首页 > 最新文献

Advanced Sensor Research最新文献

英文 中文
Exploring Metal Electroplating for Energy Storage by Quartz Crystal Microbalance: A Review 利用石英晶体微天平探索金属电镀储能技术:综述
Pub Date : 2024-05-20 DOI: 10.1002/adsr.202400025
Viktor Vanoppen, Diethelm Johannsmann, Xu Hou, Jens Sjölund, Peter Broqvist, Erik J. Berg

The development and application of Electrochemical Quartz Crystal Microbalance (EQCM) sensing to study metal electroplating, especially for energy storage purposes, are reviewed. The roles of EQCM in describing electrode/electrolyte interface dynamics, such as the electric double-layer build-up, ionic/molecular adsorption, metal nucleation, and growth, are addressed. Modeling of the QCM sensor is introduced and its importance is emphasized. Challenges of metal electrode use, including side reactions and dendrite formation, along with their mitigation strategies are reviewed. Numerous factors affecting the electroplating processes, such as electrolyte composition, additives, temperature, and current density, and their influence on the electroplated metals’ mass, structural, and mechanical characteristics are discussed. Looking forward, the need for deeper fundamental understanding and advancing simulations of the QCM signal response as a result of electroplating metal nanostructures is stressed. Further development and integration of innovative EQCM-strategies will provide unique future means to fundamentally understand and optimize metal electroplating for energy storage and application alike.

本文回顾了电化学石英晶体微天平 (EQCM) 传感在研究金属电镀(尤其是用于储能目的)方面的发展和应用。探讨了 EQCM 在描述电极/电解质界面动力学方面的作用,例如电双层堆积、离子/分子吸附、金属成核和生长。介绍了 QCM 传感器的建模,并强调了其重要性。综述了使用金属电极所面临的挑战,包括副反应和枝晶的形成及其缓解策略。讨论了影响电镀过程的众多因素,如电解液成分、添加剂、温度和电流密度,以及它们对电镀金属的质量、结构和机械特性的影响。展望未来,我们强调有必要加深对电镀金属纳米结构所产生的 QCM 信号响应的基本理解并推进模拟。进一步开发和整合创新的 EQCM 策略将为从根本上理解和优化金属电镀的能量存储和应用提供独特的未来手段。
{"title":"Exploring Metal Electroplating for Energy Storage by Quartz Crystal Microbalance: A Review","authors":"Viktor Vanoppen,&nbsp;Diethelm Johannsmann,&nbsp;Xu Hou,&nbsp;Jens Sjölund,&nbsp;Peter Broqvist,&nbsp;Erik J. Berg","doi":"10.1002/adsr.202400025","DOIUrl":"10.1002/adsr.202400025","url":null,"abstract":"<p>The development and application of Electrochemical Quartz Crystal Microbalance (EQCM) sensing to study metal electroplating, especially for energy storage purposes, are reviewed. The roles of EQCM in describing electrode/electrolyte interface dynamics, such as the electric double-layer build-up, ionic/molecular adsorption, metal nucleation, and growth, are addressed. Modeling of the QCM sensor is introduced and its importance is emphasized. Challenges of metal electrode use, including side reactions and dendrite formation, along with their mitigation strategies are reviewed. Numerous factors affecting the electroplating processes, such as electrolyte composition, additives, temperature, and current density, and their influence on the electroplated metals’ mass, structural, and mechanical characteristics are discussed. Looking forward, the need for deeper fundamental understanding and advancing simulations of the QCM signal response as a result of electroplating metal nanostructures is stressed. Further development and integration of innovative EQCM-strategies will provide unique future means to fundamentally understand and optimize metal electroplating for energy storage and application alike.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141120819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smart Hydrogel Sensors for Health Monitoring and Early Warning 用于健康监测和预警的智能水凝胶传感器
Pub Date : 2024-05-14 DOI: 10.1002/adsr.202400003
Kang Wang, Junhui Zhang, Heng Li, Jingzhi Wu, Qiwu Wan, Taiju Chen, Wenjing Liu, Hai Peng, Hong Zhang, Yang Luo

Smart hydrogel sensors, functioning as implantable devices, play a vital role in health monitoring and early warning, overcoming the limitations of conventional clinical methods to achieve direct, continuous, and precise monitoring. Widely employed across various biomedical fields, these sensors offer unique advantages for early health monitoring, ensuring direct, continuous, and highly accurate monitoring. In addition to detecting biomolecules, smart hydrogel sensors, with their flexibility and biocompatibility, monitor disease-specific markers, offer insights into disease progression, and contribute to the early identification of diseases. This article provides a comprehensive review of the types of hydrogel sensors employed in human health monitoring. The study discusses recent advancements in smart hydrogel sensor research, aiming to offer promising methods for human health monitoring. Finally, the paper outlines prospective research directions for hydrogel sensors in the field of human health monitoring. While further research and clinical validation are essential, hydrogel sensors are poised to play a pivotal role in clinical applications, furnishing people with accurate and continuous health monitoring.

智能水凝胶传感器作为植入式设备,在健康监测和早期预警方面发挥着重要作用,克服了传统临床方法的局限性,实现了直接、连续和精确的监测。这些传感器广泛应用于各个生物医学领域,为早期健康监测提供了独特的优势,确保了直接、连续和高度精确的监测。除了检测生物分子外,智能水凝胶传感器还具有灵活性和生物相容性,可监测疾病特异性标志物,洞察疾病进展,有助于疾病的早期识别。本文全面综述了用于人体健康监测的水凝胶传感器类型。研究讨论了智能水凝胶传感器研究的最新进展,旨在为人体健康监测提供有前景的方法。最后,本文概述了水凝胶传感器在人体健康监测领域的前瞻性研究方向。虽然进一步的研究和临床验证至关重要,但水凝胶传感器有望在临床应用中发挥关键作用,为人们提供准确、持续的健康监测。
{"title":"Smart Hydrogel Sensors for Health Monitoring and Early Warning","authors":"Kang Wang,&nbsp;Junhui Zhang,&nbsp;Heng Li,&nbsp;Jingzhi Wu,&nbsp;Qiwu Wan,&nbsp;Taiju Chen,&nbsp;Wenjing Liu,&nbsp;Hai Peng,&nbsp;Hong Zhang,&nbsp;Yang Luo","doi":"10.1002/adsr.202400003","DOIUrl":"10.1002/adsr.202400003","url":null,"abstract":"<p>Smart hydrogel sensors, functioning as implantable devices, play a vital role in health monitoring and early warning, overcoming the limitations of conventional clinical methods to achieve direct, continuous, and precise monitoring. Widely employed across various biomedical fields, these sensors offer unique advantages for early health monitoring, ensuring direct, continuous, and highly accurate monitoring. In addition to detecting biomolecules, smart hydrogel sensors, with their flexibility and biocompatibility, monitor disease-specific markers, offer insights into disease progression, and contribute to the early identification of diseases. This article provides a comprehensive review of the types of hydrogel sensors employed in human health monitoring. The study discusses recent advancements in smart hydrogel sensor research, aiming to offer promising methods for human health monitoring. Finally, the paper outlines prospective research directions for hydrogel sensors in the field of human health monitoring. While further research and clinical validation are essential, hydrogel sensors are poised to play a pivotal role in clinical applications, furnishing people with accurate and continuous health monitoring.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140979367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diagnosis of Serous Effusion with Intelligent Imaging Flow Cytometry 利用智能成像流式细胞仪诊断浆液性积液
Pub Date : 2024-05-13 DOI: 10.1002/adsr.202300183
Mengping Long, Yueyun Weng, Liye Mei, Dingchao Yang, Shubin Wei, Guanxiong Meng, Wanyue Zhao, Sheng Liu, Du Wang, Yiqiang Liu, Hui Shen, Jianxuan Hou, Yu Xu, Liang Tao, Fuling Zhou, Hongwei Chen, Taobo Hu, Cheng Lei

A serous effusion is a buildup of extra fluid in the serous cavities including pleural, peritoneal, and pericardial cavities. It is important to distinguish benign reactive effusions from effusions caused by malignant proliferation in cytopathology since different diagnoses can lead to completely different disease staging and therapeutic choices. The conventional cytopathology procedure has the disadvantages of low throughput and low objectivity. To enhance the efficiency and accuracy of malignant serous effusion diagnosis, in this paper, an imaging flow cytometry, called optofluidic time-stretch microscopy is first employed, to image the cells in the serous effusion at an event rate of 100 000 events per second and with a spatial resolution better than 1 µm. The acquired cellular images are then analyzed using a convolutional neural network, by which the malignant cells are accurately detected. The performance of the method is validated with 18 clinical samples, including 14 malignant and 4 benign ones. The results show that the method can detect malignant cells at an accuracy of 90.53%. The high throughput, high accuracy, and high convenience of the method make it a potential solution for malignant serous effusion diagnosis in various scenarios.

浆液性渗出是指在浆液腔(包括胸膜腔、腹膜腔和心包腔)中积聚的额外液体。在细胞病理学中区分良性反应性渗出液和恶性增生引起的渗出液非常重要,因为不同的诊断会导致完全不同的疾病分期和治疗选择。传统的细胞病理学程序具有低通量和低客观性的缺点。为了提高恶性浆液性渗出诊断的效率和准确性,本文首先采用了一种名为光流体时间拉伸显微镜的成像流式细胞仪,以每秒 100 000 次的事件发生率和优于 1 微米的空间分辨率对浆液性渗出中的细胞进行成像。然后利用卷积神经网络对获取的细胞图像进行分析,从而准确检测出恶性细胞。18 个临床样本(包括 14 个恶性样本和 4 个良性样本)验证了该方法的性能。结果表明,该方法检测恶性细胞的准确率高达 90.53%。该方法的高通量、高准确性和高便利性使其成为各种情况下恶性浆液性渗出诊断的潜在解决方案。
{"title":"Diagnosis of Serous Effusion with Intelligent Imaging Flow Cytometry","authors":"Mengping Long,&nbsp;Yueyun Weng,&nbsp;Liye Mei,&nbsp;Dingchao Yang,&nbsp;Shubin Wei,&nbsp;Guanxiong Meng,&nbsp;Wanyue Zhao,&nbsp;Sheng Liu,&nbsp;Du Wang,&nbsp;Yiqiang Liu,&nbsp;Hui Shen,&nbsp;Jianxuan Hou,&nbsp;Yu Xu,&nbsp;Liang Tao,&nbsp;Fuling Zhou,&nbsp;Hongwei Chen,&nbsp;Taobo Hu,&nbsp;Cheng Lei","doi":"10.1002/adsr.202300183","DOIUrl":"10.1002/adsr.202300183","url":null,"abstract":"<p>A serous effusion is a buildup of extra fluid in the serous cavities including pleural, peritoneal, and pericardial cavities. It is important to distinguish benign reactive effusions from effusions caused by malignant proliferation in cytopathology since different diagnoses can lead to completely different disease staging and therapeutic choices. The conventional cytopathology procedure has the disadvantages of low throughput and low objectivity. To enhance the efficiency and accuracy of malignant serous effusion diagnosis, in this paper, an imaging flow cytometry, called optofluidic time-stretch microscopy is first employed, to image the cells in the serous effusion at an event rate of 100 000 events per second and with a spatial resolution better than 1 µm. The acquired cellular images are then analyzed using a convolutional neural network, by which the malignant cells are accurately detected. The performance of the method is validated with 18 clinical samples, including 14 malignant and 4 benign ones. The results show that the method can detect malignant cells at an accuracy of 90.53%. The high throughput, high accuracy, and high convenience of the method make it a potential solution for malignant serous effusion diagnosis in various scenarios.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300183","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140984621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microfluidics Evolution and Surface Functionalization: A Pathway to Enhanced Heavy Metal Ion Detection 微流体进化与表面功能化:增强重金属离子检测的途径
Pub Date : 2024-05-09 DOI: 10.1002/adsr.202400008
Zhejun Xu, Arun Jaiswal, Xiaochen Liu, Zhenxu Yang, Qiankun Yin, Kien Voon Kong, Ken-Tye Yong

This review delves into the significant advancements in microfluidic technology since 2017, highlighting its critical role in shrinking device sizes and integrating advanced surface functionalization techniques. It showcases how microfluidics, an interdisciplinary field, has revolutionized fluid manipulation on a microscale, enabling the creation of cost-effective, portable devices for on-the-spot analyses, like heavy metal ion detection. From its early days rooted in ancient observations to cutting-edge uses of materials like silicon, glass, polydimethylsiloxane (PDMS), and paper, this review charts microfluidics’ dynamic evolution. It emphasizes the transformative impact of surface functionalization methods, including silanization and plasma treatments, in enhancing device materials' performance. Moreover, this review anticipates the exciting convergence of microfluidics with emerging technologies like droplet microfluidics and three-dimensional (3D) printing, alongside nanotechnology, forecasting a future of sophisticated analytical tools, point-of-care diagnostics, and improved detection systems. It acknowledges the hurdles in scaling production and achieving universal reliability and standardization. This review highlights the transformative impact of microfluidic technology on diagnostics and environmental surveillance, emphasizing its utility in deploying compact sensors for comprehensive and concurrent evaluations of water quality.

这篇综述深入探讨了自 2017 年以来微流体技术取得的重大进展,强调了微流体技术在缩小设备尺寸和集成先进表面功能化技术方面的关键作用。它展示了微流体技术这一跨学科领域如何在微观尺度上彻底改变了流体操纵,从而创造出用于现场分析(如重金属离子检测)的经济高效的便携式设备。从早期扎根于古老的观测方法,到硅片、玻璃、聚二甲基硅氧烷(PDMS)和纸张等材料的尖端应用,这篇综述描绘了微流体技术的动态发展。它强调了表面功能化方法(包括硅烷化和等离子处理)在提高设备材料性能方面的变革性影响。此外,这篇综述还预测了微流体技术与液滴微流体技术、三维(3D)打印技术等新兴技术以及纳米技术令人兴奋的融合,并预测了精密分析工具、护理点诊断和改良检测系统的未来。报告承认在扩大生产规模、实现普遍可靠性和标准化方面存在障碍。这篇综述强调了微流控技术对诊断和环境监测的变革性影响,强调了它在部署紧凑型传感器以全面和同步评估水质方面的实用性。
{"title":"Microfluidics Evolution and Surface Functionalization: A Pathway to Enhanced Heavy Metal Ion Detection","authors":"Zhejun Xu,&nbsp;Arun Jaiswal,&nbsp;Xiaochen Liu,&nbsp;Zhenxu Yang,&nbsp;Qiankun Yin,&nbsp;Kien Voon Kong,&nbsp;Ken-Tye Yong","doi":"10.1002/adsr.202400008","DOIUrl":"10.1002/adsr.202400008","url":null,"abstract":"<p>This review delves into the significant advancements in microfluidic technology since 2017, highlighting its critical role in shrinking device sizes and integrating advanced surface functionalization techniques. It showcases how microfluidics, an interdisciplinary field, has revolutionized fluid manipulation on a microscale, enabling the creation of cost-effective, portable devices for on-the-spot analyses, like heavy metal ion detection. From its early days rooted in ancient observations to cutting-edge uses of materials like silicon, glass, polydimethylsiloxane (PDMS), and paper, this review charts microfluidics’ dynamic evolution. It emphasizes the transformative impact of surface functionalization methods, including silanization and plasma treatments, in enhancing device materials' performance. Moreover, this review anticipates the exciting convergence of microfluidics with emerging technologies like droplet microfluidics and three-dimensional (3D) printing, alongside nanotechnology, forecasting a future of sophisticated analytical tools, point-of-care diagnostics, and improved detection systems. It acknowledges the hurdles in scaling production and achieving universal reliability and standardization. This review highlights the transformative impact of microfluidic technology on diagnostics and environmental surveillance, emphasizing its utility in deploying compact sensors for comprehensive and concurrent evaluations of water quality.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140997954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly Sensitive and Linear Vibration-Based Flexible Modulus Sensing System for Human Modulus Monitoring and Disease Prevention (Adv. Sensor Res. 5/2024) 用于人体模量监测和疾病预防的高灵敏度线性振动柔性模量传感系统(传感器研究进展 5/2024)
Pub Date : 2024-05-09 DOI: 10.1002/adsr.202470016
Zewei Luo, Junhao Shen, Xu Ran, Zepeng Huang, Zaofeng Huang, Chaolun Wang, Chunhua Cai, Liangjian Lyv, Xin Lin, Litao Sun, Junhao Chu, Hengchang Bi, Xing Wu

Flexible Modulus Sensor

In article 2300148, Hengchang Bi, Xing Wu, and co-workers report a modulus sensing system with a characteristic of high linearity detection, which consists of a pressure sensor and a vibrator. It is able to quickly identify the physiological state of human body based on the modulus change of the detected tissues, exhibiting great potential in the health monitoring, such as the concept eye mask for migraine monitoring.

柔性模量传感器在第 2300148 号文章中,毕恒昌、吴星及合作者报告了一种具有高线性检测特性的模量传感系统,该系统由压力传感器和振动器组成。它能够根据检测到的组织模量变化快速识别人体的生理状态,在健康监测方面表现出巨大的潜力,例如用于偏头痛监测的概念眼罩。
{"title":"Highly Sensitive and Linear Vibration-Based Flexible Modulus Sensing System for Human Modulus Monitoring and Disease Prevention (Adv. Sensor Res. 5/2024)","authors":"Zewei Luo,&nbsp;Junhao Shen,&nbsp;Xu Ran,&nbsp;Zepeng Huang,&nbsp;Zaofeng Huang,&nbsp;Chaolun Wang,&nbsp;Chunhua Cai,&nbsp;Liangjian Lyv,&nbsp;Xin Lin,&nbsp;Litao Sun,&nbsp;Junhao Chu,&nbsp;Hengchang Bi,&nbsp;Xing Wu","doi":"10.1002/adsr.202470016","DOIUrl":"https://doi.org/10.1002/adsr.202470016","url":null,"abstract":"<p><b>Flexible Modulus Sensor</b></p><p>In article 2300148, Hengchang Bi, Xing Wu, and co-workers report a modulus sensing system with a characteristic of high linearity detection, which consists of a pressure sensor and a vibrator. It is able to quickly identify the physiological state of human body based on the modulus change of the detected tissues, exhibiting great potential in the health monitoring, such as the concept eye mask for migraine monitoring.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202470016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140895206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead (Adv. Sensor Res. 5/2024) 桅杆头(传感器推进决议 5/2024)
Pub Date : 2024-05-09 DOI: 10.1002/adsr.202470017
{"title":"Masthead (Adv. Sensor Res. 5/2024)","authors":"","doi":"10.1002/adsr.202470017","DOIUrl":"https://doi.org/10.1002/adsr.202470017","url":null,"abstract":"","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202470017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140895205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design Approaches and Electromechanical Modeling of Conformable Piezoelectric‐Based Ultrasound Systems 可适形压电超声系统的设计方法和机电建模
Pub Date : 2024-05-08 DOI: 10.1002/adsr.202300175
Nikta Amiri, Aastha Shah, Amit Bhayadia, C. Yu, M. A. Karami, C. Dagdeviren
Painless, needleless delivery of drugs through the skin can be realized through aphenomenon called sonophoresis by applying an ultrasound field to the biological tissue. Development of wearable embodiments of such systems demands comprehensive characterization of both the physical mechanism of sonophoresisas well as wearability parameters. Here, we present a framework for analyzing disk‐type piezoelectric transducers in a polymeric substrate to create acoustic cavitation in a fluid coupling medium for sonophoresis applications. The device design and operating parameters such as the working frequency, applied voltage range, acoustic pressure distribution, and transducer spacing were determine dusing a finite element methods (FEM),and verified with experimental measurements. The influence of the surrounding water and tank reflections on the acoustic pressure field, and the interaction between the elements in the array structure were also studied.Finally, the impact of skin and the substrate geometry on the acoustic pressure fields was characterized to simulate the invivo use‐case of the system. These analytical models can be used to guide critical parameters for device design such as the separation distance of the piezoelectric transducer from the skin boundary. We envision that this tool boxwill support rapid design iteration for realization of wearable ultrasound systems.
通过对生物组织施加超声场,可以实现无痛、无针头的皮肤给药。要开发此类系统的可穿戴装置,就必须全面鉴定声波渗透的物理机制和可穿戴性参数。在此,我们提出了一个框架,用于分析聚合物基底中的圆盘型压电传感器,以便在流体耦合介质中产生声空化,从而实现声波渗透应用。利用有限元方法(FEM)确定了设备设计和工作参数,如工作频率、施加电压范围、声压分布和换能器间距,并通过实验测量进行了验证。此外,还研究了周围水和水箱反射对声压场的影响,以及阵列结构中各元件之间的相互作用。最后,研究了皮肤和基底几何形状对声压场的影响,以模拟系统的活体使用情况。这些分析模型可用于指导设备设计的关键参数,如压电传感器与皮肤边界的分离距离。我们设想这个工具箱将为实现可穿戴超声系统的快速设计迭代提供支持。
{"title":"Design Approaches and Electromechanical Modeling of Conformable Piezoelectric‐Based Ultrasound Systems","authors":"Nikta Amiri, Aastha Shah, Amit Bhayadia, C. Yu, M. A. Karami, C. Dagdeviren","doi":"10.1002/adsr.202300175","DOIUrl":"https://doi.org/10.1002/adsr.202300175","url":null,"abstract":"Painless, needleless delivery of drugs through the skin can be realized through aphenomenon called sonophoresis by applying an ultrasound field to the biological tissue. Development of wearable embodiments of such systems demands comprehensive characterization of both the physical mechanism of sonophoresisas well as wearability parameters. Here, we present a framework for analyzing disk‐type piezoelectric transducers in a polymeric substrate to create acoustic cavitation in a fluid coupling medium for sonophoresis applications. The device design and operating parameters such as the working frequency, applied voltage range, acoustic pressure distribution, and transducer spacing were determine dusing a finite element methods (FEM),and verified with experimental measurements. The influence of the surrounding water and tank reflections on the acoustic pressure field, and the interaction between the elements in the array structure were also studied.Finally, the impact of skin and the substrate geometry on the acoustic pressure fields was characterized to simulate the invivo use‐case of the system. These analytical models can be used to guide critical parameters for device design such as the separation distance of the piezoelectric transducer from the skin boundary. We envision that this tool boxwill support rapid design iteration for realization of wearable ultrasound systems.","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141001931","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bromine-Enhanced Organic Materials for X-ray Sensors: Unveiling the Potential of Small Molecules and Polymers through Material Design and Film Fabrication 用于 X 射线传感器的溴增强有机材料:通过材料设计和薄膜制造挖掘小分子和聚合物的潜力
Pub Date : 2024-05-06 DOI: 10.1002/adsr.202400018
Rokas Dobužinskas, Andrius Poškus, Vygintas Jankauskas, Mindaugas Viliūnas, Egidijus Kamarauskas, Marytė Daškevičienė, Vytautas Getautis, Kęstutis Arlauskas, Darius Abramavičius

Organic X-ray sensors are a promising new class of detectors with the potential to revolutionize medical imaging, security screening, and other applications. However, the development of high-performance organic X-ray sensors is challenged by low sensitivity. This paper reports on the development of nine X-ray sensors based on new organic materials. It is demonstrated that the incorporation of bromine atoms into the sidechains of carbazolyl-containing organic molecules significantly enhances their X-ray sensitivity. This research suggests that incorporating a variety of high-atomic-number chemical elements into well-established organic semiconductors is a promising strategy for designing efficient X-ray sensor materials.

有机 X 射线传感器是一类前景广阔的新型探测器,有望彻底改变医疗成像、安检和其他应用。然而,由于灵敏度低,高性能有机 X 射线传感器的开发面临挑战。本文报告了九种基于新型有机材料的 X 射线传感器的开发情况。研究表明,在含咔唑基有机分子的侧链中加入溴原子可显著提高其 X 射线灵敏度。这项研究表明,在成熟的有机半导体中加入各种高原子序数的化学元素,是设计高效 X 射线传感器材料的一种很有前途的策略。
{"title":"Bromine-Enhanced Organic Materials for X-ray Sensors: Unveiling the Potential of Small Molecules and Polymers through Material Design and Film Fabrication","authors":"Rokas Dobužinskas,&nbsp;Andrius Poškus,&nbsp;Vygintas Jankauskas,&nbsp;Mindaugas Viliūnas,&nbsp;Egidijus Kamarauskas,&nbsp;Marytė Daškevičienė,&nbsp;Vytautas Getautis,&nbsp;Kęstutis Arlauskas,&nbsp;Darius Abramavičius","doi":"10.1002/adsr.202400018","DOIUrl":"10.1002/adsr.202400018","url":null,"abstract":"<p>Organic X-ray sensors are a promising new class of detectors with the potential to revolutionize medical imaging, security screening, and other applications. However, the development of high-performance organic X-ray sensors is challenged by low sensitivity. This paper reports on the development of nine X-ray sensors based on new organic materials. It is demonstrated that the incorporation of bromine atoms into the sidechains of carbazolyl-containing organic molecules significantly enhances their X-ray sensitivity. This research suggests that incorporating a variety of high-atomic-number chemical elements into well-established organic semiconductors is a promising strategy for designing efficient X-ray sensor materials.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-05-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400018","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141006029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fiber Optic Assisted Optofluidic Viscometer for Biomedical Applications 用于生物医学应用的光纤辅助光流体粘度计
Pub Date : 2024-04-30 DOI: 10.1002/adsr.202300184
Martino Giaquinto, Brunella Corrado, Anna Aliberti, Andrea Cusano

Optical fiber technology is gaining increasing importance in all those fields requiring reliable, miniaturized, compact, and plug-and-play devices, with a special relevance in life science applications. Here, optical fibers are adopted to measure the fluids viscosity, by detecting the transit time (related to viscosity) of a steel bead moving through the tested fluid in a microfluidic channel under constant pressure. The proposed optofluidic system is designed by defining a theoretical model, here experimentally validated in the viscosity range of 5–110 cP, well resembling main blood flow features. The achieved results demonstrate the capability to work in multi-point and single-point detection modalities with a trade-off between resolution (minimum of 10−1 and 1 cP respectively) and measurement time (tens of seconds and milliseconds range, respectively). An optimum accuracy close to 1.5% has been achieved, with room for further optimization by reducing bead size uncertainty. The proposed platform features simple, low-cost, reliable, and fast measurements and ensures the integration with microfluidics chip in a miniaturized and disposable system. The low volumes required (scalable down to µL range) and the ease of use enable the translation of the proposed platform in clinical scenarios involving real-time blood and plasma viscosity measurements under physiological conditions.

光纤技术在所有需要可靠、微型化、紧凑和即插即用设备的领域中的重要性与日俱增,在生命科学领域的应用更是如此。在这里,我们采用光纤来测量流体的粘度,方法是检测钢珠在恒定压力下通过微流体通道中被测流体的传输时间(与粘度有关)。拟议的光流体系统是通过定义一个理论模型设计的,实验验证的粘度范围为 5-110 cP,与主要血流特征非常相似。实验结果表明,该系统能够在分辨率(最小分别为 10-1 和 1 cP)和测量时间(分别为几十秒和几毫秒)之间进行权衡,采用多点和单点检测模式。最佳精确度已接近 1.5%,还可通过减少珠子大小的不确定性进一步优化。所提出的平台具有测量简单、成本低、可靠和快速的特点,并能确保与微流控芯片集成在一个微型的一次性系统中。该平台所需的体积小(可扩展到 µL 范围),使用方便,可用于生理条件下实时测量血液和血浆粘度的临床应用。
{"title":"Fiber Optic Assisted Optofluidic Viscometer for Biomedical Applications","authors":"Martino Giaquinto,&nbsp;Brunella Corrado,&nbsp;Anna Aliberti,&nbsp;Andrea Cusano","doi":"10.1002/adsr.202300184","DOIUrl":"https://doi.org/10.1002/adsr.202300184","url":null,"abstract":"<p>Optical fiber technology is gaining increasing importance in all those fields requiring reliable, miniaturized, compact, and plug-and-play devices, with a special relevance in life science applications. Here, optical fibers are adopted to measure the fluids viscosity, by detecting the transit time (related to viscosity) of a steel bead moving through the tested fluid in a microfluidic channel under constant pressure. The proposed optofluidic system is designed by defining a theoretical model, here experimentally validated in the viscosity range of 5–110 cP, well resembling main blood flow features. The achieved results demonstrate the capability to work in multi-point and single-point detection modalities with a trade-off between resolution (minimum of 10<sup>−1</sup> and 1 cP respectively) and measurement time (tens of seconds and milliseconds range, respectively). An optimum accuracy close to 1.5% has been achieved, with room for further optimization by reducing bead size uncertainty. The proposed platform features simple, low-cost, reliable, and fast measurements and ensures the integration with microfluidics chip in a miniaturized and disposable system. The low volumes required (scalable down to µL range) and the ease of use enable the translation of the proposed platform in clinical scenarios involving real-time blood and plasma viscosity measurements under physiological conditions.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300184","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141624201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cascade Structured Plasmonic Liquid Crystal Biosensor for the Rapid Detection of Harmful Bacteria Dispersed in Potable Water 用于快速检测饮用水中有害细菌的级联结构质子液晶生物传感器
Pub Date : 2024-04-27 DOI: 10.1002/adsr.202300201
Maria Laura Sforza, Francesca Petronella, Daniela De Biase, Federica Zaccagnini, Seok-In Lim, Usman Akhtar Butt, Antonio d'Alessandro, Nicholas P. Godman, Dean R. Evans, Michael McConney, Kwang-Un Jeong, Luciano De Sio

Pathogenic microorganisms contaminating potable water are a serious water quality concern because they have severe consequences for human and environmental health. Managing water contamination requires the availability of fast and highly sensitive point-of-use detection systems responsive to a wide concentration range. In the present work, this goal is achieved by realizing a cascade-structured biosensor that exploits innovative stimuli-responsive materials such as gold nanorods (AuNRs) and photosensitive nematic liquid crystals (NLCs). The cascade structure is fabricated by interfacing a glass substrate in a back-to-front arrangement, hosting an array of bioactivated AuNRs and an NLC cell. The AuNRs array integrates microfluidic channels, allowing direct water sampling and the analysis of reduced water volumes with high sensitivity. The biosensor combines in the same device two independent optical transducers: a bioactive AuNRs array (plasmonic biosensor), sensitive to refractive index alterations, and an NLC cell that detects the presence of pathogens by responding to light intensity variations. The plasmonic biosensor performs exceptionally well for very low concentrations of bacteria. In contrast, the NLC biosensor works for high-concentration bacteria, thus providing a cascade-like detection system able to detect bacteria in a wide concentration range from 10 to 109 CFU mL−1.

污染饮用水的病原微生物是一个严重的水质问题,因为它们会对人类和环境健康造成严重后果。治理水污染需要快速、高灵敏度的使用点检测系统,以应对较大的浓度范围。本研究利用创新的刺激响应材料,如金纳米棒(AuNRs)和光敏向列液晶(NLCs),实现了级联结构生物传感器。这种级联结构是通过在玻璃基底上以前后排列的方式连接生物活化 AuNRs 阵列和 NLC 单元而制成的。AuNRs 阵列集成了微流控通道,可直接对水进行采样,并以高灵敏度对体积缩小的水进行分析。该生物传感器在同一装置中结合了两个独立的光学传感器:一个是对折射率变化敏感的生物活性 AuNRs 阵列(等离子体生物传感器),另一个是通过响应光强度变化来检测病原体存在的 NLC 细胞。等离子体生物传感器在细菌浓度极低的情况下表现优异。相比之下,NLC 生物传感器可检测高浓度细菌,从而提供了一个级联式检测系统,能够检测 10 至 109 CFU mL-1 宽浓度范围内的细菌。
{"title":"Cascade Structured Plasmonic Liquid Crystal Biosensor for the Rapid Detection of Harmful Bacteria Dispersed in Potable Water","authors":"Maria Laura Sforza,&nbsp;Francesca Petronella,&nbsp;Daniela De Biase,&nbsp;Federica Zaccagnini,&nbsp;Seok-In Lim,&nbsp;Usman Akhtar Butt,&nbsp;Antonio d'Alessandro,&nbsp;Nicholas P. Godman,&nbsp;Dean R. Evans,&nbsp;Michael McConney,&nbsp;Kwang-Un Jeong,&nbsp;Luciano De Sio","doi":"10.1002/adsr.202300201","DOIUrl":"https://doi.org/10.1002/adsr.202300201","url":null,"abstract":"<p>Pathogenic microorganisms contaminating potable water are a serious water quality concern because they have severe consequences for human and environmental health. Managing water contamination requires the availability of fast and highly sensitive point-of-use detection systems responsive to a wide concentration range. In the present work, this goal is achieved by realizing a cascade-structured biosensor that exploits innovative stimuli-responsive materials such as gold nanorods (AuNRs) and photosensitive nematic liquid crystals (NLCs). The cascade structure is fabricated by interfacing a glass substrate in a back-to-front arrangement, hosting an array of bioactivated AuNRs and an NLC cell. The AuNRs array integrates microfluidic channels, allowing direct water sampling and the analysis of reduced water volumes with high sensitivity. The biosensor combines in the same device two independent optical transducers: a bioactive AuNRs array (plasmonic biosensor), sensitive to refractive index alterations, and an NLC cell that detects the presence of pathogens by responding to light intensity variations. The plasmonic biosensor performs exceptionally well for very low concentrations of bacteria. In contrast, the NLC biosensor works for high-concentration bacteria, thus providing a cascade-like detection system able to detect bacteria in a wide concentration range from 10 to 10<sup>9</sup> CFU mL<sup>−1</sup>.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300201","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141968203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Sensor Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1