Pub Date : 2024-04-10DOI: 10.1016/j.asems.2024.100100
Huang Dai , Huilin Hu , Zhiyong Gong , Jing Shu , Jiahua Wang , Xiaodan Liu , Fuwei Pi , Qiao Wang , Shuo Duan , Yingli Wang
Salt plays a crucial role in food processing and consumption, and the rapid detection of chloride ions in food and feed has great significance for practical applications. In this work, Ag−based nanomaterials were deposited on the surface of a flexible integrated electrochemical sensor for the detection of Cl− in food. In order to enhance the detection performance, a unique needle−tip structure was formed by manipulating the electro−engraving process during the electrodeposition growth. Theoretical calculations and electrochemical investigations have demonstrated that the dendrimer’s rich tip structure significantly enhanced its electrochemical performance. A sensitive and flexible integrated electrochemical sensor was creatively developed for the detection of Cl− using needle−tip effect−promoted Ag micro dendrimers. The sensor achieved quantitative detection of Cl− over a dynamic range of 10.0 μM–100.0 mM, with a low limit of detection of 0.148 μM. The flexible electrochemical sensor proposed in this work exhibited good repeatability, selectivity and recoveries in real food samples.
盐在食品加工和消费中起着至关重要的作用,快速检测食品和饲料中的氯离子具有重要的实际应用意义。本研究在柔性集成电化学传感器表面沉积了银基纳米材料,用于检测食品中的氯离子。为了提高检测性能,在电沉积生长过程中通过操纵电雕刻工艺形成了独特的针尖结构。理论计算和电化学研究表明,树枝状聚合物丰富的针尖结构大大提高了其电化学性能。利用针尖效应促进的银微树枝状聚合物,创造性地开发了一种灵敏、灵活的集成电化学传感器,用于检测 Cl-。该传感器在 10.0 μM-100.0 mM 的动态范围内实现了对 Cl- 的定量检测,检出限低至 0.148 μM。本研究提出的柔性电化学传感器在实际食品样品中表现出良好的重复性、选择性和回收率。
{"title":"Needle−tip effect promoted flexible electrochemical sensor for detecting chloride ions in food by in−situ deposited silver dendrimers","authors":"Huang Dai , Huilin Hu , Zhiyong Gong , Jing Shu , Jiahua Wang , Xiaodan Liu , Fuwei Pi , Qiao Wang , Shuo Duan , Yingli Wang","doi":"10.1016/j.asems.2024.100100","DOIUrl":"10.1016/j.asems.2024.100100","url":null,"abstract":"<div><p>Salt plays a crucial role in food processing and consumption, and the rapid detection of chloride ions in food and feed has great significance for practical applications. In this work, Ag−based nanomaterials were deposited on the surface of a flexible integrated electrochemical sensor for the detection of Cl<sup>−</sup> in food. In order to enhance the detection performance, a unique needle−tip structure was formed by manipulating the electro−engraving process during the electrodeposition growth. Theoretical calculations and electrochemical investigations have demonstrated that the dendrimer’s rich tip structure significantly enhanced its electrochemical performance. A sensitive and flexible integrated electrochemical sensor was creatively developed for the detection of Cl<sup>−</sup> using needle−tip effect−promoted Ag micro dendrimers. The sensor achieved quantitative detection of Cl<sup>−</sup> over a dynamic range of 10.0 μM–100.0 mM, with a low limit of detection of 0.148 μM. The flexible electrochemical sensor proposed in this work exhibited good repeatability, selectivity and recoveries in real food samples.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"3 4","pages":"Article 100100"},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X24000116/pdfft?md5=7f1732a8a93054fff68eb3a6c33e9d2c&pid=1-s2.0-S2773045X24000116-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141997598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-21DOI: 10.1016/j.asems.2024.100099
{"title":"Editorial for special issue: Electrochemical sensing and imaging","authors":"","doi":"10.1016/j.asems.2024.100099","DOIUrl":"10.1016/j.asems.2024.100099","url":null,"abstract":"","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"3 3","pages":"Article 100099"},"PeriodicalIF":0.0,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X24000104/pdfft?md5=6295c498bc908c19532df6942037e748&pid=1-s2.0-S2773045X24000104-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140268220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-05DOI: 10.1016/j.asems.2024.100098
Jinjun He , Xiang Ji , Zihui Xu , Wei He , Yan Zhao , Lele Sun , Lan Ma
DNA nanostructures have emerged as promising carriers for drug delivery. However, challenges such as low stability, poor cellular uptake efficiency, and vulnerability to lysosomal degradation still hinder their therapeutic potential. In this study, we demonstrate the coating of tetrahedral DNA frameworks (TDF) with the endosomolytic peptide L17E through electrostatic interactions to address these issues. Our findings highlight that L17E coating substantially enhances the stability of TDFs and improves their uptake efficiency into RAW264.7 cells through endocytosis and macropinocytosis. Moreover, L17E coating enables efficient endosomal release of TDFs. Finally, we employed L17E-coated TDF to deliver osteogenic growth peptide and demonstrated its potential applications in inhibiting periodontitis both in vitro and in vivo. This straightforward and cost-effective strategy holds promise for advancing the biomedical applications of DNA nanostructures.
DNA 纳米结构已成为前景广阔的药物输送载体。然而,稳定性低、细胞吸收效率差以及易被溶酶体降解等挑战仍然阻碍着它们的治疗潜力。在本研究中,我们展示了通过静电相互作用将内溶酶体肽 L17E 包覆在四面体 DNA 框架(TDF)上,以解决这些问题。我们的研究结果表明,L17E包被大大增强了四面体DNA框架的稳定性,并提高了它们通过内吞和大吞噬作用被RAW264.7细胞摄取的效率。此外,L17E包衣还能使TDFs在内质体中高效释放。最后,我们利用涂有 L17E 的 TDF 来递送成骨生长肽,并证明了它在体外和体内抑制牙周炎方面的潜在应用。这种简单易行、成本效益高的策略有望推动 DNA 纳米结构的生物医学应用。
{"title":"Coating tetrahedral DNA framework with endosomolytic peptides for improved stability and cytosolic delivery","authors":"Jinjun He , Xiang Ji , Zihui Xu , Wei He , Yan Zhao , Lele Sun , Lan Ma","doi":"10.1016/j.asems.2024.100098","DOIUrl":"10.1016/j.asems.2024.100098","url":null,"abstract":"<div><p>DNA nanostructures have emerged as promising carriers for drug delivery. However, challenges such as low stability, poor cellular uptake efficiency, and vulnerability to lysosomal degradation still hinder their therapeutic potential. In this study, we demonstrate the coating of tetrahedral DNA frameworks (TDF) with the endosomolytic peptide L17E through electrostatic interactions to address these issues. Our findings highlight that L17E coating substantially enhances the stability of TDFs and improves their uptake efficiency into RAW264.7 cells through endocytosis and macropinocytosis. Moreover, L17E coating enables efficient endosomal release of TDFs. Finally, we employed L17E-coated TDF to deliver osteogenic growth peptide and demonstrated its potential applications in inhibiting periodontitis both in vitro and in vivo. This straightforward and cost-effective strategy holds promise for advancing the biomedical applications of DNA nanostructures.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"3 2","pages":"Article 100098"},"PeriodicalIF":0.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X24000098/pdfft?md5=663ff88ef1140bb1f77c4c3c37915cd5&pid=1-s2.0-S2773045X24000098-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140091702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-24DOI: 10.1016/j.asems.2024.100093
Kening Lang , Tianyi Liu , Daniel J. Padilla , Marriana Nelson , Christopher W. Landorf , Rishi J. Patel , Mark L. Ballentine , Alan J. Kennedy , Wu-Sheng Shih , Adam Scotch , Jiadeng Zhu
The advancement of gas sensor technology over the past decades has led to remarkable progress and achievements in pollution control and environmental protection. Compared with other sensing materials, electrospun nanofibers have attracted significant attention, which is mainly due to their unique characteristics, including but not limited to high surface area, easy structure design, facile facility setup, multifunctional properties, etc., making them outstanding candidates for potential applications in this field. This review provides an overview of the applications of electrospun nanofibers in gas sensors, concentrating on carbon monoxide, hydrogen, carbon dioxide, hydrogen sulfide, ammonia, nitrogen oxides, oxygen, and volatile organic compounds. It begins with a brief introduction to sensing materials and the advantages of electrospun nanofibers along with their ongoing research. The principles and progress of electrospinning are then discussed. Afterward, the corresponding properties of electrospun nanofibers in diverse gas sensors are thoroughly reviewed. Finally, a future vision regarding challenges and perspectives in this area is proposed. This review provides an extensive and comprehensive reference to utilize advanced electrospun nanofibers to generate novel sensors, facilitating their performance in high-demand areas.
{"title":"Nanofibers enabled advanced gas sensors: A review","authors":"Kening Lang , Tianyi Liu , Daniel J. Padilla , Marriana Nelson , Christopher W. Landorf , Rishi J. Patel , Mark L. Ballentine , Alan J. Kennedy , Wu-Sheng Shih , Adam Scotch , Jiadeng Zhu","doi":"10.1016/j.asems.2024.100093","DOIUrl":"https://doi.org/10.1016/j.asems.2024.100093","url":null,"abstract":"<div><p>The advancement of gas sensor technology over the past decades has led to remarkable progress and achievements in pollution control and environmental protection. Compared with other sensing materials, electrospun nanofibers have attracted significant attention, which is mainly due to their unique characteristics, including but not limited to high surface area, easy structure design, facile facility setup, multifunctional properties, etc., making them outstanding candidates for potential applications in this field. This review provides an overview of the applications of electrospun nanofibers in gas sensors, concentrating on carbon monoxide, hydrogen, carbon dioxide, hydrogen sulfide, ammonia, nitrogen oxides, oxygen, and volatile organic compounds. It begins with a brief introduction to sensing materials and the advantages of electrospun nanofibers along with their ongoing research. The principles and progress of electrospinning are then discussed. Afterward, the corresponding properties of electrospun nanofibers in diverse gas sensors are thoroughly reviewed. Finally, a future vision regarding challenges and perspectives in this area is proposed. This review provides an extensive and comprehensive reference to utilize advanced electrospun nanofibers to generate novel sensors, facilitating their performance in high-demand areas.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"3 2","pages":"Article 100093"},"PeriodicalIF":0.0,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X24000049/pdfft?md5=9bc3dc0e18a0f9bbcdd72792c2abab1d&pid=1-s2.0-S2773045X24000049-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140052420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-02-02DOI: 10.1016/j.asems.2024.100091
The development of technologically advanced fiber-based flexible microelectrodes has been of extensive research interest in healthcare systems because of their unique construction and synergistic effect on multifunctional properties. In this work, we constructed functional MXene fiber (MXF) by a simple and versatile wet spinning method, and then, a well-aligned ZIF-67 nanoarray was grown in situ on the surface. Using the chemical vapor deposition (CVD) method, carbon nanotubes (CNTs) were produced on MXF via the pyrolysis of ZIF-67 and melamine. Finally, Pt nanoparticles were electrodeposited on the CNTs forest, and a Pt@CNTs/MXF electrode was obtained. Owing to the plethora of surface active sites and the synergistic effects between MXene, CNTs, and Pt nanoparticles, the as-fabricated fiber electrode enabled the precise detection of ammonia under alkaline conditions via differential pulse voltammetry (DPV), which exhibited a linear range of 0.1 μM–10 mM and a detection limit of 73.2 nM. Due to their good performance in ammonia detection, Pt@CNTs/MXF electrodes could be adopted to determine the ammonia concentration in urine for clinical estimation, which provides a practical approach for the diagnosis of urinary ammonia-associated diseases.
{"title":"Functionalized MXene fiber electrode for the electrochemical sensing of urinary ammonia","authors":"","doi":"10.1016/j.asems.2024.100091","DOIUrl":"10.1016/j.asems.2024.100091","url":null,"abstract":"<div><p>The development of technologically advanced fiber-based flexible microelectrodes has been of extensive research interest in healthcare systems because of their unique construction and synergistic effect on multifunctional properties. In this work, we constructed functional MXene fiber (MXF) by a simple and versatile wet spinning method, and then, a well-aligned ZIF-67 nanoarray was grown in situ on the surface. Using the chemical vapor deposition (CVD) method, carbon nanotubes (CNTs) were produced on MXF via the pyrolysis of ZIF-67 and melamine. Finally, Pt nanoparticles were electrodeposited on the CNTs forest, and a Pt@CNTs/MXF electrode was obtained. Owing to the plethora of surface active sites and the synergistic effects between MXene, CNTs, and Pt nanoparticles, the as-fabricated fiber electrode enabled the precise detection of ammonia under alkaline conditions via differential pulse voltammetry (DPV), which exhibited a linear range of 0.1 μM–10 mM and a detection limit of 73.2 nM. Due to their good performance in ammonia detection, Pt@CNTs/MXF electrodes could be adopted to determine the ammonia concentration in urine for clinical estimation, which provides a practical approach for the diagnosis of urinary ammonia-associated diseases.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"3 4","pages":"Article 100091"},"PeriodicalIF":0.0,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X24000025/pdfft?md5=178ff2e2268690d230f9d5db61430805&pid=1-s2.0-S2773045X24000025-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139685771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-18DOI: 10.1016/j.asems.2024.100090
Sitong Li, Rui Lan, Qing Liu, Yang Tian, Tingting Zheng
Procalcitonin (PCT) is a promising biomarker for identification of the origin and severity of sepsis, which is a deadly body infection. However, traditional diagnostic tools exhibited challenges in complicated instruments, sensitivity and time consuming. Herein, we created a highly sensitive and selective surface-enhanced Raman scattering (SERS) platform for PCT monitoring based on flower-like Bi2WO6-graphene (Bi2WO6-GO), which was created as a chemical mechanism (CM)-based SERS substrate with high stability as well as a remarkable enhancement factor (EF) value of 2.07 × 108. The high EF value was primarily attributed to the efficient charge transfer (CT) between Bi2WO6-GO and 4-(2-(3-(dicyanomethylene)-5,5-dimethylcyclohex-1-en) vinyl) phenyl) boronic acid (BP) as a Raman reporter. The BP molecule was designed to play double key roles as a Raman reporter as well as a recognition probe. Owing to the specially designed BP molecule recognition of PCT and the high SERS effects of BP on Bi2WO6-GO, the developed SERS platform was employed for ultrasensitive and selective PCT quantification with a limit of detection down to 0.31 pg/mL in less than 8 min. The developed platform was also successfully utilized for early monitoring in sepsis rats, demonstrating practical potential for pathogene screening.
{"title":"A novel SERS platform based on flower-like Bi2WO6-GO for the quantification of sepsis-associated biomarker procalcitonin","authors":"Sitong Li, Rui Lan, Qing Liu, Yang Tian, Tingting Zheng","doi":"10.1016/j.asems.2024.100090","DOIUrl":"10.1016/j.asems.2024.100090","url":null,"abstract":"<div><p>Procalcitonin (PCT) is a promising biomarker for identification of the origin and severity of sepsis, which is a deadly body infection. However, traditional diagnostic tools exhibited challenges in complicated instruments, sensitivity and time consuming. Herein, we created a highly sensitive and selective surface-enhanced Raman scattering (SERS) platform for PCT monitoring based on flower-like Bi<sub>2</sub>WO<sub>6</sub>-graphene (Bi<sub>2</sub>WO<sub>6</sub>-GO), which was created as a chemical mechanism (CM)-based SERS substrate with high stability as well as a remarkable enhancement factor (EF) value of 2.07 × 10<sup>8</sup>. The high EF value was primarily attributed to the efficient charge transfer (CT) between Bi<sub>2</sub>WO<sub>6</sub>-GO and 4-(2-(3-(dicyanomethylene)-5,5-dimethylcyclohex-1-en) vinyl) phenyl) boronic acid (BP) as a Raman reporter. The BP molecule was designed to play double key roles as a Raman reporter as well as a recognition probe. Owing to the specially designed BP molecule recognition of PCT and the high SERS effects of BP on Bi<sub>2</sub>WO<sub>6</sub>-GO, the developed SERS platform was employed for ultrasensitive and selective PCT quantification with a limit of detection down to 0.31 pg/mL in less than 8 min. The developed platform was also successfully utilized for early monitoring in sepsis rats, demonstrating practical potential for pathogene screening.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"3 1","pages":"Article 100090"},"PeriodicalIF":0.0,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X24000013/pdfft?md5=9821d19110fd739703521a132945b197&pid=1-s2.0-S2773045X24000013-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139540061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-30DOI: 10.1016/j.asems.2023.100089
Yuru Liao , Shengchen Wang , Yifan Zhang , Yue Zhang , Yun Gao , Xueqin Mu , Suli Liu , Dingsheng Wang , Zhihui Dai
Hydrogen energy is an important energy carrier, which is an ideal choice to meet energy demand and reduce harmful gas emissions. The green recycling of hydrogen energy depends on water electrolysis and hydrogen fuel cells, which involves hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER). The activity of HER/HOR in alkaline electrolyte, however, exhibits a significantly lower magnitude (2–3 orders) compared to that observed in an acidic medium, which hinders the development of alkaline water electrolysis and alkaline membrane fuel cells. Therefore, comprehending the characteristics of HOR/HER activity in alkaline electrolytes and elucidating its underlying mechanism is a prerequisite for the design of advanced electrocatalysts. Based on this background, this review will briefly summarize the explanations and controversies about the basic HOR mechanism, including bifunctional mechanism and hydrogen binding energy theory. Moreover, the crucial affecting factors of the HOR kinetics, such as d-band center theory, interfacial water recombination, alkali metal cations and electronic effects, are discussed. Thus, based on the above theories, the design principle, catalytic performance, and latest progress of HOR electrocatalysts are summarized. An outlook and future research perspectives of advanced catalysts for hydrogen energy recycling are addressed. This review is helpful to understand the latest development of HOR mechanism and design cost-effective and high-performance HOR electrocatalysts towards the production of clean renewable energies.
氢能是一种重要的能源载体,是满足能源需求和减少有害气体排放的理想选择。氢能的绿色循环利用依赖于水电解和氢燃料电池,其中涉及氢氧化反应(HOR)和氢进化反应(HER)。然而,与在酸性介质中观察到的氢氧化反应/氢进化反应相比,碱性电解质中的氢氧化反应/氢进化反应的活性明显较低(2-3 个数量级),这阻碍了碱性水电解和碱性膜燃料电池的发展。因此,了解碱性电解质中 HOR/HER 活性的特点并阐明其潜在机制是设计先进电催化剂的先决条件。基于这一背景,本综述将简要总结有关 HOR 基本机理的解释和争议,包括双功能机理和氢结合能理论。此外,还讨论了影响 HOR 动力学的关键因素,如 d 带中心理论、界面水重组、碱金属阳离子和电子效应。因此,基于上述理论,总结了 HOR 电催化剂的设计原理、催化性能和最新进展。并对先进的氢能回收催化剂进行了展望和未来的研究前景。本综述有助于了解 HOR 机理的最新发展,并设计出经济高效的高性能 HOR 电催化剂,从而生产出清洁的可再生能源。
{"title":"Advances in the study of HOR reaction mechanisms under alkaline conditions","authors":"Yuru Liao , Shengchen Wang , Yifan Zhang , Yue Zhang , Yun Gao , Xueqin Mu , Suli Liu , Dingsheng Wang , Zhihui Dai","doi":"10.1016/j.asems.2023.100089","DOIUrl":"10.1016/j.asems.2023.100089","url":null,"abstract":"<div><p>Hydrogen energy is an important energy carrier, which is an ideal choice to meet energy demand and reduce harmful gas emissions. The green recycling of hydrogen energy depends on water electrolysis and hydrogen fuel cells, which involves hydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER). The activity of HER/HOR in alkaline electrolyte, however, exhibits a significantly lower magnitude (2–3 orders) compared to that observed in an acidic medium, which hinders the development of alkaline water electrolysis and alkaline membrane fuel cells. Therefore, comprehending the characteristics of HOR/HER activity in alkaline electrolytes and elucidating its underlying mechanism is a prerequisite for the design of advanced electrocatalysts. Based on this background, this review will briefly summarize the explanations and controversies about the basic HOR mechanism, including bifunctional mechanism and hydrogen binding energy theory. Moreover, the crucial affecting factors of the HOR kinetics, such as d-band center theory, interfacial water recombination, alkali metal cations and electronic effects, are discussed. Thus, based on the above theories, the design principle, catalytic performance, and latest progress of HOR electrocatalysts are summarized. An outlook and future research perspectives of advanced catalysts for hydrogen energy recycling are addressed. This review is helpful to understand the latest development of HOR mechanism and design cost-effective and high-performance HOR electrocatalysts towards the production of clean renewable energies.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"3 1","pages":"Article 100089"},"PeriodicalIF":0.0,"publicationDate":"2023-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X23000444/pdfft?md5=2a8aaab8cbf76325653e215593e5f375&pid=1-s2.0-S2773045X23000444-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139190802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-12-19DOI: 10.1016/j.asems.2023.100088
Hyunjin Cho , Ji-Yeon Kim , Dong Su Shin , Joo Song Lee , Jaeho Shim , In-Ho Lee , Won Kook Choi , Namhee Kwon , Soohyung Park , Mehmet Suha Yazici , Young Jae Park , Ju Hee You , Seok-Ho Seo , Donghee Park , Dong Ick Son
A solar-driven photoelectrochemical (PEC) cell is emerging as one of the promising clean hydrogen generation systems. Engineering of semiconductor heterojunctions and surface morphologies of photoelectrodes in a PEC cell has been a primitive approach to boost its performance. This study presents that a molybdenum disulfide (MoS2) nanoflakes photoanode on 3-dimensional (3D) porous carbon spun fabric (CSF) as a substrate effectively enhances hydrogen generations due to sufficiently enlarged surface area. MoS2 is grown on CSFs utilizing a hydrothermal method. Among three different MoS2 coating morphologies depending on the amount of MoS2 precursor and hydrothermal growth time, film shape MoS2 on CSFs had the largest surface area, exhibiting the highest photocurrent density of 26.48 mA/cm2 and the highest applied bias photon-to-current efficiency (ABPE) efficiency of 5.32% at 0.43 VRHE. Furthermore, with a two-step growth method of sputtering and a subsequent hydrothermal coating, continuous TiO2/MoS2 heterojunctions on a porous CSF further promoted the photoelectrochemical performances due to their optimized bandgap alignments. Enlarged surface area, enhanced charge transfer, and utilization of visible light enable a highly efficient MoS2/TiO2/CSF photoanode with a photocurrent density of 33.81 mA/cm2 and an ABPE of 6.97 % at 0.87 VRHE. The hydrogen generation amount of the PEC cell with MoS2/TiO2/CSF photoanode is 225.4 μmol/L after light irradiation of 60 s.
{"title":"High-performance photoelectrochemical cells with MoS2 nanoflakes/TiO2 photoanode on 3D porous carbon spun fabric","authors":"Hyunjin Cho , Ji-Yeon Kim , Dong Su Shin , Joo Song Lee , Jaeho Shim , In-Ho Lee , Won Kook Choi , Namhee Kwon , Soohyung Park , Mehmet Suha Yazici , Young Jae Park , Ju Hee You , Seok-Ho Seo , Donghee Park , Dong Ick Son","doi":"10.1016/j.asems.2023.100088","DOIUrl":"10.1016/j.asems.2023.100088","url":null,"abstract":"<div><p>A solar-driven photoelectrochemical (PEC) cell is emerging as one of the promising clean hydrogen generation systems. Engineering of semiconductor heterojunctions and surface morphologies of photoelectrodes in a PEC cell has been a primitive approach to boost its performance. This study presents that a molybdenum disulfide (MoS<sub>2</sub>) nanoflakes photoanode on 3-dimensional (3D) porous carbon spun fabric (CSF) as a substrate effectively enhances hydrogen generations due to sufficiently enlarged surface area. MoS<sub>2</sub> is grown on CSFs utilizing a hydrothermal method. Among three different MoS<sub>2</sub> coating morphologies depending on the amount of MoS<sub>2</sub> precursor and hydrothermal growth time, film shape MoS<sub>2</sub> on CSFs had the largest surface area, exhibiting the highest photocurrent density of 26.48 mA/cm<sup>2</sup> and the highest applied bias photon-to-current efficiency (ABPE) efficiency of 5.32% at 0.43 V<sub>RHE</sub>. Furthermore, with a two-step growth method of sputtering and a subsequent hydrothermal coating, continuous TiO<sub>2</sub>/MoS<sub>2</sub> heterojunctions on a porous CSF further promoted the photoelectrochemical performances due to their optimized bandgap alignments. Enlarged surface area, enhanced charge transfer, and utilization of visible light enable a highly efficient MoS<sub>2</sub>/TiO<sub>2</sub>/CSF photoanode with a photocurrent density of 33.81 mA/cm<sup>2</sup> and an ABPE of 6.97 % at 0.87 V<sub>RHE</sub>. The hydrogen generation amount of the PEC cell with MoS<sub>2</sub>/TiO<sub>2</sub>/CSF photoanode is 225.4 μmol/L after light irradiation of 60 s.</p></div>","PeriodicalId":100036,"journal":{"name":"Advanced Sensor and Energy Materials","volume":"3 1","pages":"Article 100088"},"PeriodicalIF":0.0,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773045X23000432/pdfft?md5=dfbe458e53befd47151cb66275a0ba39&pid=1-s2.0-S2773045X23000432-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139013993","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}