首页 > 最新文献

Advanced Sensor Research最新文献

英文 中文
Corrole Polymers as a Novel Materials for Room Temperature Resistive Gas Sensors 作为室温电阻式气体传感器新型材料的丙烯醛聚合物
Pub Date : 2024-05-31 DOI: 10.1002/adsr.202400005
Lorena Di Zazzo, Ilaria di Filippo, Lorenzo Guido, Gabriele Magna, Larisa Lvova, Fabrizio Caroleo, Manuela Stefanelli, Leonardo Duranti, Sara Nardis, Corrado Di Natale, Roberto Paolesse

Corroles, a family of contracted porphyrinoids, exhibit broad chemical interactions, undergo straightforward synthetic preparation and functionalization, and enable versatile thin film deposition. These attributes render them promising candidates for use in chemical sensors. Nevertheless, the inherently limited conductivity of corrole solid films constrains their application in mass and optical sensors. Despite this impediment, there is a great interest in matching the sensitive properties of the corrole with the features of facile miniaturization and integration into low-cost electronic circuits. This work explores the possibility of directly and simply depositing conductometric polymeric films of [5,10,15-(4-aminophenyl)corrolato] copper onto interdigitated electrodes. Remarkably, the electropolymerization protocol allows the selection of the semiconductive nature (p- or n-type) of these films, yielding two distinct sensor types: the former exhibiting high sensitivity and selectivity toward nitrogen monoxide (NO) with a slight influence of relative humidity and the other manifesting a broad spectrum of sensitivities. This breakthrough lays the foundation for developing miniaturized conductometric gas detectors, nonlinear conductometric sensing elements, and electronic nose platforms based on polycorroles.

科罗莱是一种收缩卟啉类化合物,具有广泛的化学相互作用,可直接进行合成制备和功能化,并可进行多功能薄膜沉积。这些特性使它们成为化学传感器的理想候选材料。然而,由于珊瑚虫固体薄膜本身的导电性有限,限制了它们在质量和光学传感器中的应用。尽管存在这一障碍,但人们仍对如何将珊瑚虫的敏感特性与易于微型化和集成到低成本电子电路中的特性相匹配产生了浓厚的兴趣。这项研究探索了将[5,10,15-(4-氨基苯基)珊瑚酸铜]导电聚合物薄膜直接简单地沉积到相互咬合电极上的可能性。值得注意的是,电聚合协议允许选择这些薄膜的半导体性质(p 型或 n 型),从而产生两种不同类型的传感器:前者对一氧化氮(NO)具有高灵敏度和选择性,受相对湿度的影响较小;而后者则具有广泛的灵敏度范围。这一突破为开发微型电导气体探测器、非线性电导传感元件和基于聚碳酸酯的电子鼻平台奠定了基础。
{"title":"Corrole Polymers as a Novel Materials for Room Temperature Resistive Gas Sensors","authors":"Lorena Di Zazzo,&nbsp;Ilaria di Filippo,&nbsp;Lorenzo Guido,&nbsp;Gabriele Magna,&nbsp;Larisa Lvova,&nbsp;Fabrizio Caroleo,&nbsp;Manuela Stefanelli,&nbsp;Leonardo Duranti,&nbsp;Sara Nardis,&nbsp;Corrado Di Natale,&nbsp;Roberto Paolesse","doi":"10.1002/adsr.202400005","DOIUrl":"https://doi.org/10.1002/adsr.202400005","url":null,"abstract":"<p>Corroles, a family of contracted porphyrinoids, exhibit broad chemical interactions, undergo straightforward synthetic preparation and functionalization, and enable versatile thin film deposition. These attributes render them promising candidates for use in chemical sensors. Nevertheless, the inherently limited conductivity of corrole solid films constrains their application in mass and optical sensors. Despite this impediment, there is a great interest in matching the sensitive properties of the corrole with the features of facile miniaturization and integration into low-cost electronic circuits. This work explores the possibility of directly and simply depositing conductometric polymeric films of [5,10,15-(4-aminophenyl)corrolato] copper onto interdigitated electrodes. Remarkably, the electropolymerization protocol allows the selection of the semiconductive nature (p- or n-type) of these films, yielding two distinct sensor types: the former exhibiting high sensitivity and selectivity toward nitrogen monoxide (NO) with a slight influence of relative humidity and the other manifesting a broad spectrum of sensitivities. This breakthrough lays the foundation for developing miniaturized conductometric gas detectors, nonlinear conductometric sensing elements, and electronic nose platforms based on polycorroles.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400005","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142404857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pad Printing of Carbon Electrodes with Argon Plasma Activation as a Simple and Low Temperature Manufacturing Process for Antibody-Type Biosensors 氩等离子活化碳电极的移印技术,作为抗体型生物传感器的一种简单低温制造工艺
Pub Date : 2024-05-30 DOI: 10.1002/adsr.202400015
Enrico Condemi, Joanna Kunikowski, Spyridon Schoinas, Philippe Passeraub

In diagnostic tools, rapid in vitro tests such as COVID-19 antigen or pregnancy tests are gaining significance for identifying various pathologies or health conditions. This shift contributes to a change in the way diagnostic efforts are carried out, emphasizing decentralized approaches that offer valuable services within communities, yielding long-term advantages for the healthcare system. Considering the substantial quantity of these tests manufactured and used annually, a straightforward manufacturing process is proposed for highly sensitive carbon electrodes designed for antibody-type biomarker sensors. This process, utilizing pad printing – an additive, low-temperature, and cost-effective method, coupled with plasma activation – has proven the electrodes capability to measure interferon gamma protein, a tuberculosis biomarker. Using electrochemical impedance spectroscopy, the electrodes display high sensitivity and are capable of measuring concentrations from 10 to 1000 pg mL−1 in undiluted serum within an hour. The sensor, utilizing solely a monolayer of antibodies, achieves a performance equivalent to that of a commercial standard sandwich ELISA tested in this study.

在诊断工具方面,COVID-19 抗原或妊娠测试等快速体外测试在确定各种病症或健康状况方面的重要性日益凸显。这种转变有助于改变诊断工作的方式,强调在社区内提供有价值服务的分散方法,从而为医疗保健系统带来长期优势。考虑到每年生产和使用大量此类检测试剂,我们提出了一种用于抗体型生物标记传感器的高灵敏度碳电极的直接制造工艺。该工艺利用移印技术--一种添加剂、低温、低成本的方法,再加上等离子活化--证明了电极测量干扰素γ蛋白(一种结核病生物标记物)的能力。利用电化学阻抗光谱法,电极显示出很高的灵敏度,能够在一小时内测量未稀释血清中 10 至 1000 pg mL-1 的浓度。该传感器仅使用了一层抗体,其性能与本研究中测试的商用标准夹心酶联免疫吸附法相当。
{"title":"Pad Printing of Carbon Electrodes with Argon Plasma Activation as a Simple and Low Temperature Manufacturing Process for Antibody-Type Biosensors","authors":"Enrico Condemi,&nbsp;Joanna Kunikowski,&nbsp;Spyridon Schoinas,&nbsp;Philippe Passeraub","doi":"10.1002/adsr.202400015","DOIUrl":"https://doi.org/10.1002/adsr.202400015","url":null,"abstract":"<p>In diagnostic tools, rapid in vitro tests such as COVID-19 antigen or pregnancy tests are gaining significance for identifying various pathologies or health conditions. This shift contributes to a change in the way diagnostic efforts are carried out, emphasizing decentralized approaches that offer valuable services within communities, yielding long-term advantages for the healthcare system. Considering the substantial quantity of these tests manufactured and used annually, a straightforward manufacturing process is proposed for highly sensitive carbon electrodes designed for antibody-type biomarker sensors. This process, utilizing pad printing – an additive, low-temperature, and cost-effective method, coupled with plasma activation – has proven the electrodes capability to measure interferon gamma protein, a tuberculosis biomarker. Using electrochemical impedance spectroscopy, the electrodes display high sensitivity and are capable of measuring concentrations from 10 to 1000 pg mL<sup>−1</sup> in undiluted serum within an hour. The sensor, utilizing solely a monolayer of antibodies, achieves a performance equivalent to that of a commercial standard sandwich ELISA tested in this study.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400015","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pencil-Lead-Based Quasi-Equilibrium Glucose Biosensors 基于铅笔铅的准平衡葡萄糖生物传感器
Pub Date : 2024-05-27 DOI: 10.1002/adsr.202400024
Svetlana Shachneva, Anna Lielpetere, Wolfgang Schuhmann

Foreign body response is the main reason for the limited lifetime of implantable glucose biosensors. A new measurement strategy exerting minimal disturbance from the equilibrium glucose concentration in the sensor compartment has been proposed to mitigate its adverse effects on the sensor signal. Here, a new measurement strategy using automatically fabricated and robust pencil-lead-based glucose biosensors is implemented. The sensor response depends on critical parameters such as redox-polymer film thickness, film uniformity, rigidity, polymer composition, and the ratio between the enzyme and the polymer. These parameters are controlled by introducing a short-chain redox polymer, a low crosslinker amount, a short-chain electrografting agent and linker, pulse electrografting, and an automated fabrication procedure.

异物反应是植入式葡萄糖生物传感器寿命有限的主要原因。为了减轻异物对传感器信号的不利影响,有人提出了一种新的测量策略,即尽量减少对传感器腔体内葡萄糖平衡浓度的干扰。在这里,使用自动制造的坚固铅笔芯式葡萄糖生物传感器实现了一种新的测量策略。传感器的响应取决于关键参数,如氧化还原聚合物薄膜厚度、薄膜均匀性、刚性、聚合物成分以及酶和聚合物之间的比例。这些参数可通过引入短链氧化还原聚合物、低量交联剂、短链电接枝剂和连接剂、脉冲电接枝和自动化制造程序加以控制。
{"title":"Pencil-Lead-Based Quasi-Equilibrium Glucose Biosensors","authors":"Svetlana Shachneva,&nbsp;Anna Lielpetere,&nbsp;Wolfgang Schuhmann","doi":"10.1002/adsr.202400024","DOIUrl":"https://doi.org/10.1002/adsr.202400024","url":null,"abstract":"<p>Foreign body response is the main reason for the limited lifetime of implantable glucose biosensors. A new measurement strategy exerting minimal disturbance from the equilibrium glucose concentration in the sensor compartment has been proposed to mitigate its adverse effects on the sensor signal. Here, a new measurement strategy using automatically fabricated and robust pencil-lead-based glucose biosensors is implemented. The sensor response depends on critical parameters such as redox-polymer film thickness, film uniformity, rigidity, polymer composition, and the ratio between the enzyme and the polymer. These parameters are controlled by introducing a short-chain redox polymer, a low crosslinker amount, a short-chain electrografting agent and linker, pulse electrografting, and an automated fabrication procedure.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400024","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142170311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
All Solid Photonic Crystal Fiber Enabled by 3D Printing Fiber Technology for Sensing of Multiple Parameters 利用 3D 打印光纤技术实现全固态光子晶体光纤,用于传感多种参数
Pub Date : 2024-05-24 DOI: 10.1002/adsr.202300205
Yanhua Luo, Yushi Chu, Jiaying Wang, Xinghu Fu, John Canning, Yang Cao, Haoyu Pan, Yongxiang Zhang, Jianzhong Zhang, Binbin Yan, Jianxiang Wen, Tingyun Wang, Xiaohong Sun, Gang-Ding Peng

Using the flexibility and diversity of material and structure designs possible with 3D printing fiber technology, an all-solid photonic crystal fiber (PCF) is fabricated using borate (B2O3) doping. The geometry, material, and optical properties of this 3D printed PCF are characterized and analyzed using optical microscopy, scanning electron microscopy (SEM), fiber index profilometry, and Fourier transform infrared (FTIR) microscopy. Analysis demonstrates that B2O3 doped in fabricated PCF has experienced evaporation leading to mass loss during drawing. In addition, there is no observable difference between the structure of substrate silica (SiO2) and the SiO2 nanoparticles. However, microdomain differences may explain enhanced reflectance. Furthermore, a Mach–Zehnder interferometer (MZI) sensor is constructed with this 3D printed solid PCF and applied to temperature, refractive index, tensile force, and bending sensing. The specially designed 3D printed PCF has maximum temperature sensitivity up to ΔλT ≈0.075 nm °C−1. When immersed in 76.34 wt.% glycerol-water solution, the sensitivity can be further improved. These results demonstrate that 3D printing fiber technology enables the custom fabrication of highly sensitive optical fiber sensors, increasing opportunities for the development of diverse and flexible sensors and devices for future internet-of-things (IoT) applications.

利用三维打印光纤技术在材料和结构设计方面的灵活性和多样性,采用掺杂硼酸盐(B2O3)的方法制造出了全固态光子晶体光纤(PCF)。利用光学显微镜、扫描电子显微镜 (SEM)、光纤索引轮廓仪和傅立叶变换红外 (FTIR) 显微镜对这种 3D 打印 PCF 的几何形状、材料和光学特性进行了表征和分析。分析表明,掺杂在制造的 PCF 中的 B2O3 在拉丝过程中发生了蒸发,导致质量损失。此外,基底二氧化硅(SiO2)和二氧化硅纳米颗粒的结构之间没有明显差异。不过,微域差异可能是反射率增强的原因。此外,还利用这种三维打印固体 PCF 构建了马赫-泽恩德干涉仪(MZI)传感器,并将其应用于温度、折射率、拉力和弯曲传感。专门设计的三维打印 PCF 的最大温度灵敏度可达 Δλ/ΔT ≈0.075 nm °C-1。当浸入重量百分比为 76.34 的甘油-水溶液中时,灵敏度可进一步提高。这些结果表明,3D 打印光纤技术能够定制制造高灵敏度光纤传感器,为未来物联网(IoT)应用领域开发多样化、灵活的传感器和设备提供了更多机会。
{"title":"All Solid Photonic Crystal Fiber Enabled by 3D Printing Fiber Technology for Sensing of Multiple Parameters","authors":"Yanhua Luo,&nbsp;Yushi Chu,&nbsp;Jiaying Wang,&nbsp;Xinghu Fu,&nbsp;John Canning,&nbsp;Yang Cao,&nbsp;Haoyu Pan,&nbsp;Yongxiang Zhang,&nbsp;Jianzhong Zhang,&nbsp;Binbin Yan,&nbsp;Jianxiang Wen,&nbsp;Tingyun Wang,&nbsp;Xiaohong Sun,&nbsp;Gang-Ding Peng","doi":"10.1002/adsr.202300205","DOIUrl":"10.1002/adsr.202300205","url":null,"abstract":"<p>Using the flexibility and diversity of material and structure designs possible with 3D printing fiber technology, an all-solid photonic crystal fiber (PCF) is fabricated using borate (B<sub>2</sub>O<sub>3</sub>) doping. The geometry, material, and optical properties of this 3D printed PCF are characterized and analyzed using optical microscopy, scanning electron microscopy (SEM), fiber index profilometry, and Fourier transform infrared (FTIR) microscopy. Analysis demonstrates that B<sub>2</sub>O<sub>3</sub> doped in fabricated PCF has experienced evaporation leading to mass loss during drawing. In addition, there is no observable difference between the structure of substrate silica (SiO<sub>2</sub>) and the SiO<sub>2</sub> nanoparticles. However, microdomain differences may explain enhanced reflectance. Furthermore, a Mach–Zehnder interferometer (MZI) sensor is constructed with this 3D printed solid PCF and applied to temperature, refractive index, tensile force, and bending sensing. The specially designed 3D printed PCF has maximum temperature sensitivity up to Δ<i>λ</i>/Δ<i>T</i> ≈0.075 nm °C<sup>−1</sup>. When immersed in 76.34 wt.% glycerol-water solution, the sensitivity can be further improved. These results demonstrate that 3D printing fiber technology enables the custom fabrication of highly sensitive optical fiber sensors, increasing opportunities for the development of diverse and flexible sensors and devices for future internet-of-things (IoT) applications.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 11","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300205","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141100774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Metal Electroplating for Energy Storage by Quartz Crystal Microbalance: A Review 利用石英晶体微天平探索金属电镀储能技术:综述
Pub Date : 2024-05-20 DOI: 10.1002/adsr.202400025
Viktor Vanoppen, Diethelm Johannsmann, Xu Hou, Jens Sjölund, Peter Broqvist, Erik J. Berg

The development and application of Electrochemical Quartz Crystal Microbalance (EQCM) sensing to study metal electroplating, especially for energy storage purposes, are reviewed. The roles of EQCM in describing electrode/electrolyte interface dynamics, such as the electric double-layer build-up, ionic/molecular adsorption, metal nucleation, and growth, are addressed. Modeling of the QCM sensor is introduced and its importance is emphasized. Challenges of metal electrode use, including side reactions and dendrite formation, along with their mitigation strategies are reviewed. Numerous factors affecting the electroplating processes, such as electrolyte composition, additives, temperature, and current density, and their influence on the electroplated metals’ mass, structural, and mechanical characteristics are discussed. Looking forward, the need for deeper fundamental understanding and advancing simulations of the QCM signal response as a result of electroplating metal nanostructures is stressed. Further development and integration of innovative EQCM-strategies will provide unique future means to fundamentally understand and optimize metal electroplating for energy storage and application alike.

本文回顾了电化学石英晶体微天平 (EQCM) 传感在研究金属电镀(尤其是用于储能目的)方面的发展和应用。探讨了 EQCM 在描述电极/电解质界面动力学方面的作用,例如电双层堆积、离子/分子吸附、金属成核和生长。介绍了 QCM 传感器的建模,并强调了其重要性。综述了使用金属电极所面临的挑战,包括副反应和枝晶的形成及其缓解策略。讨论了影响电镀过程的众多因素,如电解液成分、添加剂、温度和电流密度,以及它们对电镀金属的质量、结构和机械特性的影响。展望未来,我们强调有必要加深对电镀金属纳米结构所产生的 QCM 信号响应的基本理解并推进模拟。进一步开发和整合创新的 EQCM 策略将为从根本上理解和优化金属电镀的能量存储和应用提供独特的未来手段。
{"title":"Exploring Metal Electroplating for Energy Storage by Quartz Crystal Microbalance: A Review","authors":"Viktor Vanoppen,&nbsp;Diethelm Johannsmann,&nbsp;Xu Hou,&nbsp;Jens Sjölund,&nbsp;Peter Broqvist,&nbsp;Erik J. Berg","doi":"10.1002/adsr.202400025","DOIUrl":"10.1002/adsr.202400025","url":null,"abstract":"<p>The development and application of Electrochemical Quartz Crystal Microbalance (EQCM) sensing to study metal electroplating, especially for energy storage purposes, are reviewed. The roles of EQCM in describing electrode/electrolyte interface dynamics, such as the electric double-layer build-up, ionic/molecular adsorption, metal nucleation, and growth, are addressed. Modeling of the QCM sensor is introduced and its importance is emphasized. Challenges of metal electrode use, including side reactions and dendrite formation, along with their mitigation strategies are reviewed. Numerous factors affecting the electroplating processes, such as electrolyte composition, additives, temperature, and current density, and their influence on the electroplated metals’ mass, structural, and mechanical characteristics are discussed. Looking forward, the need for deeper fundamental understanding and advancing simulations of the QCM signal response as a result of electroplating metal nanostructures is stressed. Further development and integration of innovative EQCM-strategies will provide unique future means to fundamentally understand and optimize metal electroplating for energy storage and application alike.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400025","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141120819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Smart Hydrogel Sensors for Health Monitoring and Early Warning 用于健康监测和预警的智能水凝胶传感器
Pub Date : 2024-05-14 DOI: 10.1002/adsr.202400003
Kang Wang, Junhui Zhang, Heng Li, Jingzhi Wu, Qiwu Wan, Taiju Chen, Wenjing Liu, Hai Peng, Hong Zhang, Yang Luo

Smart hydrogel sensors, functioning as implantable devices, play a vital role in health monitoring and early warning, overcoming the limitations of conventional clinical methods to achieve direct, continuous, and precise monitoring. Widely employed across various biomedical fields, these sensors offer unique advantages for early health monitoring, ensuring direct, continuous, and highly accurate monitoring. In addition to detecting biomolecules, smart hydrogel sensors, with their flexibility and biocompatibility, monitor disease-specific markers, offer insights into disease progression, and contribute to the early identification of diseases. This article provides a comprehensive review of the types of hydrogel sensors employed in human health monitoring. The study discusses recent advancements in smart hydrogel sensor research, aiming to offer promising methods for human health monitoring. Finally, the paper outlines prospective research directions for hydrogel sensors in the field of human health monitoring. While further research and clinical validation are essential, hydrogel sensors are poised to play a pivotal role in clinical applications, furnishing people with accurate and continuous health monitoring.

智能水凝胶传感器作为植入式设备,在健康监测和早期预警方面发挥着重要作用,克服了传统临床方法的局限性,实现了直接、连续和精确的监测。这些传感器广泛应用于各个生物医学领域,为早期健康监测提供了独特的优势,确保了直接、连续和高度精确的监测。除了检测生物分子外,智能水凝胶传感器还具有灵活性和生物相容性,可监测疾病特异性标志物,洞察疾病进展,有助于疾病的早期识别。本文全面综述了用于人体健康监测的水凝胶传感器类型。研究讨论了智能水凝胶传感器研究的最新进展,旨在为人体健康监测提供有前景的方法。最后,本文概述了水凝胶传感器在人体健康监测领域的前瞻性研究方向。虽然进一步的研究和临床验证至关重要,但水凝胶传感器有望在临床应用中发挥关键作用,为人们提供准确、持续的健康监测。
{"title":"Smart Hydrogel Sensors for Health Monitoring and Early Warning","authors":"Kang Wang,&nbsp;Junhui Zhang,&nbsp;Heng Li,&nbsp;Jingzhi Wu,&nbsp;Qiwu Wan,&nbsp;Taiju Chen,&nbsp;Wenjing Liu,&nbsp;Hai Peng,&nbsp;Hong Zhang,&nbsp;Yang Luo","doi":"10.1002/adsr.202400003","DOIUrl":"10.1002/adsr.202400003","url":null,"abstract":"<p>Smart hydrogel sensors, functioning as implantable devices, play a vital role in health monitoring and early warning, overcoming the limitations of conventional clinical methods to achieve direct, continuous, and precise monitoring. Widely employed across various biomedical fields, these sensors offer unique advantages for early health monitoring, ensuring direct, continuous, and highly accurate monitoring. In addition to detecting biomolecules, smart hydrogel sensors, with their flexibility and biocompatibility, monitor disease-specific markers, offer insights into disease progression, and contribute to the early identification of diseases. This article provides a comprehensive review of the types of hydrogel sensors employed in human health monitoring. The study discusses recent advancements in smart hydrogel sensor research, aiming to offer promising methods for human health monitoring. Finally, the paper outlines prospective research directions for hydrogel sensors in the field of human health monitoring. While further research and clinical validation are essential, hydrogel sensors are poised to play a pivotal role in clinical applications, furnishing people with accurate and continuous health monitoring.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 9","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400003","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140979367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diagnosis of Serous Effusion with Intelligent Imaging Flow Cytometry 利用智能成像流式细胞仪诊断浆液性积液
Pub Date : 2024-05-13 DOI: 10.1002/adsr.202300183
Mengping Long, Yueyun Weng, Liye Mei, Dingchao Yang, Shubin Wei, Guanxiong Meng, Wanyue Zhao, Sheng Liu, Du Wang, Yiqiang Liu, Hui Shen, Jianxuan Hou, Yu Xu, Liang Tao, Fuling Zhou, Hongwei Chen, Taobo Hu, Cheng Lei

A serous effusion is a buildup of extra fluid in the serous cavities including pleural, peritoneal, and pericardial cavities. It is important to distinguish benign reactive effusions from effusions caused by malignant proliferation in cytopathology since different diagnoses can lead to completely different disease staging and therapeutic choices. The conventional cytopathology procedure has the disadvantages of low throughput and low objectivity. To enhance the efficiency and accuracy of malignant serous effusion diagnosis, in this paper, an imaging flow cytometry, called optofluidic time-stretch microscopy is first employed, to image the cells in the serous effusion at an event rate of 100 000 events per second and with a spatial resolution better than 1 µm. The acquired cellular images are then analyzed using a convolutional neural network, by which the malignant cells are accurately detected. The performance of the method is validated with 18 clinical samples, including 14 malignant and 4 benign ones. The results show that the method can detect malignant cells at an accuracy of 90.53%. The high throughput, high accuracy, and high convenience of the method make it a potential solution for malignant serous effusion diagnosis in various scenarios.

浆液性渗出是指在浆液腔(包括胸膜腔、腹膜腔和心包腔)中积聚的额外液体。在细胞病理学中区分良性反应性渗出液和恶性增生引起的渗出液非常重要,因为不同的诊断会导致完全不同的疾病分期和治疗选择。传统的细胞病理学程序具有低通量和低客观性的缺点。为了提高恶性浆液性渗出诊断的效率和准确性,本文首先采用了一种名为光流体时间拉伸显微镜的成像流式细胞仪,以每秒 100 000 次的事件发生率和优于 1 微米的空间分辨率对浆液性渗出中的细胞进行成像。然后利用卷积神经网络对获取的细胞图像进行分析,从而准确检测出恶性细胞。18 个临床样本(包括 14 个恶性样本和 4 个良性样本)验证了该方法的性能。结果表明,该方法检测恶性细胞的准确率高达 90.53%。该方法的高通量、高准确性和高便利性使其成为各种情况下恶性浆液性渗出诊断的潜在解决方案。
{"title":"Diagnosis of Serous Effusion with Intelligent Imaging Flow Cytometry","authors":"Mengping Long,&nbsp;Yueyun Weng,&nbsp;Liye Mei,&nbsp;Dingchao Yang,&nbsp;Shubin Wei,&nbsp;Guanxiong Meng,&nbsp;Wanyue Zhao,&nbsp;Sheng Liu,&nbsp;Du Wang,&nbsp;Yiqiang Liu,&nbsp;Hui Shen,&nbsp;Jianxuan Hou,&nbsp;Yu Xu,&nbsp;Liang Tao,&nbsp;Fuling Zhou,&nbsp;Hongwei Chen,&nbsp;Taobo Hu,&nbsp;Cheng Lei","doi":"10.1002/adsr.202300183","DOIUrl":"10.1002/adsr.202300183","url":null,"abstract":"<p>A serous effusion is a buildup of extra fluid in the serous cavities including pleural, peritoneal, and pericardial cavities. It is important to distinguish benign reactive effusions from effusions caused by malignant proliferation in cytopathology since different diagnoses can lead to completely different disease staging and therapeutic choices. The conventional cytopathology procedure has the disadvantages of low throughput and low objectivity. To enhance the efficiency and accuracy of malignant serous effusion diagnosis, in this paper, an imaging flow cytometry, called optofluidic time-stretch microscopy is first employed, to image the cells in the serous effusion at an event rate of 100 000 events per second and with a spatial resolution better than 1 µm. The acquired cellular images are then analyzed using a convolutional neural network, by which the malignant cells are accurately detected. The performance of the method is validated with 18 clinical samples, including 14 malignant and 4 benign ones. The results show that the method can detect malignant cells at an accuracy of 90.53%. The high throughput, high accuracy, and high convenience of the method make it a potential solution for malignant serous effusion diagnosis in various scenarios.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202300183","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140984621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microfluidics Evolution and Surface Functionalization: A Pathway to Enhanced Heavy Metal Ion Detection 微流体进化与表面功能化:增强重金属离子检测的途径
Pub Date : 2024-05-09 DOI: 10.1002/adsr.202400008
Zhejun Xu, Arun Jaiswal, Xiaochen Liu, Zhenxu Yang, Qiankun Yin, Kien Voon Kong, Ken-Tye Yong

This review delves into the significant advancements in microfluidic technology since 2017, highlighting its critical role in shrinking device sizes and integrating advanced surface functionalization techniques. It showcases how microfluidics, an interdisciplinary field, has revolutionized fluid manipulation on a microscale, enabling the creation of cost-effective, portable devices for on-the-spot analyses, like heavy metal ion detection. From its early days rooted in ancient observations to cutting-edge uses of materials like silicon, glass, polydimethylsiloxane (PDMS), and paper, this review charts microfluidics’ dynamic evolution. It emphasizes the transformative impact of surface functionalization methods, including silanization and plasma treatments, in enhancing device materials' performance. Moreover, this review anticipates the exciting convergence of microfluidics with emerging technologies like droplet microfluidics and three-dimensional (3D) printing, alongside nanotechnology, forecasting a future of sophisticated analytical tools, point-of-care diagnostics, and improved detection systems. It acknowledges the hurdles in scaling production and achieving universal reliability and standardization. This review highlights the transformative impact of microfluidic technology on diagnostics and environmental surveillance, emphasizing its utility in deploying compact sensors for comprehensive and concurrent evaluations of water quality.

这篇综述深入探讨了自 2017 年以来微流体技术取得的重大进展,强调了微流体技术在缩小设备尺寸和集成先进表面功能化技术方面的关键作用。它展示了微流体技术这一跨学科领域如何在微观尺度上彻底改变了流体操纵,从而创造出用于现场分析(如重金属离子检测)的经济高效的便携式设备。从早期扎根于古老的观测方法,到硅片、玻璃、聚二甲基硅氧烷(PDMS)和纸张等材料的尖端应用,这篇综述描绘了微流体技术的动态发展。它强调了表面功能化方法(包括硅烷化和等离子处理)在提高设备材料性能方面的变革性影响。此外,这篇综述还预测了微流体技术与液滴微流体技术、三维(3D)打印技术等新兴技术以及纳米技术令人兴奋的融合,并预测了精密分析工具、护理点诊断和改良检测系统的未来。报告承认在扩大生产规模、实现普遍可靠性和标准化方面存在障碍。这篇综述强调了微流控技术对诊断和环境监测的变革性影响,强调了它在部署紧凑型传感器以全面和同步评估水质方面的实用性。
{"title":"Microfluidics Evolution and Surface Functionalization: A Pathway to Enhanced Heavy Metal Ion Detection","authors":"Zhejun Xu,&nbsp;Arun Jaiswal,&nbsp;Xiaochen Liu,&nbsp;Zhenxu Yang,&nbsp;Qiankun Yin,&nbsp;Kien Voon Kong,&nbsp;Ken-Tye Yong","doi":"10.1002/adsr.202400008","DOIUrl":"10.1002/adsr.202400008","url":null,"abstract":"<p>This review delves into the significant advancements in microfluidic technology since 2017, highlighting its critical role in shrinking device sizes and integrating advanced surface functionalization techniques. It showcases how microfluidics, an interdisciplinary field, has revolutionized fluid manipulation on a microscale, enabling the creation of cost-effective, portable devices for on-the-spot analyses, like heavy metal ion detection. From its early days rooted in ancient observations to cutting-edge uses of materials like silicon, glass, polydimethylsiloxane (PDMS), and paper, this review charts microfluidics’ dynamic evolution. It emphasizes the transformative impact of surface functionalization methods, including silanization and plasma treatments, in enhancing device materials' performance. Moreover, this review anticipates the exciting convergence of microfluidics with emerging technologies like droplet microfluidics and three-dimensional (3D) printing, alongside nanotechnology, forecasting a future of sophisticated analytical tools, point-of-care diagnostics, and improved detection systems. It acknowledges the hurdles in scaling production and achieving universal reliability and standardization. This review highlights the transformative impact of microfluidic technology on diagnostics and environmental surveillance, emphasizing its utility in deploying compact sensors for comprehensive and concurrent evaluations of water quality.</p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 8","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202400008","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140997954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Highly Sensitive and Linear Vibration-Based Flexible Modulus Sensing System for Human Modulus Monitoring and Disease Prevention (Adv. Sensor Res. 5/2024) 用于人体模量监测和疾病预防的高灵敏度线性振动柔性模量传感系统(传感器研究进展 5/2024)
Pub Date : 2024-05-09 DOI: 10.1002/adsr.202470016
Zewei Luo, Junhao Shen, Xu Ran, Zepeng Huang, Zaofeng Huang, Chaolun Wang, Chunhua Cai, Liangjian Lyv, Xin Lin, Litao Sun, Junhao Chu, Hengchang Bi, Xing Wu

Flexible Modulus Sensor

In article 2300148, Hengchang Bi, Xing Wu, and co-workers report a modulus sensing system with a characteristic of high linearity detection, which consists of a pressure sensor and a vibrator. It is able to quickly identify the physiological state of human body based on the modulus change of the detected tissues, exhibiting great potential in the health monitoring, such as the concept eye mask for migraine monitoring.

柔性模量传感器在第 2300148 号文章中,毕恒昌、吴星及合作者报告了一种具有高线性检测特性的模量传感系统,该系统由压力传感器和振动器组成。它能够根据检测到的组织模量变化快速识别人体的生理状态,在健康监测方面表现出巨大的潜力,例如用于偏头痛监测的概念眼罩。
{"title":"Highly Sensitive and Linear Vibration-Based Flexible Modulus Sensing System for Human Modulus Monitoring and Disease Prevention (Adv. Sensor Res. 5/2024)","authors":"Zewei Luo,&nbsp;Junhao Shen,&nbsp;Xu Ran,&nbsp;Zepeng Huang,&nbsp;Zaofeng Huang,&nbsp;Chaolun Wang,&nbsp;Chunhua Cai,&nbsp;Liangjian Lyv,&nbsp;Xin Lin,&nbsp;Litao Sun,&nbsp;Junhao Chu,&nbsp;Hengchang Bi,&nbsp;Xing Wu","doi":"10.1002/adsr.202470016","DOIUrl":"https://doi.org/10.1002/adsr.202470016","url":null,"abstract":"<p><b>Flexible Modulus Sensor</b></p><p>In article 2300148, Hengchang Bi, Xing Wu, and co-workers report a modulus sensing system with a characteristic of high linearity detection, which consists of a pressure sensor and a vibrator. It is able to quickly identify the physiological state of human body based on the modulus change of the detected tissues, exhibiting great potential in the health monitoring, such as the concept eye mask for migraine monitoring.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202470016","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140895206","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Masthead (Adv. Sensor Res. 5/2024) 桅杆头(传感器推进决议 5/2024)
Pub Date : 2024-05-09 DOI: 10.1002/adsr.202470017
{"title":"Masthead (Adv. Sensor Res. 5/2024)","authors":"","doi":"10.1002/adsr.202470017","DOIUrl":"https://doi.org/10.1002/adsr.202470017","url":null,"abstract":"","PeriodicalId":100037,"journal":{"name":"Advanced Sensor Research","volume":"3 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adsr.202470017","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140895205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Advanced Sensor Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1