The optimization of a new amperometric biosensor for evaluating antioxidant capacity in real samples is reported. The biosensor is based on the immobilization of Laccase from Trametes versicolor on an electropolymerized β-cyclodextrin polymeric membrane on a glassy carbon electrode. The process of electropolymerization, which was successful even in the presence of the enzyme, was a key step in biosensor synthesis. Variables such as pH, temperature, and enzyme concentration were optimized using a factorial design with two levels for each factor. Different electrodes were constructed and tested using caffeic acid as a standard. The best biosensor is synthesized at pH 3.0 with 6 mg/mL of enzyme and 30 °C. The biosensor presented a response time of ≤30 seconds and good stability in its amperometric response. The biosensor was used to evaluate the antioxidant capacity of real samples. Infusions of green, black, red, and white tea were assessed. The biosensor showed excellent stability and good performance regarding response time, stability, and easy fabrication. The proposed biosensor is a good option for evaluating antioxidant capacity in real samples without sample pretreatment. It combines a simple fabrication methodology and a minimal extraction process for rapid and reliable phenolic content determination in real samples.
{"title":"Biosensor Based on the Immobilization of Laccase on β-Cyclodextrin Membrane for the Evaluation of Antioxidant Capacity in Real Samples.","authors":"Jorge Juárez-Gómez, Omar Alejandro Báez-Melga, Dafne Sarahia Guzmán-Hernández","doi":"10.1002/open.202400228","DOIUrl":"https://doi.org/10.1002/open.202400228","url":null,"abstract":"<p><p>The optimization of a new amperometric biosensor for evaluating antioxidant capacity in real samples is reported. The biosensor is based on the immobilization of Laccase from Trametes versicolor on an electropolymerized β-cyclodextrin polymeric membrane on a glassy carbon electrode. The process of electropolymerization, which was successful even in the presence of the enzyme, was a key step in biosensor synthesis. Variables such as pH, temperature, and enzyme concentration were optimized using a factorial design with two levels for each factor. Different electrodes were constructed and tested using caffeic acid as a standard. The best biosensor is synthesized at pH 3.0 with 6 mg/mL of enzyme and 30 °C. The biosensor presented a response time of ≤30 seconds and good stability in its amperometric response. The biosensor was used to evaluate the antioxidant capacity of real samples. Infusions of green, black, red, and white tea were assessed. The biosensor showed excellent stability and good performance regarding response time, stability, and easy fabrication. The proposed biosensor is a good option for evaluating antioxidant capacity in real samples without sample pretreatment. It combines a simple fabrication methodology and a minimal extraction process for rapid and reliable phenolic content determination in real samples.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202400228"},"PeriodicalIF":2.5,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eleonora Mancin, Eliana Capecchi, Lorenzo Botta, Bruno Mattia Bizzarri
We have explored the reaction of a three-components mixture of aminomalononitrile, urea and α-amino acid methyl esters for the multicomponent synthesis substituted purines resembling PNA's building blocks. 2,6-diamino-purines, 6-amino-3,9-dihydro-2H-purin-2-one (iso-guanines), and 3,9-dihydro-6H-purin-6-one derivatives, selectively decorated at C(8)-position of the purine ring with different amino acid residues, were obtained from acceptable to good yields. The regio-selectivity of the transformation was controlled by the use of urea in the ternary mixture and by the annulation agent involved in the ring-closure of amino-imidazole carbonitrile intermediates. Solvent free conditions, microwave irradiation and simple one-carbon containing reagents further satisfied the major requirement of atom economy and sustainable chemistry. Due to the prebiotic nature of the three-components mixture and of annulation agents, it also embodies the possibility for the synthesis of novel PNAs bearing purine nucleobases decorated at C(8)-position of the imidazole ring as alternative RNA analogues in molecular evolution.
{"title":"Multicomponent Synthesis of C(8)-Substituted Purine Building Blocks of Peptide Nucleic Acids from Prebiotic Compounds.","authors":"Eleonora Mancin, Eliana Capecchi, Lorenzo Botta, Bruno Mattia Bizzarri","doi":"10.1002/open.202400265","DOIUrl":"https://doi.org/10.1002/open.202400265","url":null,"abstract":"<p><p>We have explored the reaction of a three-components mixture of aminomalononitrile, urea and α-amino acid methyl esters for the multicomponent synthesis substituted purines resembling PNA's building blocks. 2,6-diamino-purines, 6-amino-3,9-dihydro-2H-purin-2-one (iso-guanines), and 3,9-dihydro-6H-purin-6-one derivatives, selectively decorated at C(8)-position of the purine ring with different amino acid residues, were obtained from acceptable to good yields. The regio-selectivity of the transformation was controlled by the use of urea in the ternary mixture and by the annulation agent involved in the ring-closure of amino-imidazole carbonitrile intermediates. Solvent free conditions, microwave irradiation and simple one-carbon containing reagents further satisfied the major requirement of atom economy and sustainable chemistry. Due to the prebiotic nature of the three-components mixture and of annulation agents, it also embodies the possibility for the synthesis of novel PNAs bearing purine nucleobases decorated at C(8)-position of the imidazole ring as alternative RNA analogues in molecular evolution.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202400265"},"PeriodicalIF":2.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The BP neural network optimized by the Adam algorithm was used to predict the defect formation energy of Al-P co-doped ZnO systems with different concentrations of P replacing O under the presence of different concentrations of VZn. It was found that the easily formed AlZnPo-1VZn, AlZnPO-2VZn, and AlZn2PO-1VZn systems. The first principles of density function were used to study the geometric, electronic, and optical properties of each system. The simulation results show that the bandgap values of the three systems have decreased relative to the intrinsic ZnO, among which AlZnPO-1VZn and AlZnPO-2VZn is still a p-type conductive system, AlZnPO-2VZn has the highest conductivity. From the analysis of reflectivity, absorption rate, and light transmittance, AlZn2PO-1VZn has the most relatively excellent optical properties, followed by AlznPo-2VZn.
利用亚当算法优化的 BP 神经网络预测了不同浓度 P 取代 O 的 Al-P 共掺杂 ZnO 系统在不同浓度 VZn 存在下的缺陷形成能。结果发现,容易形成 AlZnPo-1VZn、AlZnPO-2VZn 和 AlZn2PO-1VZn 系统。利用密度函数第一性原理研究了各体系的几何、电子和光学特性。模拟结果表明,相对于本征 ZnO,三个体系的带隙值都有所下降,其中 AlZnPO-1VZn 和 AlZnPO-2VZn 仍为 p 型导电体系,AlZnPO-2VZn 的导电率最高。从反射率、吸收率和透光率分析,AlZn2PO-1VZn 的光学性能相对最优异,其次是 AlznPo-2VZn。
{"title":"First Principles Study of Electronic and Optical Properties of Al-P Co-Doped ZnO in the Presence of Zn Vacancies.","authors":"Zhengguang Guo, Yonghong Yao, Jin Liu","doi":"10.1002/open.202400222","DOIUrl":"https://doi.org/10.1002/open.202400222","url":null,"abstract":"<p><p>The BP neural network optimized by the Adam algorithm was used to predict the defect formation energy of Al-P co-doped ZnO systems with different concentrations of P replacing O under the presence of different concentrations of V<sub>Zn</sub>. It was found that the easily formed Al<sub>Zn</sub>Po-1V<sub>Zn</sub>, Al<sub>Zn</sub>P<sub>O</sub>-2V<sub>Zn</sub>, and Al<sub>Zn</sub>2P<sub>O</sub>-1V<sub>Zn</sub> systems. The first principles of density function were used to study the geometric, electronic, and optical properties of each system. The simulation results show that the bandgap values of the three systems have decreased relative to the intrinsic ZnO, among which Al<sub>Zn</sub>P<sub>O</sub>-1V<sub>Zn</sub> and Al<sub>Zn</sub>P<sub>O</sub>-2V<sub>Zn</sub> is still a p-type conductive system, Al<sub>Zn</sub>P<sub>O</sub>-2V<sub>Zn</sub> has the highest conductivity. From the analysis of reflectivity, absorption rate, and light transmittance, Al<sub>Zn</sub>2P<sub>O</sub>-1V<sub>Zn</sub> has the most relatively excellent optical properties, followed by AlznPo-2V<sub>Zn</sub>.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202400222"},"PeriodicalIF":2.5,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Two novel ibuprofen cystamine salts (IBU-CYS 1 and IBU-CYS 2) are synthesized by coupling the anion of ibuprofen with cystamine dihydrochloride in 1 : 1 and 2 : 1 ratio to improve the solubility and bioavailability of ibuprofen. The salts are characterized by 1H NMR, FT-IR and UV-Vis spectroscopy, differential scanning calorimetry (DSC), thermogravimetry (TGA, DTA) and X-ray diffraction measurements. IBU-CYS 1 and IBU-CYS 2 show higher solubility (6.11 and 7.81 mg/mL) compared to ibuprofen (0.04 mg/mL) in water. IBU-CYS2 was encapsulated into 2-hydroxyethyl methacrylate: poly (ethylene glycol) acrylate hydrogels for enhanced delivery. The in vitro studies in PBS (pH 7.4) indicate that the salts are effective in relieving inflammatory responses induced by lipopolysaccharide in RAW264.7 macrophage cells (nitrite inhibition percentages of IBU-CYS 1, IBU-CYS 2 and ibuprofen: approximately 34.29, 27.03 and 31.50 respectively) while indicating no cytotoxicity. Therefore, these salts may be promising candidates for the development of effective formulations of this drug.
{"title":"New Ibuprofen Cystamine Salts With Improved Solubility and Anti-Inflammatory Effect.","authors":"Simay Denizkusu, Ece Sabuncu, Hande Sipahi, Duygu Avci","doi":"10.1002/open.202400206","DOIUrl":"https://doi.org/10.1002/open.202400206","url":null,"abstract":"<p><p>Two novel ibuprofen cystamine salts (IBU-CYS 1 and IBU-CYS 2) are synthesized by coupling the anion of ibuprofen with cystamine dihydrochloride in 1 : 1 and 2 : 1 ratio to improve the solubility and bioavailability of ibuprofen. The salts are characterized by <sup>1</sup>H NMR, FT-IR and UV-Vis spectroscopy, differential scanning calorimetry (DSC), thermogravimetry (TGA, DTA) and X-ray diffraction measurements. IBU-CYS 1 and IBU-CYS 2 show higher solubility (6.11 and 7.81 mg/mL) compared to ibuprofen (0.04 mg/mL) in water. IBU-CYS2 was encapsulated into 2-hydroxyethyl methacrylate: poly (ethylene glycol) acrylate hydrogels for enhanced delivery. The in vitro studies in PBS (pH 7.4) indicate that the salts are effective in relieving inflammatory responses induced by lipopolysaccharide in RAW264.7 macrophage cells (nitrite inhibition percentages of IBU-CYS 1, IBU-CYS 2 and ibuprofen: approximately 34.29, 27.03 and 31.50 respectively) while indicating no cytotoxicity. Therefore, these salts may be promising candidates for the development of effective formulations of this drug.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":" ","pages":"e202400206"},"PeriodicalIF":2.5,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ikuto Yoshiki, Prof. Atsushi Takagaki, Dr. Jun Tae Song, Prof. Motonori Watanabe, Prof. Tatsumi Ishihara
Formic acid is considered a promising hydrogen carrier. Biomass-derived formic acid can be obtained by oxidative decomposition of sugars. This study explored the production of formic acid from cellobiose, a disaccharide consisting of d-glucose linked by β-glycosidic bonds using heterogeneous catalysts under mild reaction conditions. The use of alkaline earth metal oxide solid base catalysts like CaO and MgO in the presence of hydrogen peroxide could afford formic acid from cellobiose at 343 K. While CaO gave 14 % yield of formic acid, the oxide itself was converted to a harmful metal peroxide, CaO2 after the reaction. In contrast, MgO could produce formic acid without the formation of the metal peroxide. The difficulty in selectively synthesizing formic acid from cellobiose using these solid base catalysts was due to the poor conversion of cellobiose to glucose. Using a combination of solid acid and base catalysts, a high formic acid yield of 33 % was obtained under mild reaction conditions due to the quantitative hydrolysis of cellobiose to glucose by a solid acid followed by the selective decomposition of glucose to formic acid by a solid base.
甲酸被认为是一种很有前途的氢载体。生物质甲酸可通过氧化分解糖类获得。本研究探讨了在温和的反应条件下,使用异质催化剂从纤维生物糖(一种由通过 β-糖苷键连接的 d-葡萄糖组成的双糖)中生产甲酸的方法。在过氧化氢存在下,使用碱土金属氧化物固体碱催化剂(如 CaO 和 MgO)可在 343 K 下从纤维生物糖中提取甲酸。虽然 CaO 的甲酸产率为 14%,但氧化物本身在反应后会转化为有害的过氧化金属 CaO2。与此相反,氧化镁可以生成甲酸,而不会形成金属过氧化物。使用这些固体碱催化剂很难从纤维生物糖中选择性地合成甲酸,这是因为纤维生物糖很难转化为葡萄糖。使用固体酸和固体碱催化剂的组合,在温和的反应条件下获得了 33% 的甲酸高产率,这是由于固体酸将纤维生物糖定量水解为葡萄糖,然后固体碱将葡萄糖选择性地分解为甲酸。
{"title":"Conversion of Cellobiose to Formic Acid as a Biomass-Derived Renewable Hydrogen Source Using Solid Base Catalysts","authors":"Ikuto Yoshiki, Prof. Atsushi Takagaki, Dr. Jun Tae Song, Prof. Motonori Watanabe, Prof. Tatsumi Ishihara","doi":"10.1002/open.202400079","DOIUrl":"10.1002/open.202400079","url":null,"abstract":"<p>Formic acid is considered a promising hydrogen carrier. Biomass-derived formic acid can be obtained by oxidative decomposition of sugars. This study explored the production of formic acid from cellobiose, a disaccharide consisting of <span>d</span>-glucose linked by β-glycosidic bonds using heterogeneous catalysts under mild reaction conditions. The use of alkaline earth metal oxide solid base catalysts like CaO and MgO in the presence of hydrogen peroxide could afford formic acid from cellobiose at 343 K. While CaO gave 14 % yield of formic acid, the oxide itself was converted to a harmful metal peroxide, CaO<sub>2</sub> after the reaction. In contrast, MgO could produce formic acid without the formation of the metal peroxide. The difficulty in selectively synthesizing formic acid from cellobiose using these solid base catalysts was due to the poor conversion of cellobiose to glucose. Using a combination of solid acid and base catalysts, a high formic acid yield of 33 % was obtained under mild reaction conditions due to the quantitative hydrolysis of cellobiose to glucose by a solid acid followed by the selective decomposition of glucose to formic acid by a solid base.</p>","PeriodicalId":9831,"journal":{"name":"ChemistryOpen","volume":"13 11","pages":""},"PeriodicalIF":2.5,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/open.202400079","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dr. Yui Sasaki, Kohei Ohshiro, Miyuki Kato, Hikaru Tanaka, Akari Yamagami, Dr. Kazutake Hagiya, Prof. Dr. Tsuyoshi Minami
A chemical sensor device based on an extended-gate-type organic transistor illustrated as a gold watch quantifies the target spermidine in cosmetics at μmol L−1 levels. The accuracy of the organic transistor-based chemical sensor is validated using a stational analytical instrument. Thus, the accurate recovery rates for spermidine in a commercial cosmetic ingredient product reveals the potential of the sensor for cosmetic analysis. More information can be found in the Research Article by Tsuyoshi Minami and co-workers (DOI: 10.1002/open.202400098).