Hypochlorite (ClO−), an essential reactive oxygen species (ROS) in physiological processes, is identified to be closely connected with oxidative stress and related diseases. Meanwhile, ClO− is a commonly-used disinfector for water treatment, and in public places, under acidic conditions, it's easily decomposed into hypertoxic chlorine gas. Since the strong oxidizing property of ClO−, many oxidizing agents may disturb the ClO− detection. Specific and accurate detection of ClO− with superior sensitivity is a challenge. In this work, a sensing platform for rapid, sensitive, and specific ClO− detection is constructed using green fluorescent carbon dots (G-CDs), with a linear detection range of 0.5–11 µm and a detection limit of 0.233 µm. Moreover, introducing a red fluorescent tripyridinium ruthenium ([Ru(bpy)3]2+) as a reference, a ratiometric fluorescence nanoprobe G-CDs@[Ru(bpy)3]2+ is prepared and shows favorable intracellular imaging of exogenous and endogenous ClO−. With G-CDs@[Ru(bpy)3]2+-based test paper microarrays and a color recognition APP, a smartphone-based sensing system for point-of-care testing of ClO− is also fabricated. In summary, this work proposed a versatile and economical smartphone-based sensing system that featured reliability and simplicity, and suggested its potential applications in environmental water quality monitoring and live cell imaging.
{"title":"A Ratiometric Fluorescent Detection Platform Using G-CDs@[Ru(bpy)3]2+ for the Specific Detection of Hypochlorite and Live Cell Imaging","authors":"Mingcong Rong, Zheng He, Danru Wang, Jiahao Zeng, Qian Liu, Li Niu","doi":"10.1002/adsr.202400014","DOIUrl":"10.1002/adsr.202400014","url":null,"abstract":"<p>Hypochlorite (ClO<sup>−</sup>), an essential reactive oxygen species (ROS) in physiological processes, is identified to be closely connected with oxidative stress and related diseases. Meanwhile, ClO<sup>−</sup> is a commonly-used disinfector for water treatment, and in public places, under acidic conditions, it's easily decomposed into hypertoxic chlorine gas. Since the strong oxidizing property of ClO<sup>−</sup>, many oxidizing agents may disturb the ClO<sup>−</sup> detection. Specific and accurate detection of ClO<sup>−</sup> with superior sensitivity is a challenge. In this work, a sensing platform for rapid, sensitive, and specific ClO<sup>−</sup> detection is constructed using green fluorescent carbon dots (G-CDs), with a linear detection range of 0.5–11 µ<span>m</span> and a detection limit of 0.233 µ<span>m</span>. Moreover, introducing a red fluorescent tripyridinium ruthenium ([Ru(bpy)<sub>3</sub>]<sup>2+</sup>) as a reference, a ratiometric fluorescence nanoprobe G-CDs@[Ru(bpy)<sub>3</sub>]<sup>2+</sup> is prepared and shows favorable intracellular imaging of exogenous and endogenous ClO<sup>−</sup>. With G-CDs@[Ru(bpy)<sub>3</sub>]<sup>2+</sup>-based test paper microarrays and a color recognition APP, a smartphone-based sensing system for point-of-care testing of ClO<sup>−</sup> is also fabricated. In summary, this work proposed a versatile and economical smartphone-based sensing system that featured reliability and simplicity, and suggested its potential applications in environmental water quality monitoring and live cell imaging.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400014","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140670744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Triboelectric nanogenerators (TENGs) are getting popular as biomechanical energy harvesters to power small electronic devices and as self-powered sensors for pressure, motion, vibration, wind, waves, biomedical information, and chemical substance detections. In this study, the TENG is designed with biocompatible materials, and concentrations of its components have been optimized to generate higher power for application as an energy source and tactile sensor. The process involves using metal-organic frameworks (MOFs), namely MIL-125, with high charge-inducing and charge-trapping capabilities incorporated into the commercial Ecoflex matrix. Electrical characterization demonstrated that the sample with 0.25 wt% MIL-125 (0.25%MOF/Ecoflex) is the optimal concentration in the matrix with an output of up to 305 V and 13 µA, respectively. Moreover, the proposed flexible TENG converts mechanical energy to electrical, with a maximum power density of 150 µW cm−2 (1.5 W m−2), which is more than twice superior to the pristine Ecoflex-based counterparts. The TENG shows robust and stable performance without noticeable degradation during continuous 200,000 cyclic testing. Furthermore, 0.25%MOF/Ecoflex TENG can power small electronic devices such as calculators, humidity sensors, and cardiac pacemakers. A robotic gripper trained via machine learning to identify various objects is also successfully developed with a self-powered 0.25%MOF/Ecoflex TENG sensor.
三电纳米发电机(TENGs)作为生物力学能量收集器为小型电子设备供电,以及作为自供电传感器为压力、运动、振动、风、波、生物医学信息和化学物质检测供电,正变得越来越流行。在这项研究中,TENG 的设计采用了生物兼容材料,并优化了其组件的浓度,以产生更高的功率,用作能源和触觉传感器。该工艺涉及使用金属有机框架(MOFs),即 MIL-125,它具有很强的电荷诱导和电荷捕获能力,并融入了商用 Ecoflex 基质中。电学特性分析表明,样品中 0.25 wt% 的 MIL-125(0.25%MOF/Ecoflex)是基质中的最佳浓度,其输出分别高达 305 V 和 13 µA。此外,所提出的柔性 TENG 还能将机械能转化为电能,其最大功率密度为 150 µW cm-2(1.5 W m-2),是基于原始 Ecoflex 的同类产品的两倍多。在连续 20 万次循环测试过程中,TENG 显示出强大而稳定的性能,没有出现明显的性能衰减。此外,0.25%MOF/Ecoflex TENG 还能为计算器、湿度传感器和心脏起搏器等小型电子设备供电。利用自供电的 0.25%MOF/Ecoflex TENG 传感器,通过机器学习训练识别各种物体的机器人抓手也研制成功。
{"title":"Incorporating MIL-125 Metal-Organic Framework for Flexible Triboelectric Nanogenerators and Self-Powered Sensors for Robotic Grippers","authors":"Alibek Kakim, Ayan Nurkesh, Bayandy Sarsembayev, Daniyar Dauletiya, Azat Balapan, Zhumabay Bakenov, Azamat Yeshmukhametov, Gulnur Kalimuldina","doi":"10.1002/adsr.202300163","DOIUrl":"10.1002/adsr.202300163","url":null,"abstract":"<p>Triboelectric nanogenerators (TENGs) are getting popular as biomechanical energy harvesters to power small electronic devices and as self-powered sensors for pressure, motion, vibration, wind, waves, biomedical information, and chemical substance detections. In this study, the TENG is designed with biocompatible materials, and concentrations of its components have been optimized to generate higher power for application as an energy source and tactile sensor. The process involves using metal-organic frameworks (MOFs), namely MIL-125, with high charge-inducing and charge-trapping capabilities incorporated into the commercial Ecoflex matrix. Electrical characterization demonstrated that the sample with 0.25 wt% MIL-125 (0.25%MOF/Ecoflex) is the optimal concentration in the matrix with an output of up to 305 V and 13 µA, respectively. Moreover, the proposed flexible TENG converts mechanical energy to electrical, with a maximum power density of 150 µW cm<sup>−2</sup> (1.5 W m<sup>−2</sup>), which is more than twice superior to the pristine Ecoflex-based counterparts. The TENG shows robust and stable performance without noticeable degradation during continuous 200,000 cyclic testing. Furthermore, 0.25%MOF/Ecoflex TENG can power small electronic devices such as calculators, humidity sensors, and cardiac pacemakers. A robotic gripper trained via machine learning to identify various objects is also successfully developed with a self-powered 0.25%MOF/Ecoflex TENG sensor.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300163","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140670001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eduardo González-Martínez, David A. González-Martínez, Jose M. Moran-Mirabal
Cost-effective miniaturized electrodes that maintain a high electroactive surface area (ESA) are needed for the widespread deployment of point-of-care sensors. Cost-effective methods are recently developed to fabricate nanoroughened microstructured gold electrodes (NR-MSEs) with ultrahigh ESA. In this work, the effectiveness of NR-MSEs for bioelectrochemical enzymatic sensors is evaluated. A glucose sensor is constructed by first casting onto NR-MSEs a solution containing reduced graphene oxide decorated with gold nanoparticles, glucose oxidase, and glutaraldehyde, followed by a solution containing ferrocene, and a layer of chitosan to prevent the leakage of sensor components. A urea biosensor is also fabricated using Nafion as a cationic exchanger for the electropolymerization of polyaniline, followed by the deposition of a composite containing urease, bovine serum albumin, and glutaraldehyde. The limit of quantification for both biosensors is below clinically relevant concentrations of the analytes in biofluids, 0.67 mm for glucose and 1.70 mm for urea. The sensors exhibit excellent performance in complex matrixes (human blood serum and wine for glucose and human blood serum and urine for urea), with recovery for spiked analytes in the range of 92–108%. It is anticipated that NR-MSEs will expedite the development of highly sensitive bioelectrochemical sensors for use in resource-limited settings.
{"title":"Bioelectrochemical Sensing Using Benchtop Fabricated Nanoroughened Microstructured Electrodes","authors":"Eduardo González-Martínez, David A. González-Martínez, Jose M. Moran-Mirabal","doi":"10.1002/adsr.202300210","DOIUrl":"10.1002/adsr.202300210","url":null,"abstract":"<p>Cost-effective miniaturized electrodes that maintain a high electroactive surface area (ESA) are needed for the widespread deployment of point-of-care sensors. Cost-effective methods are recently developed to fabricate nanoroughened microstructured gold electrodes (NR-MSEs) with ultrahigh ESA. In this work, the effectiveness of NR-MSEs for bioelectrochemical enzymatic sensors is evaluated. A glucose sensor is constructed by first casting onto NR-MSEs a solution containing reduced graphene oxide decorated with gold nanoparticles, glucose oxidase, and glutaraldehyde, followed by a solution containing ferrocene, and a layer of chitosan to prevent the leakage of sensor components. A urea biosensor is also fabricated using Nafion as a cationic exchanger for the electropolymerization of polyaniline, followed by the deposition of a composite containing urease, bovine serum albumin, and glutaraldehyde. The limit of quantification for both biosensors is below clinically relevant concentrations of the analytes in biofluids, 0.67 m<span>m</span> for glucose and 1.70 m<span>m</span> for urea. The sensors exhibit excellent performance in complex matrixes (human blood serum and wine for glucose and human blood serum and urine for urea), with recovery for spiked analytes in the range of 92–108%. It is anticipated that NR-MSEs will expedite the development of highly sensitive bioelectrochemical sensors for use in resource-limited settings.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300210","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140677503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kavya L. Singampalli, Camille Neal – Harris, Cassian Yee, Jamie S. Lin, Peter B. Lillehoj
The detection and quantification of protein biomarkers in bodily fluids is important for many clinical applications, including disease diagnosis and health monitoring. Current techniques for ultrasensitive protein detection, such as enzyme-linked immunosorbent assay (ELISA) and electrochemical sensing, involve long incubation times (1.5–3 h) and rely on single-use sensing electrodes which can be costly and generate excessive waste. This work demonstrates a reusable electrochemical immunosensor employing magnetic nanoparticles (MNPs) and dually labeled gold nanoparticles (AuNPs) for ultrasensitive measurements of protein biomarkers. As proof of concept, this platform is used to detect C-X-C motif chemokine ligand 9 (CXCL9), a biomarker associated with kidney transplant rejection, immune nephritis from checkpoint inhibitor therapy, and drug-associated acute interstitial nephritis, in human urine. The sensor successfully detects CXCL9 at concentrations as low as 27 pg mL−1 within ≈1 h. This immunosensor was also adapted onto a handheld smartphone-based diagnostic device and used for measurements of CXCL9, which exhibited a lower limit of detection of 65 pg mL−1. Lastly, this work demonstrates that the sensing electrodes can be reused for at least 100 measurements with a negligible loss in analytical performance, reducing the costs and waste associated with electrochemical sensing.
{"title":"Highly Reusable Electrochemical Immunosensor for Ultrasensitive Protein Detection","authors":"Kavya L. Singampalli, Camille Neal – Harris, Cassian Yee, Jamie S. Lin, Peter B. Lillehoj","doi":"10.1002/adsr.202400004","DOIUrl":"10.1002/adsr.202400004","url":null,"abstract":"<p>The detection and quantification of protein biomarkers in bodily fluids is important for many clinical applications, including disease diagnosis and health monitoring. Current techniques for ultrasensitive protein detection, such as enzyme-linked immunosorbent assay (ELISA) and electrochemical sensing, involve long incubation times (1.5–3 h) and rely on single-use sensing electrodes which can be costly and generate excessive waste. This work demonstrates a reusable electrochemical immunosensor employing magnetic nanoparticles (MNPs) and dually labeled gold nanoparticles (AuNPs) for ultrasensitive measurements of protein biomarkers. As proof of concept, this platform is used to detect C-X-C motif chemokine ligand 9 (CXCL9), a biomarker associated with kidney transplant rejection, immune nephritis from checkpoint inhibitor therapy, and drug-associated acute interstitial nephritis, in human urine. The sensor successfully detects CXCL9 at concentrations as low as 27 pg mL<sup>−1</sup> within ≈1 h. This immunosensor was also adapted onto a handheld smartphone-based diagnostic device and used for measurements of CXCL9, which exhibited a lower limit of detection of 65 pg mL<sup>−1</sup>. Lastly, this work demonstrates that the sensing electrodes can be reused for at least 100 measurements with a negligible loss in analytical performance, reducing the costs and waste associated with electrochemical sensing.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400004","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140675455","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ultrasound (US), as a non-invasive mechanical wave, has served as a visual tool for medical diagnosis and therapy for echolocation effect, cavitation effect, thermal effect, and generation of reactive oxygen species (ROS) with the aid of sonosensitizers. This review summarizes the history, effects, and biomedical applications of US, and US-assisted cancer therapy is highlighted. The rational combination of US with near-infrared afterglow nanoparticles, anti-tumor prodrugs, and stimuli-responsive nanocarriers, demonstrates the great promise for bioimaging, cancer therapy, and drug delivery, promoting US-related technology in biomedical diagnosis and therapeutics.
超声波(US)作为一种非侵入性机械波,在回声定位效应、空化效应、热效应以及借助声敏化剂产生活性氧(ROS)等方面,已成为医疗诊断和治疗的可视化工具。这篇综述总结了 US 的历史、效果和生物医学应用,并重点介绍了 US 辅助癌症治疗。将 US 与近红外余辉纳米粒子、抗肿瘤原药和刺激响应纳米载体合理结合,显示了 US 在生物成像、癌症治疗和药物输送方面的巨大前景,促进了 US 相关技术在生物医学诊断和治疗中的应用。
{"title":"Effects of Ultrasound for Bio-Applications","authors":"Likai Yuan, Qianqian Li, Zhen Li","doi":"10.1002/adsr.202300199","DOIUrl":"10.1002/adsr.202300199","url":null,"abstract":"<p>Ultrasound (US), as a non-invasive mechanical wave, has served as a visual tool for medical diagnosis and therapy for echolocation effect, cavitation effect, thermal effect, and generation of reactive oxygen species (ROS) with the aid of sonosensitizers. This review summarizes the history, effects, and biomedical applications of US, and US-assisted cancer therapy is highlighted. The rational combination of US with near-infrared afterglow nanoparticles, anti-tumor prodrugs, and stimuli-responsive nanocarriers, demonstrates the great promise for bioimaging, cancer therapy, and drug delivery, promoting US-related technology in biomedical diagnosis and therapeutics.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300199","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140693403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Human tactile perception involves the activation of mechanoreceptors located within the skin in response to external stimuli, along with the organization and processing within the brain. However, human sensations may be subject to the issues related to some physiological factors (such as skin injury or neurasthenia), resulting in inability to quantify tactile information. To address this challenge, a novel bio-inspired artificial tactile (BAT) sensing system enabled by the integration of optical microfiber (OM) with full-connected neural network (FCNN) in this paper is demonstrated, inspired by human physiological characteristics and tactile mechanisms. In this system, the BAT sensor mimics human skin, where the OM serves as the mechanoreceptor for sensing tactile stimuli, while the FCNN functions as a simulated human brain to train and extract the signal characteristics for intelligent object recognition. The experimental results indicate that the proposed BAT sensor can sensitively respond to both the contact force (static tactile stimuli), as well as the vibrotactile events (dynamic tactile stimuli) for the recognition of regular textures. Furthermore, by integrating the trained FCNN, the BAT sensing system accurately identifies various intricate surface textures with an exceptional accuracy of 95.7%, highlighting its potential in next-generation human-machine interaction and advanced robotics.
人类的触觉感知包括位于皮肤内的机械感受器对外界刺激的激活,以及大脑的组织和处理。然而,人类的感觉可能会受到一些生理因素(如皮肤损伤或神经衰弱)的影响,导致无法量化触觉信息。为了应对这一挑战,本文展示了一种新型生物启发人工触觉(BAT)传感系统,该系统由光学微纤维(OM)与全连接神经网络(FCNN)集成而成,其灵感来源于人体生理特征和触觉机制。在该系统中,BAT 传感器模拟人体皮肤,其中 OM 充当机械感受器,用于感知触觉刺激,而 FCNN 则充当模拟人脑,用于训练和提取信号特征,从而实现智能物体识别。实验结果表明,所提出的 BAT 传感器能够灵敏地响应接触力(静态触觉刺激)和振动触觉事件(动态触觉刺激),从而识别规则纹理。此外,通过集成训练有素的 FCNN,BAT 传感系统能准确识别各种复杂的表面纹理,准确率高达 95.7%,这凸显了其在下一代人机交互和先进机器人技术中的潜力。
{"title":"A Bio-Inspired Artificial Tactile Sensing System Based on Optical Microfiber and Enhanced by Neural Network","authors":"Junjie Weng, Siyang Xiao, Yang Yu, Jianfa Zhang, Jian Chen, Dongying Wang, Zhencheng Wang, Jianqiao Liang, Hansi Ma, Junbo Yang, Tianwu Wang, Zhenrong Zhang","doi":"10.1002/adsr.202300157","DOIUrl":"10.1002/adsr.202300157","url":null,"abstract":"<p>Human tactile perception involves the activation of mechanoreceptors located within the skin in response to external stimuli, along with the organization and processing within the brain. However, human sensations may be subject to the issues related to some physiological factors (such as skin injury or neurasthenia), resulting in inability to quantify tactile information. To address this challenge, a novel bio-inspired artificial tactile (BAT) sensing system enabled by the integration of optical microfiber (OM) with full-connected neural network (FCNN) in this paper is demonstrated, inspired by human physiological characteristics and tactile mechanisms. In this system, the BAT sensor mimics human skin, where the OM serves as the mechanoreceptor for sensing tactile stimuli, while the FCNN functions as a simulated human brain to train and extract the signal characteristics for intelligent object recognition. The experimental results indicate that the proposed BAT sensor can sensitively respond to both the contact force (static tactile stimuli), as well as the vibrotactile events (dynamic tactile stimuli) for the recognition of regular textures. Furthermore, by integrating the trained FCNN, the BAT sensing system accurately identifies various intricate surface textures with an exceptional accuracy of 95.7%, highlighting its potential in next-generation human-machine interaction and advanced robotics.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300157","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140690897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sensors stand as pivotal cornerstones of technology, driving progress across a spectrum of industries through their ability to precisely capture and interpret an extensive array of physical phenomena. Among these advancements, microwave photonic (MWP) sensing has emerged as a new sensing technique, elevating sensing speed and resolution for practical applications. Integrated MWP sensors exhibit unparalleled capabilities in ultra-sensitive, label-free nanoscale detection, offering the potential to synergize with advanced integration techniques for a compact footprint and versatile designs. This paper reviews and summarizes the development and recent advances in integrated MWP sensing, focusing on the schemes based on microresonators. The diverse array of existing schemes is systematically categorized, elucidating their operational principles and performance demonstration. Furthermore, the assistance of machine learning and deep learning in integrated MWP sensors is explored, highlighting the potential of intelligent sensing paradigms. Finally, current challenges and opportunities aimed at further advancing MWP sensors are discussed.
{"title":"Integrated Microwave Photonic Sensors Based on Microresonators","authors":"Xiaoyi Tian, Liwei Li, Linh Nguyen, Xiaoke Yi","doi":"10.1002/adsr.202300145","DOIUrl":"10.1002/adsr.202300145","url":null,"abstract":"<p>Sensors stand as pivotal cornerstones of technology, driving progress across a spectrum of industries through their ability to precisely capture and interpret an extensive array of physical phenomena. Among these advancements, microwave photonic (MWP) sensing has emerged as a new sensing technique, elevating sensing speed and resolution for practical applications. Integrated MWP sensors exhibit unparalleled capabilities in ultra-sensitive, label-free nanoscale detection, offering the potential to synergize with advanced integration techniques for a compact footprint and versatile designs. This paper reviews and summarizes the development and recent advances in integrated MWP sensing, focusing on the schemes based on microresonators. The diverse array of existing schemes is systematically categorized, elucidating their operational principles and performance demonstration. Furthermore, the assistance of machine learning and deep learning in integrated MWP sensors is explored, highlighting the potential of intelligent sensing paradigms. Finally, current challenges and opportunities aimed at further advancing MWP sensors are discussed.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300145","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140692341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rayan Al Sayed Ali, Nader Shafi, Fatima Asadallah, Rachel Njeim, Habib Al Kalamouni, Hassan Zaraket, Rouwaida Kanj, Assaad Eid, Joseph Costantine, Youssef Tawk
SARS-CoV-2 Sensing and Detection
In article 2300135, Youssef Tawk and co-workers introduce an advanced portable device that leverages electromagnetic waves and data analytics to instantaneously detect and differentiate between the SARS-CoV-2 virus and different respiratory viruses. It employs a radio frequency (RF) circuit to electromagnetically identify virus signatures in diluted nasopharyngeal swabs with a detection accuracy of 94%, a sensitivity of 95%, and a specificity of 97.5%.