Mohd Shahnawaz Khan, Dharmendra Kumar Yadav, Moyad Shahwan, Anas Shamsi
Aldose reductase (ALDR) is a critical protein involved in the pathogenesis of diabetic complications such as retinopathy, neuropathy, and nephropathy. Due to the activation of inflammatory and cytotoxic pathways under hyperglycemic conditions, ALDR has become an important target for therapeutic development. Currently, available drugs such as epalrestat and ranirestat are suboptimal due to factors such as toxicity and low solubility. In this study, a structure-based approach was used to screen the PubChem database to identify novel ALDR inhibitors with a Tanimoto coefficient greater than 0.8 with the structural frameworks of epalrestat and ranirestat. A systematic virtual screening, including molecular docking, drug-likeness assessment, and molecular dynamics (MD) simulations, revealed two promising candidates, PubChem CIDs: 45110135 and 58643777. These compounds showed higher binding and selectivity toward ALDR than epalrestat and ranirestat in docking studies. MD simulations supported the stability and preferred dynamics of their interactions with ALDR. These findings suggest that compounds CID:45110135 (N-[3-fluoro-4-(4-fluoro-1,3-dioxoisoindol-2-yl)phenyl]pyridine-2-carboxamide) and CID:58643777 ([(5Z)-4-oxo-2-sulfanylidene-5-[[3-[3-(trifluoromethyl)phenyl]phenyl]methylidene]−1,3-thiazolidin-3-yl]propanoic acid) might have the potential to be lead compounds for the development of new drugs for diabetic neuropathy after required validation.
{"title":"Structure-Guided Identification and Evaluation of Epalrestat and Ranirestat-Like Compounds Against Aldose Reductase: Therapeutic Management of Diabetic Neuropathy","authors":"Mohd Shahnawaz Khan, Dharmendra Kumar Yadav, Moyad Shahwan, Anas Shamsi","doi":"10.1002/open.202500110","DOIUrl":"10.1002/open.202500110","url":null,"abstract":"<p>Aldose reductase (ALDR) is a critical protein involved in the pathogenesis of diabetic complications such as retinopathy, neuropathy, and nephropathy. Due to the activation of inflammatory and cytotoxic pathways under hyperglycemic conditions, ALDR has become an important target for therapeutic development. Currently, available drugs such as epalrestat and ranirestat are suboptimal due to factors such as toxicity and low solubility. In this study, a structure-based approach was used to screen the PubChem database to identify novel ALDR inhibitors with a Tanimoto coefficient greater than 0.8 with the structural frameworks of epalrestat and ranirestat. A systematic virtual screening, including molecular docking, drug-likeness assessment, and molecular dynamics (MD) simulations, revealed two promising candidates, PubChem CIDs: 45110135 and 58643777. These compounds showed higher binding and selectivity toward ALDR than epalrestat and ranirestat in docking studies. MD simulations supported the stability and preferred dynamics of their interactions with ALDR. These findings suggest that compounds CID:45110135 (N-[3-fluoro-4-(4-fluoro-1,3-dioxoisoindol-2-yl)phenyl]pyridine-2-carboxamide) and CID:58643777 ([(5Z)-4-oxo-2-sulfanylidene-5-[[3-[3-(trifluoromethyl)phenyl]phenyl]methylidene]−1,3-thiazolidin-3-yl]propanoic acid) might have the potential to be lead compounds for the development of new drugs for diabetic neuropathy after required validation.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":"14 12","pages":""},"PeriodicalIF":3.1,"publicationDate":"2025-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://chemistry-europe.onlinelibrary.wiley.com/doi/epdf/10.1002/open.202500110","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144944788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Akin Olaleru, Nithyadharseni Palaniyandy, Bhekie B. Mamba, Bonex W. Mwakikunga
This image depicts a hydrogen fuel cell ecosystem, showing the complete cycle from renewable energy production to zero-emission transportation. Solar panels generate electricity to power electrolysis, splitting water (H2O) into hydrogen (H2) and oxygen (O2). The produced hydrogen fuels a clean vehicle at a refuelling station, illustrating a sustainable hydrogen energy technology. More information can be found in the Review by S. Akin Olaleru, Nithyadharseni Palaniyandy, Bhekie B. Mamba, and Bonex W. Mwakikunga (DOI: 10.1002/open.202500181).