Maximilian Dobberkau, Dr.-Ing. Ronny Werner, Prof. Dr.-Ing. Frank Atzler
Green methanol is a renewable fuel with great advantages when used in a spark ignition combustion process. Methanol has a comparatively high enthalpy of vaporization, leading to lower combustion temperatures as compared to gasoline combustion, and, hence, lower wall heat losses as well as a reduced tendency to pre-ignition. Therefore, a brake efficiency of more than 40 % (this is comparable to diesel engines!) and furthermore minimal emissions, even at cold start, are possible. The serial combination with an electric powertrain provides a disconnection of the load demand of the powertrain and the operating point of the combustion engine. In this case, a high volumetric and gravimetric power density, easy energy storage and proven infrastructure of fuel distribution are combined with electric driving, high efficiencies, minimal emissions, and a closed carbon cycle for the energy provision.
{"title":"Methanol, the ICE Green Maker","authors":"Maximilian Dobberkau, Dr.-Ing. Ronny Werner, Prof. Dr.-Ing. Frank Atzler","doi":"10.1002/cite.202400021","DOIUrl":"10.1002/cite.202400021","url":null,"abstract":"<p>Green methanol is a renewable fuel with great advantages when used in a spark ignition combustion process. Methanol has a comparatively high enthalpy of vaporization, leading to lower combustion temperatures as compared to gasoline combustion, and, hence, lower wall heat losses as well as a reduced tendency to pre-ignition. Therefore, a brake efficiency of more than 40 % (this is comparable to diesel engines!) and furthermore minimal emissions, even at cold start, are possible. The serial combination with an electric powertrain provides a disconnection of the load demand of the powertrain and the operating point of the combustion engine. In this case, a high volumetric and gravimetric power density, easy energy storage and proven infrastructure of fuel distribution are combined with electric driving, high efficiencies, minimal emissions, and a closed carbon cycle for the energy provision.</p>","PeriodicalId":9912,"journal":{"name":"Chemie Ingenieur Technik","volume":"96 9","pages":"1196-1202"},"PeriodicalIF":1.5,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cite.202400021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141882187","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dr. Fabrizio Franza, Dr. Florian Dignath, Dr. Stefan Schlüter, Dr. Christian Geitner, Johannes Michael Voß, Tim Schulzke, Dr. Qinghua Zheng
The system integration of cross-industrial networks in the Carbon2Chem® project relies on numerical simulations. Hence, this study validates the methanol synthesis loop models vs. the measurements from a demonstration plant, focusing on the thermodynamic, kinetic, and dynamic aspects. The plant can produce up to 500 L per week of methanol from real blast furnace gases of the thyssenkrupp steel plant in Duisburg. Despite its small size, it comprises a recycle gas loop and an original reactor tube of 6 m in length. After validation, the simulation models are used to analyze the dynamic operation limits of the plant, and they are transferred to the model of an industrial size to analyze the operation of cross-industrial networks with volatile boundary conditions.
{"title":"Experimental Validation of Stationary and Transient Models of a Methanol Demonstration Plant","authors":"Dr. Fabrizio Franza, Dr. Florian Dignath, Dr. Stefan Schlüter, Dr. Christian Geitner, Johannes Michael Voß, Tim Schulzke, Dr. Qinghua Zheng","doi":"10.1002/cite.202400014","DOIUrl":"10.1002/cite.202400014","url":null,"abstract":"<p>The system integration of cross-industrial networks in the Carbon2Chem<sup>®</sup> project relies on numerical simulations. Hence, this study validates the methanol synthesis loop models vs. the measurements from a demonstration plant, focusing on the thermodynamic, kinetic, and dynamic aspects. The plant can produce up to 500 L per week of methanol from real blast furnace gases of the thyssenkrupp steel plant in Duisburg. Despite its small size, it comprises a recycle gas loop and an original reactor tube of 6 m in length. After validation, the simulation models are used to analyze the dynamic operation limits of the plant, and they are transferred to the model of an industrial size to analyze the operation of cross-industrial networks with volatile boundary conditions.</p>","PeriodicalId":9912,"journal":{"name":"Chemie Ingenieur Technik","volume":"96 9","pages":"1268-1280"},"PeriodicalIF":1.5,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cite.202400014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dr. Sung Youn Suh, Marco Giannico, Dr. Clara Maria Watermann, Dr.-Ing. Barbara Zeidler-Fandrich
Catalytic oxygen removal applying a commercial CoMo-based catalyst has attracted scientific attention owing to its catalytic stability towards poisoning components and cost-effectiveness. The catalytic performance of the CoMo catalyst was investigated using statistical optimization techniques. The H2S concentrations in the sulfidation and reaction mixture are the key factors regulating the optimal values of deoxygenation reaction. The sulfidation process is a key step to generate the active species. The catalyst remains active in the presence of sulfur compounds in the reaction mixture, which is poisoning for other catalyst systems. An increase in the H2S content enhances the catalytic activity via in-situ sulfidation within the meaning of regeneration during the reaction. Concentrations above 450 ppm H2S in the reaction mixture result in a nearly complete oxygen conversion and ensure the catalytic stability. At the same time, an increase in the H2S content favors a high sulfidation degree resulting in the formation of active sites.
由于对中毒成分的催化稳定性和成本效益,使用商用 CoMo 催化剂进行催化脱氧引起了科学界的关注。本文采用统计优化技术研究了 CoMo 催化剂的催化性能。硫化和反应混合物中的 H2S 浓度是调节脱氧反应最佳值的关键因素。硫化过程是生成活性物种的关键步骤。在反应混合物中存在硫化合物的情况下,催化剂仍能保持活性,而这对其他催化剂系统来说是一种毒害。H2S 含量的增加可在反应过程中通过原位硫化再生提高催化活性。反应混合物中的 H2S 浓度超过 450 ppm 时,氧转化几乎完全完成,并能确保催化剂的稳定性。同时,H2S 含量的增加有利于形成高硫化程度的活性位点。
{"title":"Optimization of the Process Parameters of Catalytic Oxygen Removal over CoMo/γ-Al2O3 Using Design-of-Experiment Approaches","authors":"Dr. Sung Youn Suh, Marco Giannico, Dr. Clara Maria Watermann, Dr.-Ing. Barbara Zeidler-Fandrich","doi":"10.1002/cite.202400025","DOIUrl":"10.1002/cite.202400025","url":null,"abstract":"<p>Catalytic oxygen removal applying a commercial CoMo-based catalyst has attracted scientific attention owing to its catalytic stability towards poisoning components and cost-effectiveness. The catalytic performance of the CoMo catalyst was investigated using statistical optimization techniques. The H<sub>2</sub>S concentrations in the sulfidation and reaction mixture are the key factors regulating the optimal values of deoxygenation reaction. The sulfidation process is a key step to generate the active species. The catalyst remains active in the presence of sulfur compounds in the reaction mixture, which is poisoning for other catalyst systems. An increase in the H<sub>2</sub>S content enhances the catalytic activity via in-situ sulfidation within the meaning of regeneration during the reaction. Concentrations above 450 ppm H<sub>2</sub>S in the reaction mixture result in a nearly complete oxygen conversion and ensure the catalytic stability. At the same time, an increase in the H<sub>2</sub>S content favors a high sulfidation degree resulting in the formation of active sites.</p>","PeriodicalId":9912,"journal":{"name":"Chemie Ingenieur Technik","volume":"96 9","pages":"1230-1236"},"PeriodicalIF":1.5,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cite.202400025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141866511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dr.-Ing. Kai Girod, Dr.-Ing. Thomas Wiesmann, Dr. Sung Youn Suh, Dr.-Ing. Barbara Zeidler-Fandrich
A new catalyst test setup on miniplant-scale was planned and built. The setup enables the use of real process gases in the environment of a steel mill or related application and the utilization of synthetic gases with a wide range of gas compositions including trace compounds to investigate the operational limits of gas cleaning catalysts. First investigations focus on oxygen removal from real coke oven gas (COG). The concept not only addresses effects of scale and heat management but also emphasizes the use of real process gases for application-oriented catalyst development in industrial settings.
{"title":"New Test Setup for On-Site Testing of Gas Cleaning Catalysts","authors":"Dr.-Ing. Kai Girod, Dr.-Ing. Thomas Wiesmann, Dr. Sung Youn Suh, Dr.-Ing. Barbara Zeidler-Fandrich","doi":"10.1002/cite.202400015","DOIUrl":"10.1002/cite.202400015","url":null,"abstract":"<p>A new catalyst test setup on miniplant-scale was planned and built. The setup enables the use of real process gases in the environment of a steel mill or related application and the utilization of synthetic gases with a wide range of gas compositions including trace compounds to investigate the operational limits of gas cleaning catalysts. First investigations focus on oxygen removal from real coke oven gas (COG). The concept not only addresses effects of scale and heat management but also emphasizes the use of real process gases for application-oriented catalyst development in industrial settings.</p>","PeriodicalId":9912,"journal":{"name":"Chemie Ingenieur Technik","volume":"96 9","pages":"1224-1229"},"PeriodicalIF":1.5,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cite.202400015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141779074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Im Jahr 2023 begannen insgesamt 8248 Anfänger einen Chemiestudiengang: 1,4 % mehr als im Vorjahr (2022: 8137). Das zeigt die jährliche Statistik für Chemiestudiengänge der GDCh. Die Anzahl der Studierenden, die einen Chemiestudiengang mit einem Master oder dem Ersten Staatsexamen abgeschlossen haben, beläuft sich auf 3483 (2022: 3761). Die Zahl der Promotionen steig nach einem Einbruch im Vorjahr (2022: 1883) im letzten Jahr wieder auf 2040. Der Einstieg ins Berufsleben gelang stellensuchenden Absolventinnen und Absolventen mit abgeschlossener Promotion ähnlich gut wie im Vorjahr.
97 % aller Bachelorabsolventinnen und -absolventen an Universitäten und 75 % an HAW schlossen ein Masterstudium an. Rund 83 % der Master-Absolventen an Universitäten begannen eine Promotion. Dieser Wert ist weiterhin geringer als im langjährigen Mittel (90 %) und scheint sich nun auf ein niedrigeres Niveau eingependelt zu haben.
Der Wert der „echten“ Stellensuchenden dürfte wie in jedem Jahr etwas geringer sein. Aufgrund des Stichtags der Erhebung am 31.12. werden Absolventinnen und Absolventen, die im Januar oder Februar ihre neue Stelle antreten, noch als stellensuchend erfasst.
Die Broschüre „Statistik der Chemiestudiengänge 2023“ steht unter www.gdch.de/statistik als Blätterkatalog zur Verfügung.
{"title":"Statistik der Chemiestudiengänge 2023: Zahl der Studienanfängerinnen und -anfänger leicht gestiegen","authors":"","doi":"10.1002/cite.202470803","DOIUrl":"10.1002/cite.202470803","url":null,"abstract":"<p>Im Jahr 2023 begannen insgesamt 8248 Anfänger einen Chemiestudiengang: 1,4 % mehr als im Vorjahr (2022: 8137). Das zeigt die jährliche Statistik für Chemiestudiengänge der GDCh. Die Anzahl der Studierenden, die einen Chemiestudiengang mit einem Master oder dem Ersten Staatsexamen abgeschlossen haben, beläuft sich auf 3483 (2022: 3761). Die Zahl der Promotionen steig nach einem Einbruch im Vorjahr (2022: 1883) im letzten Jahr wieder auf 2040. Der Einstieg ins Berufsleben gelang stellensuchenden Absolventinnen und Absolventen mit abgeschlossener Promotion ähnlich gut wie im Vorjahr.</p><p>97 % aller Bachelorabsolventinnen und -absolventen an Universitäten und 75 % an HAW schlossen ein Masterstudium an. Rund 83 % der Master-Absolventen an Universitäten begannen eine Promotion. Dieser Wert ist weiterhin geringer als im langjährigen Mittel (90 %) und scheint sich nun auf ein niedrigeres Niveau eingependelt zu haben.</p><p>Der Wert der „echten“ Stellensuchenden dürfte wie in jedem Jahr etwas geringer sein. Aufgrund des Stichtags der Erhebung am 31.12. werden Absolventinnen und Absolventen, die im Januar oder Februar ihre neue Stelle antreten, noch als stellensuchend erfasst.</p><p>Die Broschüre „Statistik der Chemiestudiengänge 2023“ steht unter www.gdch.de/statistik als Blätterkatalog zur Verfügung.</p>","PeriodicalId":9912,"journal":{"name":"Chemie Ingenieur Technik","volume":"96 8","pages":"1007-1008"},"PeriodicalIF":1.5,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cite.202470803","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141779076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M.Sc. Hendrik Margraf, Univ.-Prof. Dr.-Ing. habil. Andrea Luke
The heat transfer limit of heat pipes is investigated by pool boiling experiments in a standard apparatus with a capillary layer placed on a copper tube. The capillary layer is a hollow cylinder made of bronze with a wall thickness of 2 mm and the test fluids are methanol and n-pentane. The setting is comparable to high-flux tubes already investigated in the literature. In dependence on the heat flux, three to four sections with different characteristics are identified. Compared to plain copper tubes, the heat transfer is partially increased by a factor of 12 until the limit is reached at around 70 kW m−2.
{"title":"Experimental Investigation of Evaporation of Methanol and n-Pentane on a Submerged Capillary Structure","authors":"M.Sc. Hendrik Margraf, Univ.-Prof. Dr.-Ing. habil. Andrea Luke","doi":"10.1002/cite.202300205","DOIUrl":"10.1002/cite.202300205","url":null,"abstract":"<p>The heat transfer limit of heat pipes is investigated by pool boiling experiments in a standard apparatus with a capillary layer placed on a copper tube. The capillary layer is a hollow cylinder made of bronze with a wall thickness of 2 mm and the test fluids are methanol and <i>n</i>-pentane. The setting is comparable to high-flux tubes already investigated in the literature. In dependence on the heat flux, three to four sections with different characteristics are identified. Compared to plain copper tubes, the heat transfer is partially increased by a factor of 12 until the limit is reached at around 70 kW m<sup>−2</sup>.</p>","PeriodicalId":9912,"journal":{"name":"Chemie Ingenieur Technik","volume":"96 10","pages":"1346-1352"},"PeriodicalIF":1.5,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cite.202300205","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785729","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
<p>Liebe Leserinnen und Leser, um diese Frage zu beantworten, muss man sich meines Erachtens vorher klar werden, ob es sich bei den einzelnen Themen um eine Aufgabenstellung oder eine Problemstellung handelt. Per definitionem ist bei einer Aufgabenstellung der Lösungsweg bekannt. Eine Problemstellung hingegen ist eine unerwünschte Abweichung einer Ist- von einer Soll-Situation. Der Lösungsweg zur Reduzierung der Abweichung ist dabei (noch) nicht bekannt.</p><p>Fangen wir mit der Umwelt an: Egal, ob die Umweltbelastung durch Wasser- oder Luftverschmutzung oder durch Oberflächenversiegelung entsteht – sie zu reduzieren ist eine <i>Aufgabe</i>, die die Menschheit meistern kann – wenn sie will. Auch die Schonung begrenzter Ressourcen, wie z. B. der fossilen Energieträger, ist nach oben getroffener Definition eine Aufgabenstellung, weil wir wissen, was wir dafür tun müssen.</p><p>Der Klimawandel ist jedoch ein Problem. Das Klima ist ein hochkomplexes System mit Rückkopplungen und Einflüssen, von denen einige heute noch ungenügend bekannt sind. So ist z. B. das Wissen über die Wechselwirkung von Wolken, Aerosolen und Sonneneinstrahlung auf die Atmosphäre noch lückenhaft. Der kürzlich gestartete Erdbeobachtungssatellit „Earthcare“ soll dazu neue Daten liefern.</p><p>Nach heutiger Lehrmeinung ist hauptsächlich die steigende Konzentration an Treibhausgasen – vorwiegend CO<sub>2</sub> – in der Atmosphäre der Haupttreiber für den Klimawandel. Um dem Problem Klimawandel Herr zu werden, wurden deshalb CO<sub>2</sub>-Ziele vereinbart.</p><p>Doch treten wir einmal zur Seite und betrachten die Dinge von außen: Wie stark sich ein einzelner Einflussparameter auf ein komplexes, rückgekoppeltes System auswirkt, kann nur in Vergleichsversuchen ermittelt werden. Um also zu wissen, wie sich z. B. eine Veränderung der CO<sub>2</sub>-Konzentration zukünftig auf den Klimawandel auswirken wird, bräuchten wir eine Vergleichserde, auf der alles völlig identisch ist wie auf der Unsrigen und müssten dann das Geschehen im Zeitraffer beobachten können, wenn man auf der Vergleichserde lediglich die CO<sub>2</sub>-Konzentration verändert.</p><p>Diese Vergleichserde gibt es leider nicht. So sind wir allein auf die Klimamodelle angewiesen. Die Klimamodelle können aber nur die bekannten Effekte berücksichtigen. Nehmen wir z. B. die Ergrünung der Sahelzone aufgrund des Klimawandels. Dieser Vorgang kann mit entsprechend hoher Rechnerleistung gut simuliert werden. Diese Simulationen konnten aber erst dann angestellt werden, nachdem man dieses Phänomen beobachtet hatte.</p><p>All das sollten wir uns vor Augen halten, wenn wir unsere Zukunft positiv gestalten wollen. Ohne Zweifel müssen wir von der Verbrennung fossiler Energieträger wegkommen, schon allein deshalb, weil sie begrenzt sind. Egal ob man die Energiewende als Lösung für die Ressourcenbegrenztheit oder für das Klimaproblem sieht – in beiden Fällen kommt man zu den gleichen Anforderungen an neue Technologien.</p><p>Meiner Meinun
{"title":"Sollte die Energiewende ein Umwelt-, ein Ressourcen- oder ein Klimathema sein?","authors":"Dr. Otto Machhammer","doi":"10.1002/cite.202400073","DOIUrl":"10.1002/cite.202400073","url":null,"abstract":"<p>Liebe Leserinnen und Leser,\u0000um diese Frage zu beantworten, muss man sich meines Erachtens vorher klar werden, ob es sich bei den einzelnen Themen um eine Aufgabenstellung oder eine Problemstellung handelt. Per definitionem ist bei einer Aufgabenstellung der Lösungsweg bekannt. Eine Problemstellung hingegen ist eine unerwünschte Abweichung einer Ist- von einer Soll-Situation. Der Lösungsweg zur Reduzierung der Abweichung ist dabei (noch) nicht bekannt.</p><p>Fangen wir mit der Umwelt an: Egal, ob die Umweltbelastung durch Wasser- oder Luftverschmutzung oder durch Oberflächenversiegelung entsteht – sie zu reduzieren ist eine <i>Aufgabe</i>, die die Menschheit meistern kann – wenn sie will. Auch die Schonung begrenzter Ressourcen, wie z. B. der fossilen Energieträger, ist nach oben getroffener Definition eine Aufgabenstellung, weil wir wissen, was wir dafür tun müssen.</p><p>Der Klimawandel ist jedoch ein Problem. Das Klima ist ein hochkomplexes System mit Rückkopplungen und Einflüssen, von denen einige heute noch ungenügend bekannt sind. So ist z. B. das Wissen über die Wechselwirkung von Wolken, Aerosolen und Sonneneinstrahlung auf die Atmosphäre noch lückenhaft. Der kürzlich gestartete Erdbeobachtungssatellit „Earthcare“ soll dazu neue Daten liefern.</p><p>Nach heutiger Lehrmeinung ist hauptsächlich die steigende Konzentration an Treibhausgasen – vorwiegend CO<sub>2</sub> – in der Atmosphäre der Haupttreiber für den Klimawandel. Um dem Problem Klimawandel Herr zu werden, wurden deshalb CO<sub>2</sub>-Ziele vereinbart.</p><p>Doch treten wir einmal zur Seite und betrachten die Dinge von außen: Wie stark sich ein einzelner Einflussparameter auf ein komplexes, rückgekoppeltes System auswirkt, kann nur in Vergleichsversuchen ermittelt werden. Um also zu wissen, wie sich z. B. eine Veränderung der CO<sub>2</sub>-Konzentration zukünftig auf den Klimawandel auswirken wird, bräuchten wir eine Vergleichserde, auf der alles völlig identisch ist wie auf der Unsrigen und müssten dann das Geschehen im Zeitraffer beobachten können, wenn man auf der Vergleichserde lediglich die CO<sub>2</sub>-Konzentration verändert.</p><p>Diese Vergleichserde gibt es leider nicht. So sind wir allein auf die Klimamodelle angewiesen. Die Klimamodelle können aber nur die bekannten Effekte berücksichtigen. Nehmen wir z. B. die Ergrünung der Sahelzone aufgrund des Klimawandels. Dieser Vorgang kann mit entsprechend hoher Rechnerleistung gut simuliert werden. Diese Simulationen konnten aber erst dann angestellt werden, nachdem man dieses Phänomen beobachtet hatte.</p><p>All das sollten wir uns vor Augen halten, wenn wir unsere Zukunft positiv gestalten wollen. Ohne Zweifel müssen wir von der Verbrennung fossiler Energieträger wegkommen, schon allein deshalb, weil sie begrenzt sind. Egal ob man die Energiewende als Lösung für die Ressourcenbegrenztheit oder für das Klimaproblem sieht – in beiden Fällen kommt man zu den gleichen Anforderungen an neue Technologien.</p><p>Meiner Meinun","PeriodicalId":9912,"journal":{"name":"Chemie Ingenieur Technik","volume":"96 8","pages":"1003"},"PeriodicalIF":1.5,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cite.202400073","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785728","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dr. Maurice Schlichtenmayer, Monika Rockenschaub, Torsten Wagler, Dan Schneiders, Ralf Presse
Underground salt caverns allow large hydrogen storage capacities at low specific costs. Such storage is required to balance fluctuating hydrogen supply and constant demand of large consumers as a methanol plant from the Carbon2Chem® project. The geological and technical feasibility for developing up to 168 Mio. m3 (n.c.) or 595 GWh of working gas capacity until 2040 at a location in the Lower Rhine Bay is described. Various options for realization as well as a novel process for cavern leaching parallel to hydrogen storage operation are evaluated. Further work is required including geological exploration and optimization of brine production. The main hurdles for investment decisions are the political uncertainties on the hydrogen storage market design and on the ramp-up of the hydrogen market.
{"title":"Integration of a Hydrogen Storage Cavern into the Carbon2Chem® Project","authors":"Dr. Maurice Schlichtenmayer, Monika Rockenschaub, Torsten Wagler, Dan Schneiders, Ralf Presse","doi":"10.1002/cite.202400038","DOIUrl":"10.1002/cite.202400038","url":null,"abstract":"<p>Underground salt caverns allow large hydrogen storage capacities at low specific costs. Such storage is required to balance fluctuating hydrogen supply and constant demand of large consumers as a methanol plant from the Carbon2Chem<sup>®</sup> project. The geological and technical feasibility for developing up to 168 Mio. m<sup>3</sup> (n.c.) or 595 GWh of working gas capacity until 2040 at a location in the Lower Rhine Bay is described. Various options for realization as well as a novel process for cavern leaching parallel to hydrogen storage operation are evaluated. Further work is required including geological exploration and optimization of brine production. The main hurdles for investment decisions are the political uncertainties on the hydrogen storage market design and on the ramp-up of the hydrogen market.</p>","PeriodicalId":9912,"journal":{"name":"Chemie Ingenieur Technik","volume":"96 9","pages":"1310-1319"},"PeriodicalIF":1.5,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cite.202400038","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141779075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}