Shaymaa A H Kadhim, Ahmed F Neamaa, Yomna I Mahmoud, Monir A Al-Ganzuri
Background/aims: Drug addiction is a neuropsychiatric disorder characterised by compulsive drug-seeking behaviour notwithstanding adverse consequences. This work seeks to address a deficiency in the literature by comparing drug-addicted and non-addicted individuals within an Iraqi population through the analysis of a 1000-base pair variable number of tandem repeats (VNTRs) polymorphism of the dopamine receptor gene DRD4. The association of this novel polymorphism with drug addiction has not yet been examined.
Methods: A total of 270 people were registered between May 2022 and June 2023. Of these, 180 had drug addictions and 90 were healthy controls. DNA was extracted from the participants' blood samples. Restriction Fragment Length Polymorphism was used to investigate genetic polymorphisms in the DRD4 and VNTR genes to identify differences.
Results: The genotype frequencies differed markedly between the control group (GC, 3% frequency) and the patient group (GC, 37% frequency). The control group had more of the genotype that was more common among addicts. The C allele was present in 60% of the patients but in only 1% of the controls. The results showed that the CC genotype is more common in the patient group than in the control group. A comparison of repetitions between the control and patient groups was made based on the distribution of genotypes of SNP rs747302. Patients with the GG genotype had an average of 17 repetitions, whereas those with the GC genotype had 18, and those with the CC genotype had 18.3. The results showed that people in the CC genotype group had a lot more repetitions.
Conclusion: The results of our study indicated that the CC, GC, and VNTR genotypes significantly contribute to heroin addiction risk in Iraqis.
{"title":"Association Between DRD4 rs747302 and VNTR Polymorphisms and Drug Addiction in An Iraqi Population.","authors":"Shaymaa A H Kadhim, Ahmed F Neamaa, Yomna I Mahmoud, Monir A Al-Ganzuri","doi":"10.33594/000000812","DOIUrl":"10.33594/000000812","url":null,"abstract":"<p><strong>Background/aims: </strong>Drug addiction is a neuropsychiatric disorder characterised by compulsive drug-seeking behaviour notwithstanding adverse consequences. This work seeks to address a deficiency in the literature by comparing drug-addicted and non-addicted individuals within an Iraqi population through the analysis of a 1000-base pair variable number of tandem repeats (VNTRs) polymorphism of the dopamine receptor gene DRD4. The association of this novel polymorphism with drug addiction has not yet been examined.</p><p><strong>Methods: </strong>A total of 270 people were registered between May 2022 and June 2023. Of these, 180 had drug addictions and 90 were healthy controls. DNA was extracted from the participants' blood samples. Restriction Fragment Length Polymorphism was used to investigate genetic polymorphisms in the DRD4 and VNTR genes to identify differences.</p><p><strong>Results: </strong>The genotype frequencies differed markedly between the control group (GC, 3% frequency) and the patient group (GC, 37% frequency). The control group had more of the genotype that was more common among addicts. The C allele was present in 60% of the patients but in only 1% of the controls. The results showed that the CC genotype is more common in the patient group than in the control group. A comparison of repetitions between the control and patient groups was made based on the distribution of genotypes of SNP rs747302. Patients with the GG genotype had an average of 17 repetitions, whereas those with the GC genotype had 18, and those with the CC genotype had 18.3. The results showed that people in the CC genotype group had a lot more repetitions.</p><p><strong>Conclusion: </strong>The results of our study indicated that the CC, GC, and VNTR genotypes significantly contribute to heroin addiction risk in Iraqis.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"59 5","pages":"609-619"},"PeriodicalIF":2.0,"publicationDate":"2025-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145029069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicolas Kelm, Meike Kespohl, Sophia Borowski, Sarah Ochs, Klaus-Peter Knobeloch, Lisa Gerarda Maria Huis In 't Veld, Karin Klingel, Antje Beling
Background/aims: The ubiquitin-like protein ISG15 and its covalent conjugation to substrates (ISGylation) represent a critical interferon (IFN)-induced antiviral mechanism. USP18 is an ISG15-specific isopeptidase and a key negative regulator of type I IFN signaling. While inactivation of USP18's catalytic activity enhances ISGylation and promotes viral resistance, its role in modulating inflammation and cardiac function during CVB3-induced myocarditis remains unclear. This study aimed to determine whether selective inactivation of USP18 isopeptidase activity influences the inflammatory and functional course of viral myocarditis.
Methods: Usp18 C61A/C61A knock-in mice, which lack USP18 isopeptidase activity but retain IFN regulatory function, were used on both C57BL/6 and A/J backgrounds. Mice were infected with the cardiotropic CVB3-Nancy strain, and disease progression was assessed through virological, histological, immunological, and echocardiographic analyses. Immune cell infiltration was quantified by flow cytometry, and ISGylation was assessed by immunoblotting.
Results: Despite enhanced ISGylation, Usp18 C61A/C61A mice did not exhibit altered cardiac viral titers or inflammation compared to wild-type controls. Histological scores and immune cell composition in the heart were similar between genotypes in both C57BL/6 and A/J backgrounds. Echocardiography confirmed functional impairment following CVB3 infection but revealed no significant genotype-dependent differences in cardiac performance. Inflammatory cytokine expression was largely unaffected by enhanced ISGylation, with only minor differences observed.
Conclusion: While ISGylation is critical for antiviral protection in CVB3 infection, selective inactivation of USP18 isopeptidase activity does not mitigate myocardial inflammation or dysfunction during established CVB3 myocarditis. These findings suggest that therapeutic enhancement of ISGylation alone may be insufficient to control inflammation-driven cardiac damage in this model.
{"title":"Enhanced ISGylation via USP18 Isopeptidase Inactivation Fails to Mitigate the Inflammatory or Functional Course of Coxsackievirus B3-Induced Myocarditis.","authors":"Nicolas Kelm, Meike Kespohl, Sophia Borowski, Sarah Ochs, Klaus-Peter Knobeloch, Lisa Gerarda Maria Huis In 't Veld, Karin Klingel, Antje Beling","doi":"10.33594/000000811","DOIUrl":"https://doi.org/10.33594/000000811","url":null,"abstract":"<p><strong>Background/aims: </strong>The ubiquitin-like protein ISG15 and its covalent conjugation to substrates (ISGylation) represent a critical interferon (IFN)-induced antiviral mechanism. USP18 is an ISG15-specific isopeptidase and a key negative regulator of type I IFN signaling. While inactivation of USP18's catalytic activity enhances ISGylation and promotes viral resistance, its role in modulating inflammation and cardiac function during CVB3-induced myocarditis remains unclear. This study aimed to determine whether selective inactivation of USP18 isopeptidase activity influences the inflammatory and functional course of viral myocarditis.</p><p><strong>Methods: </strong>Usp18 C61A/C61A knock-in mice, which lack USP18 isopeptidase activity but retain IFN regulatory function, were used on both C57BL/6 and A/J backgrounds. Mice were infected with the cardiotropic CVB3-Nancy strain, and disease progression was assessed through virological, histological, immunological, and echocardiographic analyses. Immune cell infiltration was quantified by flow cytometry, and ISGylation was assessed by immunoblotting.</p><p><strong>Results: </strong>Despite enhanced ISGylation, Usp18 C61A/C61A mice did not exhibit altered cardiac viral titers or inflammation compared to wild-type controls. Histological scores and immune cell composition in the heart were similar between genotypes in both C57BL/6 and A/J backgrounds. Echocardiography confirmed functional impairment following CVB3 infection but revealed no significant genotype-dependent differences in cardiac performance. Inflammatory cytokine expression was largely unaffected by enhanced ISGylation, with only minor differences observed.</p><p><strong>Conclusion: </strong>While ISGylation is critical for antiviral protection in CVB3 infection, selective inactivation of USP18 isopeptidase activity does not mitigate myocardial inflammation or dysfunction during established CVB3 myocarditis. These findings suggest that therapeutic enhancement of ISGylation alone may be insufficient to control inflammation-driven cardiac damage in this model.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"59 S3","pages":"1-21"},"PeriodicalIF":2.0,"publicationDate":"2025-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145029052","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Migrasomes are newly discovered, migration-dependent organelles that mediate the release of cellular contents into the extracellular environment through a process known as migracytosis. Since their identification in 2014, growing evidence has highlighted their critical roles in intercellular communication, organ development, mitochondrial quality control, and disease pathogenesis. Migrasome biogenesis is a complex, multi-step process tightly regulated by lipid composition, tetraspanin-enriched microdomains, and molecular pathways involving sphingomyelin synthase 2, Rab35, and integrins. Unlike exosomes, migrasomes possess distinct structural and functional characteristics, which position them as novel organelles rather than classic extracellular vesicles. Recent studies have revealed their involvement in diverse pathological contexts, including kidney disease, cancer progression, proliferative vitreoretinopathy, viral infections, and myocardial infarction. Notably, migrasomes hold promise as diagnostic biomarkers, especially in early podocyte injury, and as therapeutic targets in oncology and regenerative medicine. This review summarizes the current understanding of migrasome biology, and their implications in health and disease, and explores emerging perspectives on harnessing migrasomes for diagnostic and therapeutic applications.
{"title":"Migrasomes in Health and Disease: Insights into Mechanisms, Pathogenesis, and Therapeutic Opportunities.","authors":"Lauryn Akeme, Pollyanna Sibanda, Aisling Fitzgerald, Agnieszka Bossowska, Klaudia Bonowicz, Dominika Jerka, Maciej Gagat","doi":"10.33594/000000810","DOIUrl":"https://doi.org/10.33594/000000810","url":null,"abstract":"<p><p>Migrasomes are newly discovered, migration-dependent organelles that mediate the release of cellular contents into the extracellular environment through a process known as migracytosis. Since their identification in 2014, growing evidence has highlighted their critical roles in intercellular communication, organ development, mitochondrial quality control, and disease pathogenesis. Migrasome biogenesis is a complex, multi-step process tightly regulated by lipid composition, tetraspanin-enriched microdomains, and molecular pathways involving sphingomyelin synthase 2, Rab35, and integrins. Unlike exosomes, migrasomes possess distinct structural and functional characteristics, which position them as novel organelles rather than classic extracellular vesicles. Recent studies have revealed their involvement in diverse pathological contexts, including kidney disease, cancer progression, proliferative vitreoretinopathy, viral infections, and myocardial infarction. Notably, migrasomes hold promise as diagnostic biomarkers, especially in early podocyte injury, and as therapeutic targets in oncology and regenerative medicine. This review summarizes the current understanding of migrasome biology, and their implications in health and disease, and explores emerging perspectives on harnessing migrasomes for diagnostic and therapeutic applications.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"59 5","pages":"589-608"},"PeriodicalIF":2.0,"publicationDate":"2025-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145013965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease. MIF's involvement in autoimmune disorders, neurodegeneration, metabolic syndromes, infectious diseases, and oncogenesis is examined, with particular attention to its contribution to immune dysregulation, immune escape, and the shaping of inflammatory microenvironments. Its clinical relevance as a biomarker is underscored by associations between elevated serum levels, polymorphic variants such as the -173 G>C SNP, and disease susceptibility, progression, and therapeutic response. Advances in therapeutic strategies are also discussed, including the development of small-molecule inhibitors, MIF-2-specific antagonists, CD74-targeted therapies, and gene-based interventions. Taken together, emerging evidence positions MIF as both a diagnostic indicator and a therapeutic target, with its broad regulatory functions across immune, vascular, and metabolic pathways emphasizing its relevance in precision immunotherapy and its potential to serve as a strategic axis in the future of translational medicine.
{"title":"Macrophage Migration Inhibitory Factor: Its Multifaceted Role in Inflammation and Immune Regulation Across Organ Systems.","authors":"Aygun Aliyarbayova, Tamilla Sultanova, Samira Yaqubova, Tarana Najafova, Gulnara Sadiqova, Aytan Salimova","doi":"10.33594/000000809","DOIUrl":"https://doi.org/10.33594/000000809","url":null,"abstract":"<p><p>Macrophage Migration Inhibitory Factor (MIF) is a pleiotropic cytokine that acts as a central regulator of inflammation and immune responses across diverse organ systems. Functioning upstream in immune activation cascades, MIF influences macrophage polarization, T and B cell differentiation, and cytokine expression through CD74, CXCR2/4/7, and downstream signaling via NF-κB, ERK1/2, and PI3K/AKT pathways. This review provides a comprehensive analysis of MIF's mechanistic functions under both physiological and pathological conditions, highlighting its dual role as a protective mediator during acute stress and as a pro-inflammatory amplifier in chronic disease. MIF's involvement in autoimmune disorders, neurodegeneration, metabolic syndromes, infectious diseases, and oncogenesis is examined, with particular attention to its contribution to immune dysregulation, immune escape, and the shaping of inflammatory microenvironments. Its clinical relevance as a biomarker is underscored by associations between elevated serum levels, polymorphic variants such as the -173 G>C SNP, and disease susceptibility, progression, and therapeutic response. Advances in therapeutic strategies are also discussed, including the development of small-molecule inhibitors, MIF-2-specific antagonists, CD74-targeted therapies, and gene-based interventions. Taken together, emerging evidence positions MIF as both a diagnostic indicator and a therapeutic target, with its broad regulatory functions across immune, vascular, and metabolic pathways emphasizing its relevance in precision immunotherapy and its potential to serve as a strategic axis in the future of translational medicine.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"59 5","pages":"569-588"},"PeriodicalIF":2.0,"publicationDate":"2025-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145013950","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hong Chen, Sha Liu, Yu Zhang, Ooi Der Jun, Hua Wei
Background/aims: Ubiquitin D (UBD), a member of the ubiquitin-like modifier (UBL) family, is significantly overexpressed in various cancers and is positively correlated with tumor progression. However, the role and underlying mechanisms of UBD in rheumatoid arthritis (RA) remain poorly understood. This study aimed to investigate the effects of UBD knockdown on the progression of RA.
Materials: We employed the type II collagen and incomplete Freund's adjuvant (CIA) rat model. A variety of analytical techniques were employed, including hematoxylin and eosin (H&E) staining, Safranin O and Fast Green staining, tartrate-resistant acid phosphatase (TRAP) staining, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis, to elucidate the mechanisms involved.
Results: UBD knockdown correlated with diminished cartilage and bone erosion, reduced counts of TRAP-positive osteoclasts, and enhanced Safranin O staining of the cartilage. Additionally, the knockdown significantly reduced serum levels of PGE2, TNF-α, TIMP-1, IL-1β, MMP-9, and IL-6 in CIA rats. Furthermore, UBD knockdown markedly suppressed the expression levels of phosphorylated p38, TLR4, MyD88, and phosphorylated p65, suggesting a critical role in modulating inflammatory signaling pathways in RA.
Conclusion: Collectively, these results suggested that knockdown of UBD significantly alleviated arthritis progression in the CIA rat model, highlighting UBD as a potential therapeutic target and a promising prognostic biomarker for RA.
{"title":"Knockdown of UBD Ameliorates Experimental Rheumatoid Arthritis by Suppressing TLR4/Myd88/NF-κB and P38/MAPK Pathway.","authors":"Hong Chen, Sha Liu, Yu Zhang, Ooi Der Jun, Hua Wei","doi":"10.33594/000000808","DOIUrl":"https://doi.org/10.33594/000000808","url":null,"abstract":"<p><strong>Background/aims: </strong>Ubiquitin D (UBD), a member of the ubiquitin-like modifier (UBL) family, is significantly overexpressed in various cancers and is positively correlated with tumor progression. However, the role and underlying mechanisms of UBD in rheumatoid arthritis (RA) remain poorly understood. This study aimed to investigate the effects of UBD knockdown on the progression of RA.</p><p><strong>Materials: </strong>We employed the type II collagen and incomplete Freund's adjuvant (CIA) rat model. A variety of analytical techniques were employed, including hematoxylin and eosin (H&E) staining, Safranin O and Fast Green staining, tartrate-resistant acid phosphatase (TRAP) staining, enzyme-linked immunosorbent assay (ELISA), and Western blot analysis, to elucidate the mechanisms involved.</p><p><strong>Results: </strong>UBD knockdown correlated with diminished cartilage and bone erosion, reduced counts of TRAP-positive osteoclasts, and enhanced Safranin O staining of the cartilage. Additionally, the knockdown significantly reduced serum levels of PGE2, TNF-α, TIMP-1, IL-1β, MMP-9, and IL-6 in CIA rats. Furthermore, UBD knockdown markedly suppressed the expression levels of phosphorylated p38, TLR4, MyD88, and phosphorylated p65, suggesting a critical role in modulating inflammatory signaling pathways in RA.</p><p><strong>Conclusion: </strong>Collectively, these results suggested that knockdown of UBD significantly alleviated arthritis progression in the CIA rat model, highlighting UBD as a potential therapeutic target and a promising prognostic biomarker for RA.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"59 5","pages":"557-568"},"PeriodicalIF":2.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145013952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christian M Villavicencio Yanos, María Janina Cedeño Vivas, Grether Lucía Real Pérez, José Patricio Muñoz Murillo, Shirley Bethzabe Guamán, Ginger Jamileth Santana Moreira, Sara María Cantos, Vinicio Francisco Bolaños de la Torre, Rosa Mariuxi Litardo Velásquez, Felipe Jadán Piedra
Background/aims: The quantification of amino acids in the dairy industry is necessary for quality control and for the formulation of functional foods. Thus, the development of enzymatic biosensors requires a detailed study of enzyme kinetics. Parameters such as KM and Vmax are necessary to optimize the sensitivity and specificity of the biosensor.
Methods: The enzyme immobilized on nylon and yucca bipolymer membranes was studied to evaluate possible interferences in the amperometric sensor.
Results: The sensor developed based on enzyme kinetics proved to be a reliable, sensitive, and low-cost alternative for determining lysine in dairy products. Its performance, comparable to HPLC, together with its low environmental impact, positions it as a useful tool for quality control in the food industry.
Conclusion: An enzymatic biosensor capable of quickly, accurately, and economically quantifying lysine in casein hydrolysates was developed. Its high sensitivity, enzymatic stability, and low environmental impact make it a viable and comparable alternative to HPLC for quality control in dairy products.
{"title":"Co-Immobilization of Trypsin and Lysine -α- Oxidase For the Quantification of Lysine in Casein Hydrolysate. Evaluation with a Biosensor.","authors":"Christian M Villavicencio Yanos, María Janina Cedeño Vivas, Grether Lucía Real Pérez, José Patricio Muñoz Murillo, Shirley Bethzabe Guamán, Ginger Jamileth Santana Moreira, Sara María Cantos, Vinicio Francisco Bolaños de la Torre, Rosa Mariuxi Litardo Velásquez, Felipe Jadán Piedra","doi":"10.33594/000000803","DOIUrl":"https://doi.org/10.33594/000000803","url":null,"abstract":"<p><strong>Background/aims: </strong>The quantification of amino acids in the dairy industry is necessary for quality control and for the formulation of functional foods. Thus, the development of enzymatic biosensors requires a detailed study of enzyme kinetics. Parameters such as KM and Vmax are necessary to optimize the sensitivity and specificity of the biosensor.</p><p><strong>Methods: </strong>The enzyme immobilized on nylon and yucca bipolymer membranes was studied to evaluate possible interferences in the amperometric sensor.</p><p><strong>Results: </strong>The sensor developed based on enzyme kinetics proved to be a reliable, sensitive, and low-cost alternative for determining lysine in dairy products. Its performance, comparable to HPLC, together with its low environmental impact, positions it as a useful tool for quality control in the food industry.</p><p><strong>Conclusion: </strong>An enzymatic biosensor capable of quickly, accurately, and economically quantifying lysine in casein hydrolysates was developed. Its high sensitivity, enzymatic stability, and low environmental impact make it a viable and comparable alternative to HPLC for quality control in dairy products.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"59 4","pages":"540-551"},"PeriodicalIF":2.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145013982","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Natalia Kurhaluk, Piotr Kamiński, Halina Tkaczenko
It is imperative to comprehend the multifactorial causes of male infertility and to identify effective treatment methods, to enhance male reproductive health, and to develop more personalised and effective therapeutic interventions. This review discusses the multifactorial aspects contributing to male infertility, focusing on oxidative stress (OS), sperm quality, gut microbiota, and the potential role of adaptogens. A comprehensive literature search was conducted across several major databases, including the Cochrane Library, Medline, Embase, SciSearch, PubMed, Web of Science, Scopus, and Google Scholar. The findings from the studies included in the databases highlight the significant role of oxidative stress in male infertility, with reactive oxygen species (ROS) contributing to sperm DNA fragmentation and impairment of spermatogenesis. The review further elucidates the influence of both endogenous and exogenous sources of ROS, including lifestyle factors and environmental exposures, on male reproductive health. Emerging research also highlights the involvement of key molecular pathways, such as Nrf2, AMPK/PGC-1α, and NF-κB, in regulating OS within the male reproductive system. Additionally, the review outlines the relationship between endothelial dysfunction, cardiovascular health, and male infertility, identifying OS as a common underlying factor. In addition to the OS, the gut microbiota has been identified as a pivotal factor in male fertility, influencing inflammation and hormonal regulation. This review underscores the potential merits of a synergistic strategy that integrates dietary interventions, antioxidants, gut microbiota modulation, and adaptogens to enhance fertility outcomes. Adaptogens, recognised for their capacity to assist the body in coping with stress and re-establishing equilibrium, may confer protective effects against OS and improve reproductive health. The review under discussion emphasises the importance of a holistic approach to male infertility, integrating molecular, clinical, and lifestyle factors to optimise reproductive health.
必须了解男性不育的多因素原因,确定有效的治疗方法,加强男性生殖健康,制定更加个性化和有效的治疗干预措施。本文综述了导致男性不育的多因素因素,重点讨论了氧化应激(OS)、精子质量、肠道微生物群以及适应原的潜在作用。在几个主要数据库中进行了全面的文献检索,包括Cochrane Library、Medline、Embase、SciSearch、PubMed、Web of Science、Scopus和谷歌Scholar。数据库中包含的研究结果强调了氧化应激在男性不育中的重要作用,活性氧(ROS)导致精子DNA断裂和精子发生障碍。该综述进一步阐明了ROS的内源性和外源性来源,包括生活方式因素和环境暴露,对男性生殖健康的影响。新兴研究还强调了Nrf2、AMPK/ pgp -1α和NF-κB等关键分子通路在调节男性生殖系统OS中的作用。此外,该综述概述了内皮功能障碍、心血管健康和男性不育之间的关系,并确定OS是一个共同的潜在因素。除了OS外,肠道微生物群已被确定为男性生育能力的关键因素,影响炎症和激素调节。这篇综述强调了将饮食干预、抗氧化剂、肠道菌群调节和适应原整合在一起的协同策略的潜在优点,以提高生育结果。适应原因其协助身体应对压力和重建平衡的能力而得到认可,可能具有防止OS和改善生殖健康的保护作用。讨论中的审查强调了对男性不育症采取整体方法的重要性,将分子、临床和生活方式因素结合起来,以优化生殖健康。
{"title":"Oxidative Stress, Antioxidants, Gut Microbiota and Male Fertility.","authors":"Natalia Kurhaluk, Piotr Kamiński, Halina Tkaczenko","doi":"10.33594/000000802","DOIUrl":"https://doi.org/10.33594/000000802","url":null,"abstract":"<p><p>It is imperative to comprehend the multifactorial causes of male infertility and to identify effective treatment methods, to enhance male reproductive health, and to develop more personalised and effective therapeutic interventions. This review discusses the multifactorial aspects contributing to male infertility, focusing on oxidative stress (OS), sperm quality, gut microbiota, and the potential role of adaptogens. A comprehensive literature search was conducted across several major databases, including the Cochrane Library, Medline, Embase, SciSearch, PubMed, Web of Science, Scopus, and Google Scholar. The findings from the studies included in the databases highlight the significant role of oxidative stress in male infertility, with reactive oxygen species (ROS) contributing to sperm DNA fragmentation and impairment of spermatogenesis. The review further elucidates the influence of both endogenous and exogenous sources of ROS, including lifestyle factors and environmental exposures, on male reproductive health. Emerging research also highlights the involvement of key molecular pathways, such as Nrf2, AMPK/PGC-1α, and NF-κB, in regulating OS within the male reproductive system. Additionally, the review outlines the relationship between endothelial dysfunction, cardiovascular health, and male infertility, identifying OS as a common underlying factor. In addition to the OS, the gut microbiota has been identified as a pivotal factor in male fertility, influencing inflammation and hormonal regulation. This review underscores the potential merits of a synergistic strategy that integrates dietary interventions, antioxidants, gut microbiota modulation, and adaptogens to enhance fertility outcomes. Adaptogens, recognised for their capacity to assist the body in coping with stress and re-establishing equilibrium, may confer protective effects against OS and improve reproductive health. The review under discussion emphasises the importance of a holistic approach to male infertility, integrating molecular, clinical, and lifestyle factors to optimise reproductive health.</p>","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"59 S2","pages":"82-123"},"PeriodicalIF":2.0,"publicationDate":"2025-08-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144944953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jędrzej Baszyński, Piotr Kamiński, Marek Szymański, Karolina Wasilow, Emilia Stanek, Sylwia Brodzka, Renata Grochowalska, Tomasz Stuczyński, Rafał Bilski, Martin Hromada, Natalia Kurhaluk, Halina Tkaczenko
Background/aims: Male infertility is conditioned in up to 25% genetically, but environmental factors are equally important. Dependencies analyzed here in this area have not been studied using such an approach so far. Therefore, they are innovative and constitute an important aspect of multi-range interdependencies. That is why we analyzed factors shaping male reproductive condition: glutathione, bilirubin, uric acid, chemical elements (Ca, Na, Mn, Fe, Mo, Li, V, Co, Ag, Ba, Tl, Al, Ni, Sn, B, Pb, Be), and genetic polymorphism (genotypes CC and TT of IL-4v.C589T(rs2243250). We studied infertile men from polluted Poland region with semen perturbations and healthy with normozoospermia.
Methods: We described semen abnormalities according to standard criteria. The population of patients with infertility consisted of 76 men with different fertility disorders. The control group consisted of 87 men with normozoospermia. The majority of infertile men came from Central Poland. The collection of biological samples and seminological tests were conducted by qualified medicians from the andrology clinic and by the authors of this paper (semen morphological parameters). Seminological analyses were based on macro- and microscopic analysis of ejaculate to verify semen volume, time of liquefaction, sperm density, motility, presence of agglutination, presence of leukocytes, and percentage of pathological forms. Concentrations of chemical elements in the blood were analyzed (ICP-MS). In serum, non-enzymatic antioxidants (glutathione GSH, bilirubin, uric acid) and lipid peroxidation intensity were qualified (Cayman Chemicals Co.). In researching gene polymorphisms connected with male infertility, molecular analysis was conducted (PCR-RFLP) and applied to chromosome 5: gene IL-4v.C589T.
Results: We found poorer antioxidative defense in infertile men, whilst the higher levels of uric acid, compared to healthy, may act as a deteriorating factor. High correlations between glutathione and uric acid in the infertile and healthy implicated that non-enzymatic antioxidants undergo mutual regulation. It also applies to patients with IL-4v.C589T polymorphism. Interactions between non-enzymatic antioxidants and chemical elements were particularly noticeable in men with CC genotype. The most important modulator appeared to be sodium, while boron was the most meaningful in the interactions. Higher concentration of bilirubin, uric acid, and GSH in men with TT (0.687 mg·dL-1, 6.097 mg·dL-1, 6.345 µM), compared to CC genotype (0.652 mg·dL-1, 4.980 mg·dL-1, 4.630 µM) suggest a better functionality of antioxidative barrier. Estimating the importance of unfavorable changes arising from oxidative stress about the functionality of non-enzymatic antioxidants and correlations with MDA in men's serum allows a complete look at the determinants of male infertility. Among genetic polymorphisms, genotypes TT and CC of IL-4v.C589T
{"title":"Non-Enzymatic Antioxidant Defense and Polymorphic Changes in Male Infertility.","authors":"Jędrzej Baszyński, Piotr Kamiński, Marek Szymański, Karolina Wasilow, Emilia Stanek, Sylwia Brodzka, Renata Grochowalska, Tomasz Stuczyński, Rafał Bilski, Martin Hromada, Natalia Kurhaluk, Halina Tkaczenko","doi":"10.33594/000000801","DOIUrl":"https://doi.org/10.33594/000000801","url":null,"abstract":"<p><strong>Background/aims: </strong>Male infertility is conditioned in up to 25% genetically, but environmental factors are equally important. Dependencies analyzed here in this area have not been studied using such an approach so far. Therefore, they are innovative and constitute an important aspect of multi-range interdependencies. That is why we analyzed factors shaping male reproductive condition: glutathione, bilirubin, uric acid, chemical elements (Ca, Na, Mn, Fe, Mo, Li, V, Co, Ag, Ba, Tl, Al, Ni, Sn, B, Pb, Be), and genetic polymorphism (genotypes CC and TT of IL-4v.C589T(rs2243250). We studied infertile men from polluted Poland region with semen perturbations and healthy with normozoospermia.</p><p><strong>Methods: </strong>We described semen abnormalities according to standard criteria. The population of patients with infertility consisted of 76 men with different fertility disorders. The control group consisted of 87 men with normozoospermia. The majority of infertile men came from Central Poland. The collection of biological samples and seminological tests were conducted by qualified medicians from the andrology clinic and by the authors of this paper (semen morphological parameters). Seminological analyses were based on macro- and microscopic analysis of ejaculate to verify semen volume, time of liquefaction, sperm density, motility, presence of agglutination, presence of leukocytes, and percentage of pathological forms. Concentrations of chemical elements in the blood were analyzed (ICP-MS). In serum, non-enzymatic antioxidants (glutathione GSH, bilirubin, uric acid) and lipid peroxidation intensity were qualified (Cayman Chemicals Co.). In researching gene polymorphisms connected with male infertility, molecular analysis was conducted (PCR-RFLP) and applied to chromosome 5: gene IL-4v.C589T.</p><p><strong>Results: </strong>We found poorer antioxidative defense in infertile men, whilst the higher levels of uric acid, compared to healthy, may act as a deteriorating factor. High correlations between glutathione and uric acid in the infertile and healthy implicated that non-enzymatic antioxidants undergo mutual regulation. It also applies to patients with IL-4v.C589T polymorphism. Interactions between non-enzymatic antioxidants and chemical elements were particularly noticeable in men with CC genotype. The most important modulator appeared to be sodium, while boron was the most meaningful in the interactions. Higher concentration of bilirubin, uric acid, and GSH in men with TT (0.687 mg·dL-1, 6.097 mg·dL-1, 6.345 µM), compared to CC genotype (0.652 mg·dL-1, 4.980 mg·dL-1, 4.630 µM) suggest a better functionality of antioxidative barrier. Estimating the importance of unfavorable changes arising from oxidative stress about the functionality of non-enzymatic antioxidants and correlations with MDA in men's serum allows a complete look at the determinants of male infertility. Among genetic polymorphisms, genotypes TT and CC of IL-4v.C589T ","PeriodicalId":9845,"journal":{"name":"Cellular Physiology and Biochemistry","volume":"59 S2","pages":"53-81"},"PeriodicalIF":2.0,"publicationDate":"2025-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144944917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}