首页 > 最新文献

Advanced Sensor Research最新文献

英文 中文
Point-of-Care Urinary Tract Infection (UTI) Diagnosis Enhanced by Nanostructured Biosensors: Review Paper 利用纳米结构生物传感器加强护理点尿路感染 (UTI) 诊断:综述论文
Pub Date : 2024-07-17 DOI: 10.1002/adsr.202400051
Songlin Yang, Fernanda Gabrigna Berto, John Denstedt, Howyn Tang, Jin Zhang

Urinary tract infections (UTIs) are the most common nosocomial infection in North America leading to over $12 billion in annual health care costs. UTIs can significantly reduce the quality of life and, in severe cases, result in sepsis and mortality. According to Public Health Ontario, over 80% of long-term care home (LTCH) residents with asymptomatic bacteriuria are treated with antibiotics, however, less than 50% of the antibiotic treatments for UTIs show clinical benefit. Current confirmatory processes for UTIs are primarily dependent on the completion of urine cultures which can result in a delay of more than 24 h. Therefore, there is a need to develop new efficient diagnostic methods to provide timely test results and prevent multidrug resistance. Emerging nanomaterials with special physical and chemical properties have demonstrated great potential in rapid detection of UTI-associated bacteria. This review paper provides a thorough analysis of current diagnostic tools for UTIs. Emerging nanostructured biosensors are reviewed to elucidate the most recent progress in the detection of uropathogens. It is believed that advanced biosensors integrated with nanotechnology will contribute to the timely diagnosis of UTIs and improve the accuracy of the results, which will lead to better treatment of this prevalent clinical condition.

尿路感染(UTI)是北美最常见的院内感染,每年造成的医疗费用超过 120 亿美元。尿路感染会大大降低生活质量,严重时还会导致败血症和死亡。根据安大略省公共卫生部门的数据,80% 以上患有无症状菌尿的长期护理院(LTCH)住院患者都接受过抗生素治疗,但只有不到 50% 的尿毒症抗生素治疗显示出临床疗效。因此,有必要开发新的高效诊断方法,以提供及时的检测结果并防止多药耐药性。具有特殊物理和化学特性的新兴纳米材料在快速检测UTI相关细菌方面展现出了巨大的潜力。这篇综述论文对当前的 UTI 诊断工具进行了深入分析。本文综述了新兴的纳米结构生物传感器,以阐明尿路病原体检测方面的最新进展。相信融合了纳米技术的先进生物传感器将有助于及时诊断 UTIs 并提高结果的准确性,从而更好地治疗这种临床流行病。
{"title":"Point-of-Care Urinary Tract Infection (UTI) Diagnosis Enhanced by Nanostructured Biosensors: Review Paper","authors":"Songlin Yang,&nbsp;Fernanda Gabrigna Berto,&nbsp;John Denstedt,&nbsp;Howyn Tang,&nbsp;Jin Zhang","doi":"10.1002/adsr.202400051","DOIUrl":"10.1002/adsr.202400051","url":null,"abstract":"<p>Urinary tract infections (UTIs) are the most common nosocomial infection in North America leading to over $12 billion in annual health care costs. UTIs can significantly reduce the quality of life and, in severe cases, result in sepsis and mortality. According to Public Health Ontario, over 80% of long-term care home (LTCH) residents with asymptomatic bacteriuria are treated with antibiotics, however, less than 50% of the antibiotic treatments for UTIs show clinical benefit. Current confirmatory processes for UTIs are primarily dependent on the completion of urine cultures which can result in a delay of more than 24 h. Therefore, there is a need to develop new efficient diagnostic methods to provide timely test results and prevent multidrug resistance. Emerging nanomaterials with special physical and chemical properties have demonstrated great potential in rapid detection of UTI-associated bacteria. This review paper provides a thorough analysis of current diagnostic tools for UTIs. Emerging nanostructured biosensors are reviewed to elucidate the most recent progress in the detection of uropathogens. It is believed that advanced biosensors integrated with nanotechnology will contribute to the timely diagnosis of UTIs and improve the accuracy of the results, which will lead to better treatment of this prevalent clinical condition.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400051","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141828808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lignin Hydrogels as a Use Case for a New Miniaturized Chemical Sensing Platform Based on Suspended Gate Field Effect Transistors 木质素水凝胶作为基于悬浮栅极场效应晶体管的新型微型化学传感平台的应用案例
Pub Date : 2024-07-12 DOI: 10.1002/adsr.202400040
Marieke Stapf, Vladislav Komenko, Johanna Phuong Nong, Jörg Adam, Franz Selbmann, Andrey Kravchenko, Martina Bremer, Steffen Fischer, Klaus Knobloch, Yvonne Joseph

Gas sensors based on micro-electromechanical systems (MEMS) offer advantages such as a broad spectrum of potentially sensitive materials and analytes, easy miniaturization and integration, high sensitivity, and low costs. This paper introduces a novel MEMS sensor platform utilizing a suspended gate field effect transistor (SGFET) transducer. In this approach, the flexible gate membrane of the SGFET is coated with a sensitive material exhibiting responsive swelling behavior. For the proof of concept, kraft lignin hydrogel is chosen as a biorenewable material for humidity sensing. A precision dispensing technique is used to deposit kraft lignin hydrogel on the SGFETs. The sensor measurements yield reversible shifts in the sensor's output current of up to 9% in response to 5000 ppm water vapor. The results successfully demonstrate the feasibility of this new sensing platform.

基于微机电系统(MEMS)的气体传感器具有多种优势,如适用于多种潜在敏感材料和分析物、易于微型化和集成、灵敏度高且成本低。本文介绍了一种利用悬浮栅场效应晶体管 (SGFET) 传感器的新型 MEMS 传感器平台。在这种方法中,SGFET 的柔性栅极膜上涂有一种敏感材料,这种材料具有响应性膨胀行为。在概念验证中,牛皮纸木质素水凝胶被选为湿度传感的生物可再生材料。采用精密点胶技术将牛皮纸木质素水凝胶沉积在 SGFET 上。传感器测量结果表明,在 5000 ppm 水蒸汽的作用下,传感器的输出电流会发生高达 9% 的可逆偏移。结果成功证明了这种新型传感平台的可行性。
{"title":"Lignin Hydrogels as a Use Case for a New Miniaturized Chemical Sensing Platform Based on Suspended Gate Field Effect Transistors","authors":"Marieke Stapf,&nbsp;Vladislav Komenko,&nbsp;Johanna Phuong Nong,&nbsp;Jörg Adam,&nbsp;Franz Selbmann,&nbsp;Andrey Kravchenko,&nbsp;Martina Bremer,&nbsp;Steffen Fischer,&nbsp;Klaus Knobloch,&nbsp;Yvonne Joseph","doi":"10.1002/adsr.202400040","DOIUrl":"10.1002/adsr.202400040","url":null,"abstract":"<p>Gas sensors based on micro-electromechanical systems (MEMS) offer advantages such as a broad spectrum of potentially sensitive materials and analytes, easy miniaturization and integration, high sensitivity, and low costs. This paper introduces a novel MEMS sensor platform utilizing a suspended gate field effect transistor (SGFET) transducer. In this approach, the flexible gate membrane of the SGFET is coated with a sensitive material exhibiting responsive swelling behavior. For the proof of concept, kraft lignin hydrogel is chosen as a biorenewable material for humidity sensing. A precision dispensing technique is used to deposit kraft lignin hydrogel on the SGFETs. The sensor measurements yield reversible shifts in the sensor's output current of up to 9% in response to 5000 ppm water vapor. The results successfully demonstrate the feasibility of this new sensing platform.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400040","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141653136","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead (Adv. Sensor Res. 7/2024) 桅杆头(传感器推进决议 7/2024)
Pub Date : 2024-07-12 DOI: 10.1002/adsr.202470022
{"title":"Masthead (Adv. Sensor Res. 7/2024)","authors":"","doi":"10.1002/adsr.202470022","DOIUrl":"https://doi.org/10.1002/adsr.202470022","url":null,"abstract":"","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202470022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141624323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Direct Fabrication of Electronic Circuits on Wooden Surfaces (Adv. Sensor Res. 7/2024) 在木质表面直接制作电子电路(传感器研究进展 7/2024)
Pub Date : 2024-07-12 DOI: 10.1002/adsr.202470021
Florian Egger, David Schiller, Thomas Stockinger, Claudia Pretschuh, Uwe Müller, Martin Kaltenbrunner

Interactive Wood

Sensors fabricated directly onto wooden surfaces allow to detect humidity and temperature changes or monitor the curing of varnishes. They enable structural integrity monitoring in construction or turn furniture into interactive touch panels, all in a sustainable fashion. More details can be found in article number 2400010 by Martin Kaltenbrunner and co-workers.

交互式木材传感器可直接安装在木材表面,用于检测湿度和温度变化,或监测清漆的固化情况。它们可以监测建筑结构的完整性,或将家具变成交互式触摸屏,所有这些都是可持续的。更多详情,请参阅马丁-卡尔特布伦纳(Martin Kaltenbrunner)及其合作者撰写的第 2400010 号文章。
{"title":"Direct Fabrication of Electronic Circuits on Wooden Surfaces (Adv. Sensor Res. 7/2024)","authors":"Florian Egger,&nbsp;David Schiller,&nbsp;Thomas Stockinger,&nbsp;Claudia Pretschuh,&nbsp;Uwe Müller,&nbsp;Martin Kaltenbrunner","doi":"10.1002/adsr.202470021","DOIUrl":"https://doi.org/10.1002/adsr.202470021","url":null,"abstract":"<p><b>Interactive Wood</b></p><p>Sensors fabricated directly onto wooden surfaces allow to detect humidity and temperature changes or monitor the curing of varnishes. They enable structural integrity monitoring in construction or turn furniture into interactive touch panels, all in a sustainable fashion. More details can be found in article number 2400010 by Martin Kaltenbrunner and co-workers.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202470021","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141624321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sensors for Antibiotics Susceptibility Testing—Recent Advances 抗生素药敏试验传感器--最新进展
Pub Date : 2024-07-12 DOI: 10.1002/adsr.202400046
Oliver Riester, Stefan Laufer, Roland Mertelsmann, Hans-Peter Deigner

The age of antibiotics, which began with the discovery of penicillin in 1929, marks an important period in medical history, as deadly bacterial infections seemed to be a thing of the past. However, the tide turned as more and more resistance to all existing antibiotics emerged, leading to the still ongoing era of antibiotic resistance. To counter this development and slow it down, it is important to administer the appropriate, effective antibiotics, which requires the clinical transition from empirical to targeted antibiotic therapy. Antimicrobial susceptibility testing (AST) is a key pillar in the implementation of targeted antibiotic therapy. This review provides an overview of the different phenotypic and genotypic AST methods with their advantages and disadvantages, focusing on the turnaround time from patient to result, including preculture. In addition, an outlook on their future potential is given, also considering the impact of artificial intelligence on this field.

抗生素时代始于 1929 年青霉素的发现,它标志着医学史上的一个重要时期,因为致命的细菌感染似乎已成为过去。然而,随着对所有现有抗生素的抗药性越来越多地出现,情况发生了逆转,导致抗生素抗药性时代仍在继续。为了应对并减缓这种发展,必须使用适当、有效的抗生素,这就要求临床从经验性抗生素治疗过渡到针对性抗生素治疗。抗菌药物药敏试验(AST)是实施针对性抗生素治疗的关键支柱。本综述概述了不同的表型和基因型 AST 方法及其优缺点,重点关注从病人到结果的周转时间,包括预培养。此外,本文还对这些方法的未来潜力进行了展望,并考虑了人工智能对这一领域的影响。
{"title":"Sensors for Antibiotics Susceptibility Testing—Recent Advances","authors":"Oliver Riester,&nbsp;Stefan Laufer,&nbsp;Roland Mertelsmann,&nbsp;Hans-Peter Deigner","doi":"10.1002/adsr.202400046","DOIUrl":"10.1002/adsr.202400046","url":null,"abstract":"<p>The age of antibiotics, which began with the discovery of penicillin in 1929, marks an important period in medical history, as deadly bacterial infections seemed to be a thing of the past. However, the tide turned as more and more resistance to all existing antibiotics emerged, leading to the still ongoing era of antibiotic resistance. To counter this development and slow it down, it is important to administer the appropriate, effective antibiotics, which requires the clinical transition from empirical to targeted antibiotic therapy. Antimicrobial susceptibility testing (AST) is a key pillar in the implementation of targeted antibiotic therapy. This review provides an overview of the different phenotypic and genotypic AST methods with their advantages and disadvantages, focusing on the turnaround time from patient to result, including preculture. In addition, an outlook on their future potential is given, also considering the impact of artificial intelligence on this field.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400046","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141653931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diabetes Management in Transition: Market Insights and Technological Advancements in CGM and Insulin Delivery 转型期的糖尿病管理:CGM 和胰岛素输送的市场洞察与技术进步
Pub Date : 2024-07-11 DOI: 10.1002/adsr.202400048
Tae Sang Yu, Soojeong Song, Junwoo Yea, Kyung-In Jang

Continuous Glucose Monitoring (CGM) systems are revolutionizing the real-time tracking of blood glucose levels, a cornerstone in effective diabetes management and optimal glycemic control. Transitioning from the “intermittent readings” offered by traditional Blood Glucose Monitoring (BGM) methods, CGM delivers an “uninterrupted flow” of glucose data, enabling a “more detailed” strategy for meeting treatment goals. Initially, the “uptake of CGM faced hurdles due to doubts about its precision, but continuous advancements in technology have not only resolved these concerns but also confirms CGM as a dependable and impactful instrument in diabetes management”. Concurrently, advancements in insulin pump technology have improved their portability and ease of use, greatly increasing patient adoption. The market reflects a growing demand for such innovative healthcare solutions, driven by an increased awareness of diabetes management and bolstered by supportive healthcare policies. Future prospects for CGM and insulin pump technologies are incredibly promising, offering the potential for highly personalized care and sophisticated treatment strategies. This paper aims to explore how the synergy between ongoing technological developments and evolving market dynamics is set to redefine the diabetes care paradigm, positioning CGM and insulin pumps as essential elements in enhancing the quality of life for individuals with diabetes.

连续血糖监测(CGM)系统正在彻底改变血糖水平的实时跟踪,这是有效糖尿病管理和最佳血糖控制的基石。与传统血糖监测(BGM)方法提供的 "间歇性读数 "不同,CGM 提供 "不间断的 "血糖数据流,为实现治疗目标提供了 "更详细的 "策略。起初,"由于对 CGM 的精确性存有疑虑,它的普及面临着障碍,但技术的不断进步不仅解决了这些疑虑,还证实 CGM 是糖尿病管理中一种可靠且有影响力的工具"。与此同时,胰岛素泵技术的进步提高了其便携性和易用性,大大提高了患者的采用率。糖尿病管理意识的提高和支持性医疗保健政策的推动,使市场对此类创新型医疗保健解决方案的需求不断增长。CGM 和胰岛素泵技术的未来前景令人难以置信,有望实现高度个性化的护理和复杂的治疗策略。本文旨在探讨当前的技术发展和不断变化的市场动态之间的协同作用将如何重新定义糖尿病护理模式,并将 CGM 和胰岛素泵定位为提高糖尿病患者生活质量的基本要素。
{"title":"Diabetes Management in Transition: Market Insights and Technological Advancements in CGM and Insulin Delivery","authors":"Tae Sang Yu,&nbsp;Soojeong Song,&nbsp;Junwoo Yea,&nbsp;Kyung-In Jang","doi":"10.1002/adsr.202400048","DOIUrl":"10.1002/adsr.202400048","url":null,"abstract":"<p>Continuous Glucose Monitoring (CGM) systems are revolutionizing the real-time tracking of blood glucose levels, a cornerstone in effective diabetes management and optimal glycemic control. Transitioning from the “intermittent readings” offered by traditional Blood Glucose Monitoring (BGM) methods, CGM delivers an “uninterrupted flow” of glucose data, enabling a “more detailed” strategy for meeting treatment goals. Initially, the “uptake of CGM faced hurdles due to doubts about its precision, but continuous advancements in technology have not only resolved these concerns but also confirms CGM as a dependable and impactful instrument in diabetes management”. Concurrently, advancements in insulin pump technology have improved their portability and ease of use, greatly increasing patient adoption. The market reflects a growing demand for such innovative healthcare solutions, driven by an increased awareness of diabetes management and bolstered by supportive healthcare policies. Future prospects for CGM and insulin pump technologies are incredibly promising, offering the potential for highly personalized care and sophisticated treatment strategies. This paper aims to explore how the synergy between ongoing technological developments and evolving market dynamics is set to redefine the diabetes care paradigm, positioning CGM and insulin pumps as essential elements in enhancing the quality of life for individuals with diabetes.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400048","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141657336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Transforming Renal Diagnosis: Graphene-Enhanced Lab-On-a-Chip for Multiplexed Kidney Biomarker Detection in Capillary Blood 改变肾脏诊断:石墨烯增强型芯片实验室用于毛细管血液中多重肾脏生物标记物检测
Pub Date : 2024-07-10 DOI: 10.1002/adsr.202400061
Joaquin F. Diforti, Thomas Cunningham, Zaira Zegalo, Esteban Piccinini, Waldemar A. Marmisollé, Jose M. Piccinini, Omar Azzaroni

Chronic kidney disease (CKD) is a significant global health concern, impacting over 10% of the world population. Despite advances in home-based treatments, CKD diagnosis and monitoring remain centralized in large laboratories. This work reports on the development of a Graphene-based Lab-On-a-Chip (G-LOC) for the self-testing of multiple renal function biomarkers in capillary blood. G-LOC integrates bioelectronic sensors with a 3D-printed microfluidic system that enables the multiplex quantification of urea, potassium, sodium, and chloride, from one drop of blood. The potentials of three graphene sensors modified with ion-selective membranes and enzymes are simultaneously measured. The analytical performance of the test is evaluated in terms of linearity, accuracy, and coefficient of variability (CV). Accuracy values higher than 98.7%, and CV values lower than 10.8% are obtained for all the biomarkers. Correlation and Bland–Altman plots show good correlation (slopes in the range of 0.94–1.15) and high agreement of G-LOC with a reference method. It is also demonstrated that the test can correctly differentiate biomarker levels normally obtained for healthy people, early-stage CKD, and end-stage CKD. Finally, user experience is studied with a group of untrained volunteers who highlight the simple usability of the test and its suitability for at-home diagnostics.

慢性肾脏病(CKD)是全球关注的重大健康问题,影响着全球超过 10% 的人口。尽管家庭治疗取得了进展,但慢性肾脏病的诊断和监测仍集中在大型实验室。这项研究报告了基于石墨烯的片上实验室(G-LOC)的开发情况,该实验室可对毛细血管血液中的多种肾功能生物标志物进行自我检测。G-LOC 将生物电子传感器与 3D 打印微流体系统集成在一起,可从一滴血中对尿素、钾、钠和氯进行多重定量。用离子选择膜和酶修饰的三个石墨烯传感器的电位被同时测量。从线性度、准确度和变异系数(CV)等方面对该测试的分析性能进行了评估。所有生物标记物的准确度均高于 98.7%,变异系数低于 10.8%。相关性和 Bland-Altman 图显示,G-LOC 与参考方法具有良好的相关性(斜率范围在 0.94-1.15 之间)和高度一致性。结果还表明,该测试能正确区分健康人、早期 CKD 和晚期 CKD 的正常生物标记物水平。最后,对一组未经培训的志愿者进行了用户体验研究,他们强调了该测试的简单易用性及其对家庭诊断的适用性。
{"title":"Transforming Renal Diagnosis: Graphene-Enhanced Lab-On-a-Chip for Multiplexed Kidney Biomarker Detection in Capillary Blood","authors":"Joaquin F. Diforti,&nbsp;Thomas Cunningham,&nbsp;Zaira Zegalo,&nbsp;Esteban Piccinini,&nbsp;Waldemar A. Marmisollé,&nbsp;Jose M. Piccinini,&nbsp;Omar Azzaroni","doi":"10.1002/adsr.202400061","DOIUrl":"10.1002/adsr.202400061","url":null,"abstract":"<p>Chronic kidney disease (CKD) is a significant global health concern, impacting over 10% of the world population. Despite advances in home-based treatments, CKD diagnosis and monitoring remain centralized in large laboratories. This work reports on the development of a Graphene-based Lab-On-a-Chip (G-LOC) for the self-testing of multiple renal function biomarkers in capillary blood. G-LOC integrates bioelectronic sensors with a 3D-printed microfluidic system that enables the multiplex quantification of urea, potassium, sodium, and chloride, from one drop of blood. The potentials of three graphene sensors modified with ion-selective membranes and enzymes are simultaneously measured. The analytical performance of the test is evaluated in terms of linearity, accuracy, and coefficient of variability (CV). Accuracy values higher than 98.7%, and CV values lower than 10.8% are obtained for all the biomarkers. Correlation and Bland–Altman plots show good correlation (slopes in the range of 0.94–1.15) and high agreement of G-LOC with a reference method. It is also demonstrated that the test can correctly differentiate biomarker levels normally obtained for healthy people, early-stage CKD, and end-stage CKD. Finally, user experience is studied with a group of untrained volunteers who highlight the simple usability of the test and its suitability for at-home diagnostics.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400061","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141661707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Platinum Decorated Palladium Nanowires for Room-Temperature Hydrogen Detection 用于室温氢探测的铂装饰钯纳米线
Pub Date : 2024-06-24 DOI: 10.1002/adsr.202400013
Abhishek Kumar, Yaoli Zhao, Sadaf Mohsenifard, Vaishali Maheshkar, Thomas Thundat, Mark T. Swihart

The use of hydrogen as an energy carrier will require low-cost, low-power hydrogen sensors. Toward this goal, penta-twinned palladium nanowires (Pd NWs) are synthesized and fabricated sensors from them by drop-casting. Pd NWs drop-cast onto an interdigitated electrode (IDE) gave a response of 0.3% to 1 vol.% H2, with response and recovery times of 12 and 20 s, respectively. However, they exhibited a negative response (decreased resistance) at low H2 concentrations. Pd NWs on a paper substrate provided a tenfold higher response to 1 vol.% H2, with response and recovery times of 10 s each, but still exhibited negative response at low H2 concentration. Exposing the Pd NW-on-paper sensor to ozone-generating UV light degraded the PVP used in Pd NW synthesis, eliminating the reverse sensing response, and providing a response of 5% to 1 vol.% H2, with response and recovery times of 15 s. This allowed reliable H2 detection down to 100 ppm H2. Finally, coating the Pd NWs with a small amount of Pt (<5%) reduced the response and recovery times to 5 s by catalyzing H2 dissociation. This work provides a path to low-cost sensors to enable the safe use of H2 as an energy carrier.

使用氢作为能源载体需要低成本、低功耗的氢传感器。为了实现这一目标,我们合成了五孪晶钯纳米线(Pd NWs),并通过滴铸方法将其制成了传感器。将钯纳米线滴铸到互斥电极(IDE)上可产生 0.3% 至 1 vol.% H2 的响应,响应时间和恢复时间分别为 12 秒和 20 秒。然而,在低浓度 H2 时,它们表现出负响应(电阻下降)。纸基底上的钯碳纳米管对 1 vol.% H2 的响应提高了十倍,响应和恢复时间分别为 10 秒,但在低 H2 浓度时仍表现出负响应。将纸基钯碳氧化物传感器暴露在产生臭氧的紫外线下,会使钯碳氧化物合成过程中使用的 PVP 降解,从而消除反向感应反应,对 1 Vol.% H2 的响应为 5%,响应和恢复时间均为 15 秒。最后,通过催化 H2 解离,在钯碳氮化物上镀上少量铂(5%),可将响应和恢复时间缩短至 5 秒。这项工作为低成本传感器提供了一条途径,使人们能够安全地将 H2 用作能量载体。
{"title":"Platinum Decorated Palladium Nanowires for Room-Temperature Hydrogen Detection","authors":"Abhishek Kumar,&nbsp;Yaoli Zhao,&nbsp;Sadaf Mohsenifard,&nbsp;Vaishali Maheshkar,&nbsp;Thomas Thundat,&nbsp;Mark T. Swihart","doi":"10.1002/adsr.202400013","DOIUrl":"https://doi.org/10.1002/adsr.202400013","url":null,"abstract":"<p>The use of hydrogen as an energy carrier will require low-cost, low-power hydrogen sensors. Toward this goal, penta-twinned palladium nanowires (Pd NWs) are synthesized and fabricated sensors from them by drop-casting. Pd NWs drop-cast onto an interdigitated electrode (IDE) gave a response of 0.3% to 1 vol.% H<sub>2</sub>, with response and recovery times of 12 and 20 s, respectively. However, they exhibited a negative response (decreased resistance) at low H<sub>2</sub> concentrations. Pd NWs on a paper substrate provided a tenfold higher response to 1 vol.% H<sub>2</sub>, with response and recovery times of 10 s each, but still exhibited negative response at low H<sub>2</sub> concentration. Exposing the Pd NW-on-paper sensor to ozone-generating UV light degraded the PVP used in Pd NW synthesis, eliminating the reverse sensing response, and providing a response of 5% to 1 vol.% H<sub>2</sub>, with response and recovery times of 15 s. This allowed reliable H<sub>2</sub> detection down to 100 ppm H<sub>2</sub>. Finally, coating the Pd NWs with a small amount of Pt (&lt;5%) reduced the response and recovery times to 5 s by catalyzing H<sub>2</sub> dissociation. This work provides a path to low-cost sensors to enable the safe use of H<sub>2</sub> as an energy carrier.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400013","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible, Wearable Mechano-Acoustic Sensors for Real-Time, Wireless Monitoring of Low Frequency Body Sounds 用于实时、无线监测低频体声的柔性可穿戴机械声学传感器
Pub Date : 2024-06-20 DOI: 10.1002/adsr.202400039
Trung Thien Hoang, Alexander Mark Cunio, Sinuo Zhao, Thanh-Vinh Nguyen, Shuhua Peng, Stephanie Liaw, Tracie Barber, Jin Zhang, Syamak Farajikhah, Fariba Dehghani, Thanh Nho Do, Hoang-Phuong Phan

Measurements of low-frequency physiological signals, such as heart rate and pulse waves, play an essential role in biomedical applications for the early diagnosis of abnormal cardiovascular activities. Recent advances in flexible mechanical electronics represent a novel concept of miniaturized, wearable sensors for heart rate measurement that can be used in ambulatory environments. However, most mechanical sensors require the sensing element to be placed directly on the skin surface, which can lead to performance degradation or device damage due to significant skin deformation or external forces from skin-object interactions. This work addresses this challenge by developing soft, stretchable mechano-acoustic sensing platforms where all sensing components are not directly subjected to skin movement or deformation. Instead, this design allows cardiovascular pulse waves to propagate through a hollow, flexible microchannel, to vibrate the piezoresistive sensing element. Experimental studies demonstrate a complete wireless sensing system capable of detecting pulse waves and heart rates, with results consistent with those of commercially available devices. The proposed sensing concept allows for the develop of other wireless and flexible sensing systems such as a flexible air-channel pad for detecting swallowing patterns from users’ laryngeal movements, facilitating a non-invasive and remote platform for potential monitoring, and assessment of dysphagia.

测量心率和脉搏波等低频生理信号在生物医学应用中发挥着至关重要的作用,可用于早期诊断异常心血管活动。柔性机械电子学的最新进展代表了一种新概念,即微型化、可穿戴的心率测量传感器,可用于非卧床环境。然而,大多数机械传感器都需要将传感元件直接置于皮肤表面,这可能会导致性能下降或因皮肤变形或皮肤与物体相互作用产生的外力而损坏设备。这项研究通过开发柔软、可拉伸的机械声学传感平台来应对这一挑战,在该平台上,所有传感元件都不会直接受到皮肤运动或变形的影响。相反,这种设计允许心血管脉冲波通过空心柔性微通道传播,从而振动压阻传感元件。实验研究证明,这套完整的无线传感系统能够检测脉搏波和心率,其结果与市售设备一致。所提出的传感概念允许开发其他无线和柔性传感系统,如柔性空气通道垫,用于检测用户喉部运动的吞咽模式,从而为潜在的监测和吞咽困难评估提供无创和远程平台。
{"title":"Flexible, Wearable Mechano-Acoustic Sensors for Real-Time, Wireless Monitoring of Low Frequency Body Sounds","authors":"Trung Thien Hoang,&nbsp;Alexander Mark Cunio,&nbsp;Sinuo Zhao,&nbsp;Thanh-Vinh Nguyen,&nbsp;Shuhua Peng,&nbsp;Stephanie Liaw,&nbsp;Tracie Barber,&nbsp;Jin Zhang,&nbsp;Syamak Farajikhah,&nbsp;Fariba Dehghani,&nbsp;Thanh Nho Do,&nbsp;Hoang-Phuong Phan","doi":"10.1002/adsr.202400039","DOIUrl":"https://doi.org/10.1002/adsr.202400039","url":null,"abstract":"<p>Measurements of low-frequency physiological signals, such as heart rate and pulse waves, play an essential role in biomedical applications for the early diagnosis of abnormal cardiovascular activities. Recent advances in flexible mechanical electronics represent a novel concept of miniaturized, wearable sensors for heart rate measurement that can be used in ambulatory environments. However, most mechanical sensors require the sensing element to be placed directly on the skin surface, which can lead to performance degradation or device damage due to significant skin deformation or external forces from skin-object interactions. This work addresses this challenge by developing soft, stretchable mechano-acoustic sensing platforms where all sensing components are not directly subjected to skin movement or deformation. Instead, this design allows cardiovascular pulse waves to propagate through a hollow, flexible microchannel, to vibrate the piezoresistive sensing element. Experimental studies demonstrate a complete wireless sensing system capable of detecting pulse waves and heart rates, with results consistent with those of commercially available devices. The proposed sensing concept allows for the develop of other wireless and flexible sensing systems such as a flexible air-channel pad for detecting swallowing patterns from users’ laryngeal movements, facilitating a non-invasive and remote platform for potential monitoring, and assessment of dysphagia.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400039","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and Characterization of a Dual-Interval Elastic Force Sensor for Robot-Assisted Microinjection 用于机器人辅助显微注射的双区间弹性力传感器的设计与特性分析
Pub Date : 2024-06-17 DOI: 10.1002/adsr.202400047
Zekui Lyu, Nana Ai, Wei Ge, Qingsong Xu

Robot-assisted microinjection has been widely implemented in the field of experimental biology research. Force perception is more accurate than visual feedback in determining the state of interaction between the micropipette and the biological sample. The existing micro-force sensors are difficult to directly combine with micropipettes to fully utilize their capabilities. This paper develops a new integrated force-sensing microinjector with both micro-force sensing and micropipette carrying functions using a symmetrical compliant guide mechanism and highly sensitive semiconductor strain gauges. Overload protection is considered in the structure design of the sensor, which is beneficial in reducing damage caused by displacement overshot due to misuse. The mechanical performance of the proposed dual-interval force sensing device is verified through theoretical derivation, simulation analysis, and experimental testing. The sensitivity, resolution, accuracy, dynamic response, stability, and repeatability of the sensor are investigated and evaluated in the established experimental platform. Finally, puncture experiments are conducted on zebrafish larvae and crab eggs using the proposed force-sensing microinjector. The results indicate that the sensor is effective in recording force signals during penetration of the sample.

机器人辅助显微注射已广泛应用于生物实验研究领域。在确定微量移液器与生物样本之间的相互作用状态时,力感比视觉反馈更准确。现有的微力传感器很难直接与微量移液器结合以充分发挥其功能。本文利用对称顺应式导向机构和高灵敏度半导体应变片,开发了一种新型集成力传感微注射器,兼具微力传感和微量移液器承载功能。在传感器的结构设计中考虑了过载保护,这有利于减少由于误操作造成的位移过大而导致的损坏。通过理论推导、仿真分析和实验测试,验证了所提出的双间隔力传感装置的机械性能。在已建立的实验平台上,对传感器的灵敏度、分辨率、精确度、动态响应、稳定性和可重复性进行了研究和评估。最后,使用所提出的力传感微型注射器对斑马鱼幼体和蟹卵进行了穿刺实验。结果表明,该传感器能有效记录样品穿透过程中的力信号。
{"title":"Design and Characterization of a Dual-Interval Elastic Force Sensor for Robot-Assisted Microinjection","authors":"Zekui Lyu,&nbsp;Nana Ai,&nbsp;Wei Ge,&nbsp;Qingsong Xu","doi":"10.1002/adsr.202400047","DOIUrl":"https://doi.org/10.1002/adsr.202400047","url":null,"abstract":"<p>Robot-assisted microinjection has been widely implemented in the field of experimental biology research. Force perception is more accurate than visual feedback in determining the state of interaction between the micropipette and the biological sample. The existing micro-force sensors are difficult to directly combine with micropipettes to fully utilize their capabilities. This paper develops a new integrated force-sensing microinjector with both micro-force sensing and micropipette carrying functions using a symmetrical compliant guide mechanism and highly sensitive semiconductor strain gauges. Overload protection is considered in the structure design of the sensor, which is beneficial in reducing damage caused by displacement overshot due to misuse. The mechanical performance of the proposed dual-interval force sensing device is verified through theoretical derivation, simulation analysis, and experimental testing. The sensitivity, resolution, accuracy, dynamic response, stability, and repeatability of the sensor are investigated and evaluated in the established experimental platform. Finally, puncture experiments are conducted on zebrafish larvae and crab eggs using the proposed force-sensing microinjector. The results indicate that the sensor is effective in recording force signals during penetration of the sample.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Sensor Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1