉信息,然而,介导这些双侧反应的传入通路尚不清楚。虽然同侧皮质纹状体投射在整个新皮层中普遍存在,但与来自运动区和额叶区的密集神经支配相比,对侧投射提供了来自初级感觉皮质的稀疏输入。因此,观察到的解剖通路和记录的纹状体反应之间存在明显的差异。我们同时使用体内全细胞和细胞外记录结合局灶性皮质沉默,来解剖小鼠纹状体中双边感觉统合的传入通路。我们发现,与直接的皮质纹状体投射介导对侧须偏转的反应不同,对同侧刺激的反应主要由来自对侧体感皮层的皮质内投射介导(S1)。主要通路是胼胝体从对侧到同侧S1的投射。我们的研究结果表明,皮质-基底神经节通路之间存在功能差异,这是双侧感觉和运动过程的基础。
{"title":"Distinct Corticostriatal and Intracortical Pathways Mediate Bilateral Sensory Responses in the Striatum","authors":"R. Reig, G. Silberberg","doi":"10.1093/cercor/bhw268","DOIUrl":"https://doi.org/10.1093/cercor/bhw268","url":null,"abstract":"Individual striatal neurons integrate somatosensory information from both sides of the body, however, the afferent pathways mediating these bilateral responses are unclear. Whereas ipsilateral corticostriatal projections are prevalent throughout the neocortex, contralateral projections provide sparse input from primary sensory cortices, in contrast to the dense innervation from motor and frontal regions. There is, therefore, an apparent discrepancy between the observed anatomical pathways and the recorded striatal responses. We used simultaneous in vivo whole-cell and extracellular recordings combined with focal cortical silencing, to dissect the afferent pathways underlying bilateral sensory integration in the mouse striatum. We show that unlike direct corticostriatal projections mediating responses to contralateral whisker deflection, responses to ipsilateral stimuli are mediated mainly by intracortical projections from the contralateral somatosensory cortex (S1). The dominant pathway is the callosal projection from contralateral to ipsilateral S1. Our results suggest a functional difference between the cortico-basal ganglia pathways underlying bilateral sensory and motor processes.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"91 1","pages":"4405 - 4415"},"PeriodicalIF":0.0,"publicationDate":"2016-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87466747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 36
Disentangling the Representation of Identity from Head View Along the Human Face Processing Pathway 基于人脸加工路径的头视身份表征解耦
Pub Date : 2016-03-26 DOI: 10.1093/cercor/bhw344
Swaroop Guntupalli, Kelsey G. Wheeler, I. Gobbini
Neural models of a distributed system for face perception implicate a network of regions in the ventral visual stream for recognition of identity. Here, we report an fMRI neural decoding study in humans that shows that this pathway culminates in a right inferior frontal cortex face area (rIFFA) with a representation of individual identities that has been disentangled from variable visual features in different images of the same person. At earlier stages in the pathway, processing begins in early visual cortex and the occipital face area (OFA) with representations of head view that are invariant across identities, and proceeds to an intermediate level of representation in the fusiform face area (FFA) in which identity is emerging but still entangled with head view. Three-dimensional, view-invariant representation of identities in the rIFFA may be the critical link to the extended system for face perception, affording activation of person knowledge and emotional responses to familiar faces. Significance Statement In this fMRI decoding experiment, we address how face images are processed in successive stages to disentangle the view-invariant representation of identity from variable visual features. Representations in early visual cortex and the occipital face area distinguish head views, invariant across identities. An intermediate level of representation in the fusiform face area distinguishes identities but still is entangled with head view. The face-processing pathway culminates in the right inferior frontal area with representation of view-independent identity. This paper clarifies the homologies between the human and macaque face processing systems. The findings show further, however, the importance of the inferior frontal cortex in decoding face identity, a result that has not yet been reported in the monkey literature.
面部感知分布式系统的神经模型暗示了腹侧视觉流中识别身份的区域网络。在这里,我们报告了一项人类fMRI神经解码研究,该研究表明,这一途径在右侧额叶下皮层面部区域(rIFFA)达到顶峰,该区域具有个人身份的表征,该表征已从同一个人的不同图像的可变视觉特征中解脱出来。在该通路的早期阶段,加工始于早期视觉皮层和枕部面部区(OFA),其头部视图的表征在不同身份之间是不变的,然后进入梭状回面部区(FFA)的中间表征水平,其中身份正在出现,但仍与头部视图纠缠在一起。rIFFA中三维的、视点不变的身份表征可能是与面部感知扩展系统的关键联系,激活了对熟悉面孔的个人知识和情绪反应。在这个fMRI解码实验中,我们讨论了如何在连续的阶段处理人脸图像,以从可变的视觉特征中分离出身份的视图不变表示。早期视觉皮层和枕部面部区域的表征区分了头部视图,在不同身份之间是不变的。梭状回面部区域的中间表征区分身份,但仍然与头部视图纠缠在一起。面部处理通路在右下额叶区域达到顶峰,代表着与视觉无关的身份。本文阐明了人类和猕猴面部处理系统的同源性。然而,研究结果进一步表明,额叶下皮层在解码面部识别中的重要性,这一结果尚未在猴子文献中报道。
{"title":"Disentangling the Representation of Identity from Head View Along the Human Face Processing Pathway","authors":"Swaroop Guntupalli, Kelsey G. Wheeler, I. Gobbini","doi":"10.1093/cercor/bhw344","DOIUrl":"https://doi.org/10.1093/cercor/bhw344","url":null,"abstract":"Neural models of a distributed system for face perception implicate a network of regions in the ventral visual stream for recognition of identity. Here, we report an fMRI neural decoding study in humans that shows that this pathway culminates in a right inferior frontal cortex face area (rIFFA) with a representation of individual identities that has been disentangled from variable visual features in different images of the same person. At earlier stages in the pathway, processing begins in early visual cortex and the occipital face area (OFA) with representations of head view that are invariant across identities, and proceeds to an intermediate level of representation in the fusiform face area (FFA) in which identity is emerging but still entangled with head view. Three-dimensional, view-invariant representation of identities in the rIFFA may be the critical link to the extended system for face perception, affording activation of person knowledge and emotional responses to familiar faces. Significance Statement In this fMRI decoding experiment, we address how face images are processed in successive stages to disentangle the view-invariant representation of identity from variable visual features. Representations in early visual cortex and the occipital face area distinguish head views, invariant across identities. An intermediate level of representation in the fusiform face area distinguishes identities but still is entangled with head view. The face-processing pathway culminates in the right inferior frontal area with representation of view-independent identity. This paper clarifies the homologies between the human and macaque face processing systems. The findings show further, however, the importance of the inferior frontal cortex in decoding face identity, a result that has not yet been reported in the monkey literature.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"78 1","pages":"46 - 53"},"PeriodicalIF":0.0,"publicationDate":"2016-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83929641","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 81
Predominance of Movement Speed Over Direction in Neuronal Population Signals of Motor Cortex: Intracranial EEG Data and A Simple Explanatory Model 运动皮层神经元群信号中运动速度优于运动方向:颅内脑电图数据和一个简单的解释模型
Pub Date : 2016-03-16 DOI: 10.1093/cercor/bhw033
J. Hammer, T. Pistohl, J. Fischer, P. Krsek, M. Tomášek, P. Marusic, A. Schulze-Bonhage, A. Aertsen, T. Ball
How neuronal activity of motor cortex is related to movement is a central topic in motor neuroscience. Motor-cortical single neurons are more closely related to hand movement velocity than speed, that is, the magnitude of the (directional) velocity vector. Recently, there is also increasing interest in the representation of movement parameters in neuronal population activity, such as reflected in the intracranial EEG (iEEG). We show that in iEEG, contrasting to what has been previously found on the single neuron level, speed predominates over velocity. The predominant speed representation was present in nearly all iEEG signal features, up to the 600–1000 Hz range. Using a model of motor-cortical signals arising from neuronal populations with realistic single neuron tuning properties, we show how this reversal can be understood as a consequence of increasing population size. Our findings demonstrate that the information profile in large population signals may systematically differ from the single neuron level, a principle that may be helpful in the interpretation of neuronal population signals in general, including, for example, EEG and functional magnetic resonance imaging. Taking advantage of the robust speed population signal may help in developing brain–machine interfaces exploiting population signals.
运动皮层的神经元活动与运动的关系是运动神经科学研究的中心课题。运动皮层单个神经元与手部运动速度的关系比与速度的关系更密切,即(方向)速度矢量的大小。最近,人们对神经元群活动中运动参数的表征也越来越感兴趣,例如在颅内脑电图(iEEG)中反映出来的运动参数。我们发现,与之前在单个神经元水平上发现的结果相比,在脑电图中,速度比速度更重要。在600 - 1000hz范围内,几乎所有的脑电图信号特征中都存在主要的速度表示。利用具有现实的单个神经元调谐特性的神经元群体产生的运动-皮层信号模型,我们展示了这种逆转如何被理解为群体规模增加的结果。我们的研究结果表明,大群体信号中的信息剖面可能与单个神经元水平有系统的不同,这一原则可能有助于解释一般的神经元群体信号,例如脑电图和功能磁共振成像。利用鲁棒速度种群信号可能有助于开发利用种群信号的脑机接口。
{"title":"Predominance of Movement Speed Over Direction in Neuronal Population Signals of Motor Cortex: Intracranial EEG Data and A Simple Explanatory Model","authors":"J. Hammer, T. Pistohl, J. Fischer, P. Krsek, M. Tomášek, P. Marusic, A. Schulze-Bonhage, A. Aertsen, T. Ball","doi":"10.1093/cercor/bhw033","DOIUrl":"https://doi.org/10.1093/cercor/bhw033","url":null,"abstract":"How neuronal activity of motor cortex is related to movement is a central topic in motor neuroscience. Motor-cortical single neurons are more closely related to hand movement velocity than speed, that is, the magnitude of the (directional) velocity vector. Recently, there is also increasing interest in the representation of movement parameters in neuronal population activity, such as reflected in the intracranial EEG (iEEG). We show that in iEEG, contrasting to what has been previously found on the single neuron level, speed predominates over velocity. The predominant speed representation was present in nearly all iEEG signal features, up to the 600–1000 Hz range. Using a model of motor-cortical signals arising from neuronal populations with realistic single neuron tuning properties, we show how this reversal can be understood as a consequence of increasing population size. Our findings demonstrate that the information profile in large population signals may systematically differ from the single neuron level, a principle that may be helpful in the interpretation of neuronal population signals in general, including, for example, EEG and functional magnetic resonance imaging. Taking advantage of the robust speed population signal may help in developing brain–machine interfaces exploiting population signals.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"133 1","pages":"2863 - 2881"},"PeriodicalIF":0.0,"publicationDate":"2016-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90933333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 43
Shaping Early Reorganization of Neural Networks Promotes Motor Function after Stroke 塑造早期神经网络重组促进脑卒中后运动功能
Pub Date : 2016-03-14 DOI: 10.1093/cercor/bhw034
L. Volz, A. Rehme, J. Michely, C. Nettekoven, S. Eickhoff, Gereon R. Fink, C. Grefkes
Neural plasticity is a major factor driving cortical reorganization after stroke. We here tested whether repetitively enhancing motor cortex plasticity by means of intermittent theta-burst stimulation (iTBS) prior to physiotherapy might promote recovery of function early after stroke. Functional magnetic resonance imaging (fMRI) was used to elucidate underlying neural mechanisms. Twenty-six hospitalized, first-ever stroke patients (time since stroke: 1–16 days) with hand motor deficits were enrolled in a sham-controlled design and pseudo-randomized into 2 groups. iTBS was administered prior to physiotherapy on 5 consecutive days either over ipsilesional primary motor cortex (M1-stimulation group) or parieto-occipital vertex (control-stimulation group). Hand motor function, cortical excitability, and resting-state fMRI were assessed 1 day prior to the first stimulation and 1 day after the last stimulation. Recovery of grip strength was significantly stronger in the M1-stimulation compared to the control-stimulation group. Higher levels of motor network connectivity were associated with better motor outcome. Consistently, control-stimulated patients featured a decrease in intra- and interhemispheric connectivity of the motor network, which was absent in the M1-stimulation group. Hence, adding iTBS to prime physiotherapy in recovering stroke patients seems to interfere with motor network degradation, possibly reflecting alleviation of post-stroke diaschisis.
神经可塑性是脑卒中后皮层重组的主要驱动因素。我们在此测试了在物理治疗前通过间歇性脑波爆发刺激(iTBS)反复增强运动皮质可塑性是否可以促进中风后早期功能的恢复。功能磁共振成像(fMRI)用于阐明潜在的神经机制。26例首次住院的卒中患者(卒中后时间:1-16天)采用假对照设计,随机分为两组。在物理治疗之前,连续5天在同侧初级运动皮质(m1刺激组)或顶枕顶点(对照刺激组)上施用iTBS。在第一次刺激前1天和最后一次刺激后1天评估手部运动功能、皮质兴奋性和静息状态fMRI。与对照组相比,m1刺激组的握力恢复明显更强。高水平的运动网络连通性与更好的运动结果相关。与此一致的是,对照组刺激的患者表现出运动网络的半球内和半球间连通性下降,而m1刺激组则没有这种情况。因此,在恢复期脑卒中患者的主要物理治疗中加入iTBS似乎会干扰运动网络的退化,这可能反映了脑卒中后脑缺血的缓解。
{"title":"Shaping Early Reorganization of Neural Networks Promotes Motor Function after Stroke","authors":"L. Volz, A. Rehme, J. Michely, C. Nettekoven, S. Eickhoff, Gereon R. Fink, C. Grefkes","doi":"10.1093/cercor/bhw034","DOIUrl":"https://doi.org/10.1093/cercor/bhw034","url":null,"abstract":"Neural plasticity is a major factor driving cortical reorganization after stroke. We here tested whether repetitively enhancing motor cortex plasticity by means of intermittent theta-burst stimulation (iTBS) prior to physiotherapy might promote recovery of function early after stroke. Functional magnetic resonance imaging (fMRI) was used to elucidate underlying neural mechanisms. Twenty-six hospitalized, first-ever stroke patients (time since stroke: 1–16 days) with hand motor deficits were enrolled in a sham-controlled design and pseudo-randomized into 2 groups. iTBS was administered prior to physiotherapy on 5 consecutive days either over ipsilesional primary motor cortex (M1-stimulation group) or parieto-occipital vertex (control-stimulation group). Hand motor function, cortical excitability, and resting-state fMRI were assessed 1 day prior to the first stimulation and 1 day after the last stimulation. Recovery of grip strength was significantly stronger in the M1-stimulation compared to the control-stimulation group. Higher levels of motor network connectivity were associated with better motor outcome. Consistently, control-stimulated patients featured a decrease in intra- and interhemispheric connectivity of the motor network, which was absent in the M1-stimulation group. Hence, adding iTBS to prime physiotherapy in recovering stroke patients seems to interfere with motor network degradation, possibly reflecting alleviation of post-stroke diaschisis.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"22 1","pages":"2882 - 2894"},"PeriodicalIF":0.0,"publicationDate":"2016-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90781474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 99
A Model of Representational Spaces in Human Cortex 人类皮层表征空间模型
Pub Date : 2016-03-14 DOI: 10.1093/cercor/bhw068
J. S. Guntupalli, Michael Hanke, Y. Halchenko, Andrew C. Connolly, P. Ramadge, J. Haxby
Current models of the functional architecture of human cortex emphasize areas that capture coarse-scale features of cortical topography but provide no account for population responses that encode information in fine-scale patterns of activity. Here, we present a linear model of shared representational spaces in human cortex that captures fine-scale distinctions among population responses with response-tuning basis functions that are common across brains and models cortical patterns of neural responses with individual-specific topographic basis functions. We derive a common model space for the whole cortex using a new algorithm, searchlight hyperalignment, and complex, dynamic stimuli that provide a broad sampling of visual, auditory, and social percepts. The model aligns representations across brains in occipital, temporal, parietal, and prefrontal cortices, as shown by between-subject multivariate pattern classification and intersubject correlation of representational geometry, indicating that structural principles for shared neural representations apply across widely divergent domains of information. The model provides a rigorous account for individual variability of well-known coarse-scale topographies, such as retinotopy and category selectivity, and goes further to account for fine-scale patterns that are multiplexed with coarse-scale topographies and carry finer distinctions.
目前人类皮层的功能结构模型强调捕捉皮层地形的粗尺度特征的区域,但没有考虑到以精细尺度的活动模式编码信息的群体反应。在这里,我们提出了一个人类皮层中共享表征空间的线性模型,该模型利用大脑中常见的响应调谐基函数捕捉了群体反应之间的细微差异,并利用个体特定的地形基函数模拟了神经反应的皮层模式。我们使用一种新的算法、探照灯超对准和复杂的动态刺激,为整个皮层提供了一个共同的模型空间,这些刺激提供了视觉、听觉和社会感知的广泛样本。该模型对大脑枕叶、颞叶、顶叶和前额叶皮层的表征进行了比对,如主体间多元模式分类和表征几何的主体间相关性所示,表明共享神经表征的结构原则适用于广泛不同的信息领域。该模型为众所周知的大尺度地形的个体可变性提供了严格的解释,例如视网膜病变和类别选择性,并进一步解释了与大尺度地形多路复用并具有更细微差异的小尺度模式。
{"title":"A Model of Representational Spaces in Human Cortex","authors":"J. S. Guntupalli, Michael Hanke, Y. Halchenko, Andrew C. Connolly, P. Ramadge, J. Haxby","doi":"10.1093/cercor/bhw068","DOIUrl":"https://doi.org/10.1093/cercor/bhw068","url":null,"abstract":"Current models of the functional architecture of human cortex emphasize areas that capture coarse-scale features of cortical topography but provide no account for population responses that encode information in fine-scale patterns of activity. Here, we present a linear model of shared representational spaces in human cortex that captures fine-scale distinctions among population responses with response-tuning basis functions that are common across brains and models cortical patterns of neural responses with individual-specific topographic basis functions. We derive a common model space for the whole cortex using a new algorithm, searchlight hyperalignment, and complex, dynamic stimuli that provide a broad sampling of visual, auditory, and social percepts. The model aligns representations across brains in occipital, temporal, parietal, and prefrontal cortices, as shown by between-subject multivariate pattern classification and intersubject correlation of representational geometry, indicating that structural principles for shared neural representations apply across widely divergent domains of information. The model provides a rigorous account for individual variability of well-known coarse-scale topographies, such as retinotopy and category selectivity, and goes further to account for fine-scale patterns that are multiplexed with coarse-scale topographies and carry finer distinctions.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"34 1","pages":"2919 - 2934"},"PeriodicalIF":0.0,"publicationDate":"2016-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86259671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 166
Retrosplenial Cortical Contributions to Anterograde and Retrograde Memory in the Monkey 猴脾后皮层对顺行和逆行记忆的贡献
Pub Date : 2016-03-05 DOI: 10.1093/cercor/bhw054
M. Buckley, Anna S. Mitchell
Primate retrosplenial cortex (RSC) is important for memory but patient neuropathologies are diffuse so its key contributions to memory remain elusive. This study provides the first causal evidence that RSC in macaque monkeys is crucial for postoperative retention of preoperatively and postoperatively acquired memories. Preoperatively, monkeys learned 300 object-in-place scene discriminations across sessions. After RSC removal, one-trial postoperative retention tests revealed significant retrograde memory loss for these 300 discriminations relative to unoperated control monkeys. Less robust evidence was found for a deficit in anterograde memory (new postoperative learning) after RSC lesions as new learning to criterion measures failed to reveal any significant learning impairment. However, after achieving ≥90% learning criterion for the postoperatively presented novel 100 object-in-place scene discriminations, short-term retention (i.e., measured after 24 h delay) of this well-learnt set was impaired in the RSC monkeys relative to controls. A further experiment assessed rapid “within” session acquisition of novel object-in-place scene discriminations, again confirming that new learning per se was unimpaired by bilateral RSC removal. Primate RSC contributes critically to memory by supporting normal retention of information, even when this information does not involve an autobiographical component.
灵长类动物的脾后皮层(RSC)对记忆很重要,但由于患者的神经病变是分散的,所以它对记忆的关键贡献仍然难以捉摸。这项研究提供了第一个因果证据,证明猕猴的RSC对术前和术后获得性记忆的术后保留至关重要。在手术前,猴子在整个过程中学会了300种物体在原地的场景辨别。在切除RSC后,一次试验的术后保留测试显示,与未手术的对照组相比,这300种区分的记忆明显倒退。对于RSC病变后的顺行记忆(新的术后学习)缺陷,没有发现强有力的证据,因为新的学习标准测量未能显示任何显著的学习障碍。然而,在达到≥90%的术后新100个物体原地场景识别的学习标准后,相对于对照组,RSC猴子对这组良好学习的短期保留(即在24小时延迟后测量)受到损害。进一步的实验评估了快速“在”会话内习得的新物体原地场景识别,再次证实了新的学习本身不会因双侧RSC移除而受损。灵长类动物的RSC通过支持信息的正常保留而对记忆起着至关重要的作用,即使这些信息不涉及自传体成分。
{"title":"Retrosplenial Cortical Contributions to Anterograde and Retrograde Memory in the Monkey","authors":"M. Buckley, Anna S. Mitchell","doi":"10.1093/cercor/bhw054","DOIUrl":"https://doi.org/10.1093/cercor/bhw054","url":null,"abstract":"Primate retrosplenial cortex (RSC) is important for memory but patient neuropathologies are diffuse so its key contributions to memory remain elusive. This study provides the first causal evidence that RSC in macaque monkeys is crucial for postoperative retention of preoperatively and postoperatively acquired memories. Preoperatively, monkeys learned 300 object-in-place scene discriminations across sessions. After RSC removal, one-trial postoperative retention tests revealed significant retrograde memory loss for these 300 discriminations relative to unoperated control monkeys. Less robust evidence was found for a deficit in anterograde memory (new postoperative learning) after RSC lesions as new learning to criterion measures failed to reveal any significant learning impairment. However, after achieving ≥90% learning criterion for the postoperatively presented novel 100 object-in-place scene discriminations, short-term retention (i.e., measured after 24 h delay) of this well-learnt set was impaired in the RSC monkeys relative to controls. A further experiment assessed rapid “within” session acquisition of novel object-in-place scene discriminations, again confirming that new learning per se was unimpaired by bilateral RSC removal. Primate RSC contributes critically to memory by supporting normal retention of information, even when this information does not involve an autobiographical component.","PeriodicalId":9825,"journal":{"name":"Cerebral Cortex (New York, NY)","volume":"122 1","pages":"2905 - 2918"},"PeriodicalIF":0.0,"publicationDate":"2016-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80705961","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 29
期刊
Cerebral Cortex (New York, NY)
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1