Organ-on-chip (OOC) technology is an innovative approach that reproduces human organ structures and functions on microfluidic platforms, offering detailed insights into intricate physiological processes. This technology provides unique advantages over conventional in vitro and in vivo models and thus has the potential to become the new standard for biomedical research and drug screening. In this mini-review, we compare OOCs with conventional models, highlighting their differences, and present several applications of OOCs in biomedical research. Additionally, we highlight advancements in OOC technology, particularly in developing multiorgan systems, and discuss the challenges and future directions of this field.
{"title":"Organ-on-chip technology: Opportunities and challenges","authors":"Santosh Kumar Srivastava , Guo Wei Foo , Nikhil Aggarwal , Matthew Wook Chang","doi":"10.1016/j.biotno.2024.01.001","DOIUrl":"10.1016/j.biotno.2024.01.001","url":null,"abstract":"<div><p>Organ-on-chip (OOC) technology is an innovative approach that reproduces human organ structures and functions on microfluidic platforms, offering detailed insights into intricate physiological processes. This technology provides unique advantages over conventional in vitro and in vivo models and thus has the potential to become the new standard for biomedical research and drug screening. In this mini-review, we compare OOCs with conventional models, highlighting their differences, and present several applications of OOCs in biomedical research. Additionally, we highlight advancements in OOC technology, particularly in developing multiorgan systems, and discuss the challenges and future directions of this field.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"5 ","pages":"Pages 8-12"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906924000023/pdfft?md5=3d6c8e49497bcf18217860d3c12546f2&pid=1-s2.0-S2665906924000023-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139392265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.biotno.2024.11.004
Matthew Wook Chang
{"title":"Biotechnology Notes: A Year of Milestones","authors":"Matthew Wook Chang","doi":"10.1016/j.biotno.2024.11.004","DOIUrl":"10.1016/j.biotno.2024.11.004","url":null,"abstract":"","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"5 ","pages":"Page A4"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143134535","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This research evaluated a bacterial strain, Bacillus cereus (S55), isolated from the soil for its bioflocculant production capabilities. The strain was identified through morphological and 16s rRNA gene sequencing. The optimization of culture conditions, using One-factor-at-a-time method, significantly enhanced bioflocculant production with glucose and urea. FTIR analysis showed the presence of hydroxyl, amine and carboxylate functional groups, with polysaccharides as predominant components. Scanning electron microscopy and X-ray diffraction confirmed the crystalline nature of the bioflocculant. The strain studied showed potential in treating household wastewater and was effective at removing dyes, suggesting alternatives for wastewater management.
这项研究评估了从土壤中分离出来的蜡样芽孢杆菌(S55)的生物絮凝剂生产能力。通过形态学和 16s rRNA 基因测序鉴定了该菌株。采用 "一次一因素 "法优化培养条件,显著提高了葡萄糖和尿素的生物絮凝剂产量。傅立叶变换红外光谱分析显示了羟基、胺和羧基官能团的存在,多糖是主要成分。扫描电子显微镜和 X 射线衍射证实了生物絮凝剂的结晶性质。所研究的菌株显示出处理家庭废水的潜力,并能有效去除染料,为废水管理提供了替代方案。
{"title":"Screening, characterization, and production of Bacillus cereus (S55) bioflocculant isolated from soil for application in wastewater treatment","authors":"Karthikeyan Harinisri , Ragothaman Prathiviraj , Balasubramanian Thamarai Selvi","doi":"10.1016/j.biotno.2024.11.003","DOIUrl":"10.1016/j.biotno.2024.11.003","url":null,"abstract":"<div><div>This research evaluated a bacterial strain, <em>Bacillus cereus</em> (S55), isolated from the soil for its bioflocculant production capabilities. The strain was identified through morphological and 16s rRNA gene sequencing. The optimization of culture conditions, using One-factor-at-a-time method, significantly enhanced bioflocculant production with glucose and urea. FTIR analysis showed the presence of hydroxyl, amine and carboxylate functional groups, with polysaccharides as predominant components. Scanning electron microscopy and X-ray diffraction confirmed the crystalline nature of the bioflocculant. The strain studied showed potential in treating household wastewater and was effective at removing dyes, suggesting alternatives for wastewater management.</div></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"5 ","pages":"Pages 151-164"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142658470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
During manufacturing of mammalian-cell derived monoclonal antibodies (mAbs) virus clearance capacity of the downstream process has to be demonstrated. The protein A chromatography step typically achieves less than 4 log10 and is not considered as a major contributing step. Having been successfully applied to host cell protein removal before, we used different wash buffers for three mAbs with two model viruses (Minute virus of mice and Murine leukemia virus) in series as well as separately to further understand major contributing interactions for virus retention and potentially design a generic toolbox of stringent wash buffers to be applied to various mAbs. Results indicate a major relevance of hydrophobic interaction for Murine leukemia virus (xMuLV) and mAb A, based on improved clearance for buffers additionally containing increased levels of hydrophobic compounds. This effect was less pronounced for Minute virus of mice (MVM), whereby hydrogen-bonds were expected to play a stronger role for this model virus. Additionally, electrostatic interactions presumably are more relevant for MVM retention compared to xMuLV under the conditions evaluated. A generic mAb and virus-independent stringent wash buffer toolbox could not be identified. However, based on our results a customized mAb and virus wash buffer design with improved virus clearance is possible, with here demonstrated log reduction increase by 1.3 log10 for MVM and 2.2 log10 for xMuLV for the protein A step compared to equilibration buffer alone.
在生产源自哺乳动物细胞的单克隆抗体(mAbs)时,必须证明下游工艺的病毒清除能力。蛋白 A 层析步骤通常能达到小于 4 log10 的清除率,因此不被认为是主要的清除步骤。在成功应用于宿主细胞蛋白清除之前,我们对三种 mAbs 和两种模型病毒(小鼠细小病毒和鼠白血病病毒)分别使用了不同的水洗缓冲液,以进一步了解导致病毒滞留的主要相互作用,并有可能设计出适用于各种 mAbs 的通用严格水洗缓冲液工具箱。结果表明,疏水相互作用对鼠白血病病毒(xMuLV)和 mAb A 有重大意义,因为含有更多疏水化合物的缓冲液的清除率提高了。这种效应在小鼠细小病毒(MVM)中并不明显,因为氢键在这种模式病毒中的作用预计会更大。此外,在评估条件下,与 xMuLV 相比,静电相互作用对 MVM 的保留作用可能更大。我们无法找到通用的 mAb 和病毒无关的严格洗涤缓冲液工具箱。不过,根据我们的研究结果,定制的 mAb 和病毒清洗缓冲液设计可以提高病毒清除率,与单独的平衡缓冲液相比,MVM 和 xMuLV 在蛋白 A 步骤中的对数值分别降低了 1.3 log10 和 2.2 log10。
{"title":"Understanding virus retention mechanisms on protein a chromatography based on using different wash buffers – Evaluating the possibility for a generic wash buffer toolbox to improve virus clearance capacity","authors":"Sandra Krause , Florian Capito , Verena Oeinck , Hendrik Flato , Holger Hoffmann , Ozan Ötes , Annette Berg","doi":"10.1016/j.biotno.2024.03.001","DOIUrl":"https://doi.org/10.1016/j.biotno.2024.03.001","url":null,"abstract":"<div><p>During manufacturing of mammalian-cell derived monoclonal antibodies (mAbs) virus clearance capacity of the downstream process has to be demonstrated. The protein A chromatography step typically achieves less than 4 log<sub>10</sub> and is not considered as a major contributing step. Having been successfully applied to host cell protein removal before, we used different wash buffers for three mAbs with two model viruses (Minute virus of mice and Murine leukemia virus) in series as well as separately to further understand major contributing interactions for virus retention and potentially design a generic toolbox of stringent wash buffers to be applied to various mAbs. Results indicate a major relevance of hydrophobic interaction for Murine leukemia virus (xMuLV) and mAb A, based on improved clearance for buffers additionally containing increased levels of hydrophobic compounds. This effect was less pronounced for Minute virus of mice (MVM), whereby hydrogen-bonds were expected to play a stronger role for this model virus. Additionally, electrostatic interactions presumably are more relevant for MVM retention compared to xMuLV under the conditions evaluated. A generic mAb and virus-independent stringent wash buffer toolbox could not be identified. However, based on our results a customized mAb and virus wash buffer design with improved virus clearance is possible, with here demonstrated log reduction increase by 1.3 log<sub>10</sub> for MVM and 2.2 log<sub>10</sub> for xMuLV for the protein A step compared to equilibration buffer alone.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"5 ","pages":"Pages 50-57"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906924000060/pdfft?md5=d90d78b9590b013af6078b5615adb6ad&pid=1-s2.0-S2665906924000060-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140348246","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fungal endophytes are valuable sources of bioactive compounds with diverse applications. The exploration of these compounds not only contributes to our understanding of ecological interactions but also holds promise for the development of novel products with agricultural, medicinal, and industrial significance. Continued exploration of fungal endophyte diversity and understanding the ecological roles of bioactive compounds present opportunities for new discoveries and applications. Omics techniques, which include genomics, transcriptomics, proteomics, and metabolomics, contribute to the discovery of novel bioactive compounds produced by fungal endophytes with their potential applications. The omics techniques play a critical role in unraveling the complex interactions between fungal endophytes and their host plants, providing valuable insights into the molecular mechanisms and potential applications of these relationships. This review provides an overview of how omics techniques contribute to the study of fungal endophytes.
{"title":"Incorporating omics-based tools into endophytic fungal research","authors":"Vinita Verma , Alok Srivastava , Sanjay Kumar Garg , Vijay Pal Singh , Pankaj Kumar Arora","doi":"10.1016/j.biotno.2023.12.006","DOIUrl":"https://doi.org/10.1016/j.biotno.2023.12.006","url":null,"abstract":"<div><p>Fungal endophytes are valuable sources of bioactive compounds with diverse applications. The exploration of these compounds not only contributes to our understanding of ecological interactions but also holds promise for the development of novel products with agricultural, medicinal, and industrial significance. Continued exploration of fungal endophyte diversity and understanding the ecological roles of bioactive compounds present opportunities for new discoveries and applications. Omics techniques, which include genomics, transcriptomics, proteomics, and metabolomics, contribute to the discovery of novel bioactive compounds produced by fungal endophytes with their potential applications. The omics techniques play a critical role in unraveling the complex interactions between fungal endophytes and their host plants, providing valuable insights into the molecular mechanisms and potential applications of these relationships. This review provides an overview of how omics techniques contribute to the study of fungal endophytes.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"5 ","pages":"Pages 1-7"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906923000259/pdfft?md5=222a86c032e0d932ffc20dd4a771b7fe&pid=1-s2.0-S2665906923000259-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139108011","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.biotno.2024.09.001
Éllen F. Rodrigues , Ana L. Fachin , Mozart Marins , Felipe Britto Letieri , Rodrigo G. Stabeli , Renê O. Beleboni
{"title":"The role of brain-derived neurotrophic factor and its recombinant pro-isoforms in depressive disorder: Open questions","authors":"Éllen F. Rodrigues , Ana L. Fachin , Mozart Marins , Felipe Britto Letieri , Rodrigo G. Stabeli , Renê O. Beleboni","doi":"10.1016/j.biotno.2024.09.001","DOIUrl":"10.1016/j.biotno.2024.09.001","url":null,"abstract":"","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"5 ","pages":"Pages 137-139"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906924000138/pdfft?md5=861ce1318e9bec03122f8b124bb9ead0&pid=1-s2.0-S2665906924000138-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142168266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.biotno.2024.11.001
Yuan Lu
Cell-free synthetic biology aims at the targeted replication, design, and modification of life processes in open systems by breaking free of constraints such as cell membrane barriers and living cell growth. The beginnings of this systematized technology, which took place in the last century, were used to explore the secrets of life. Currently, with its easy integration with other technologies or disciplines, cell-free synthetic biology is developing into a powerful and effective means of understanding, exploiting, and extending the structure and function of natural living systems. Cell-free synthesis technology has been used in basic and applied research such as metabolic prototyping, artificial cell construction, nucleic acid engineering, protein engineering, etc. Worldwide experts shared their views and opinions on the future development of cell-free synthetic biology, as illustrated in this paper. With the integration of current popular technologies such as artificial intelligence and electronics, cell-free synthetic biology will play an increasingly important role in fields such as life exploration, intelligent manufacturing, human health, new energy, and sustainable environmental development.
{"title":"The future of cell-free synthetic biology","authors":"Yuan Lu","doi":"10.1016/j.biotno.2024.11.001","DOIUrl":"10.1016/j.biotno.2024.11.001","url":null,"abstract":"<div><div>Cell-free synthetic biology aims at the targeted replication, design, and modification of life processes in open systems by breaking free of constraints such as cell membrane barriers and living cell growth. The beginnings of this systematized technology, which took place in the last century, were used to explore the secrets of life. Currently, with its easy integration with other technologies or disciplines, cell-free synthetic biology is developing into a powerful and effective means of understanding, exploiting, and extending the structure and function of natural living systems. Cell-free synthesis technology has been used in basic and applied research such as metabolic prototyping, artificial cell construction, nucleic acid engineering, protein engineering, etc. Worldwide experts shared their views and opinions on the future development of cell-free synthetic biology, as illustrated in this paper. With the integration of current popular technologies such as artificial intelligence and electronics, cell-free synthetic biology will play an increasingly important role in fields such as life exploration, intelligent manufacturing, human health, new energy, and sustainable environmental development.</div></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"5 ","pages":"Pages A1-A3"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143134534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.biotno.2024.07.001
Sameer Chabhadiya , D.K. Acharya , Amitsinh Mangrola , Rupal Shah , Edwin A. Pithawala
Biosurfactants, synthesized by microorganisms, hold potential for various industrial and environmental applications due to their surface-active properties and biodegradability. Metabolic and genetic engineering strategies enhance biosurfactant production by modifying microbial pathways and genetics. Strategies include optimizing biosurfactant biosynthesis pathways, expanding substrate utilization, and improving stress responses. Genetic engineering allows customization of biosurfactant characteristics to meet industrial needs. Notable examples include engineering Pseudomonas aeruginosa for enhanced rhamnolipid production and creating synthetic biosurfactant pathways in non-native hosts like Escherichia coli. CRISPR-Cas9 technology offers precise tools for genetic manipulation, enabling targeted gene disruption and promoter optimization to enhance biosurfactant production efficiency. Synthetic promoters enable precise control over biosurfactant gene expression, contributing to pathway optimization across diverse microbial hosts. The future of biosurfactant research includes sustainable bio-processing, customized biosurfactant engineering, and integration of artificial intelligence and systems biology. Advances in genetic and metabolic engineering will enable tailor-made biosurfactants for diverse applications, with potential for industrial-scale production and commercialization. Exploration of untapped microbial diversity may lead to novel biosurfactants with unique properties, expanding the versatility and sustainability of biosurfactant-based solutions.
{"title":"Unlocking the potential of biosurfactants: Innovations in metabolic and genetic engineering for sustainable industrial and environmental solutions","authors":"Sameer Chabhadiya , D.K. Acharya , Amitsinh Mangrola , Rupal Shah , Edwin A. Pithawala","doi":"10.1016/j.biotno.2024.07.001","DOIUrl":"10.1016/j.biotno.2024.07.001","url":null,"abstract":"<div><p>Biosurfactants, synthesized by microorganisms, hold potential for various industrial and environmental applications due to their surface-active properties and biodegradability. Metabolic and genetic engineering strategies enhance biosurfactant production by modifying microbial pathways and genetics. Strategies include optimizing biosurfactant biosynthesis pathways, expanding substrate utilization, and improving stress responses. Genetic engineering allows customization of biosurfactant characteristics to meet industrial needs. Notable examples include engineering <em>Pseudomonas aeruginosa</em> for enhanced rhamnolipid production and creating synthetic biosurfactant pathways in non-native hosts like <em>Escherichia coli</em>. CRISPR-Cas9 technology offers precise tools for genetic manipulation, enabling targeted gene disruption and promoter optimization to enhance biosurfactant production efficiency. Synthetic promoters enable precise control over biosurfactant gene expression, contributing to pathway optimization across diverse microbial hosts. The future of biosurfactant research includes sustainable bio-processing, customized biosurfactant engineering, and integration of artificial intelligence and systems biology. Advances in genetic and metabolic engineering will enable tailor-made biosurfactants for diverse applications, with potential for industrial-scale production and commercialization. Exploration of untapped microbial diversity may lead to novel biosurfactants with unique properties, expanding the versatility and sustainability of biosurfactant-based solutions.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"5 ","pages":"Pages 111-119"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906924000114/pdfft?md5=4bf3ad577ced0d7cd38282ad249883ae&pid=1-s2.0-S2665906924000114-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141853412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.biotno.2024.05.001
Muhammad Hamizan Zawawi , Siti Azhani-Amran , Zuraidah Abdullah , Sabreena Safuan
Scorodocarpus borneensis, also known as the Kulim tree or Garlic tree, has been consumed by the local communities in Southeast Asia as traditional spice using its old leaves, stem bark, and seeds. The locals also used Kulim tree parts as conventional alternative to treat many diseases such as hemorrhoids, leprosy, diabetes, and diarrhea. However, there was limited scientific evidence to support these traditional claims. Therefore, this systematic review aims to present and evaluate a detailed overview of the phytochemical constituents of S. borneensis from previous existing studies, shedding light on their chemical composition, bioactivity, and potential applications. In addition, current studies regarding S. borneensis are still on a fundamental level. Hence, we aim that this review will reveal the research gap from the previous literature and provide an insight to implement a new research approach in the future. A literature search was conducted using four databases: ScienceDirect, Scopus, Web of Science, and PubMed. The articles were screened and data were extracted based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guideline. 8 studies satisfied the inclusion criteria that focused on the phytochemicals from S. borneensis. The major phytochemical compound reported was phenolic compound. S. borneensis also exhibits several therapeutic outcomes such as antioxidant, antimicrobial, and anticancer but current studies are not enough to support the claims regarding S. borneensis health benefit. In conclusion, this review highlights the current understanding of S. borneensis’ phytochemical composition and its therapeutic applications which are important in preventing human diseases especially non-communicable diseases.
库林树(Scorodocarpus borneensis)又名库林树或大蒜树,东南亚当地社区一直使用其老叶、茎皮和种子作为传统香料食用。当地人还将库林树的部分作为治疗痔疮、麻风病、糖尿病和腹泻等多种疾病的传统替代品。然而,支持这些传统说法的科学证据十分有限。因此,本系统综述旨在详细介绍和评估之前已有研究中有关 S. borneensis 植物化学成分的概述,阐明其化学成分、生物活性和潜在应用。此外,目前有关龙脑香的研究仍处于基础阶段。因此,我们希望本综述能揭示以往文献中的研究空白,并为未来实施新的研究方法提供启示。我们使用四个数据库进行了文献检索:ScienceDirect、Scopus、Web of Science 和 PubMed。根据 PRISMA(系统综述和元分析的首选报告项目)指南对文章进行筛选并提取数据。符合纳入标准的研究有 8 项,主要研究对象是婆婆纳树的植物化学物质。报告的主要植物化学物质是酚类化合物。龙脑还具有多种治疗效果,如抗氧化、抗菌和抗癌,但目前的研究还不足以支持有关龙脑对健康有益的说法。总之,本综述重点介绍了目前对刺五加植物化学成分及其治疗应用的了解,这对预防人类疾病(尤其是非传染性疾病)非常重要。
{"title":"Unraveling current breakthroughs in Scorodocarpus borneensis phytochemical therapeutics: A systematic review","authors":"Muhammad Hamizan Zawawi , Siti Azhani-Amran , Zuraidah Abdullah , Sabreena Safuan","doi":"10.1016/j.biotno.2024.05.001","DOIUrl":"10.1016/j.biotno.2024.05.001","url":null,"abstract":"<div><p><em>Scorodocarpus borneensis</em>, also known as the Kulim tree or Garlic tree, has been consumed by the local communities in Southeast Asia as traditional spice using its old leaves, stem bark, and seeds. The locals also used Kulim tree parts as conventional alternative to treat many diseases such as hemorrhoids, leprosy, diabetes, and diarrhea. However, there was limited scientific evidence to support these traditional claims. Therefore, this systematic review aims to present and evaluate a detailed overview of the phytochemical constituents of <em>S. borneensis</em> from previous existing studies, shedding light on their chemical composition, bioactivity, and potential applications. In addition, current studies regarding <em>S. borneensis</em> are still on a fundamental level. Hence, we aim that this review will reveal the research gap from the previous literature and provide an insight to implement a new research approach in the future. A literature search was conducted using four databases: ScienceDirect, Scopus, Web of Science, and PubMed. The articles were screened and data were extracted based on the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guideline. 8 studies satisfied the inclusion criteria that focused on the phytochemicals from <em>S. borneensis</em>. The major phytochemical compound reported was phenolic compound. S. borneensis also exhibits several therapeutic outcomes such as antioxidant, antimicrobial, and anticancer but current studies are not enough to support the claims regarding <em>S. borneensis</em> health benefit. In conclusion, this review highlights the current understanding of <em>S. borneensis’</em> phytochemical composition and its therapeutic applications which are important in preventing human diseases especially non-communicable diseases.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"5 ","pages":"Pages 100-110"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906924000084/pdfft?md5=2778f6f37bfba7a5ed673fe883e37908&pid=1-s2.0-S2665906924000084-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141401655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1016/j.biotno.2024.03.002
Takehiko Todokoro, Yoji Hata, Hiroki Ishida
Aspergillus oryzae is an important fungus in food and industrial enzyme production. In A. oryzae, targeted knock-in transformation is primarily limited to homologous recombination (HR)-based systems, in which non-homologous end-joining (NHEJ)-disruptant hosts are required. However, preparation of hosts and transformation templates for such systems is laborious, in addition to other disadvantages. In the present study, we examined alternative targeted knock-in mediated by CRISPR/Cas9, in which a microhomology-mediated end-joining (MMEJ) and single-strand annealing (SSA) repair system was employed. This approach enabled the efficient development of targeted knock-in transformants without host preparation using only a short homology template. We conclude that this new method could be applied to facilitate the transformation of A. oryzae, and will make it easier to acquire targeted knock-in transformants, especially from industrially important non-model strains.
{"title":"CRISPR/Cas9 improves targeted knock-in efficiency in Aspergillus oryzae","authors":"Takehiko Todokoro, Yoji Hata, Hiroki Ishida","doi":"10.1016/j.biotno.2024.03.002","DOIUrl":"https://doi.org/10.1016/j.biotno.2024.03.002","url":null,"abstract":"<div><p><em>Aspergillus oryzae</em> is an important fungus in food and industrial enzyme production. In <em>A. oryzae</em>, targeted knock-in transformation is primarily limited to homologous recombination (HR)-based systems, in which non-homologous end-joining (NHEJ)-disruptant hosts are required. However, preparation of hosts and transformation templates for such systems is laborious, in addition to other disadvantages. In the present study, we examined alternative targeted knock-in mediated by CRISPR/Cas9, in which a microhomology-mediated end-joining (MMEJ) and single-strand annealing (SSA) repair system was employed. This approach enabled the efficient development of targeted knock-in transformants without host preparation using only a short homology template. We conclude that this new method could be applied to facilitate the transformation of <em>A. oryzae</em>, and will make it easier to acquire targeted knock-in transformants, especially from industrially important non-model strains.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"5 ","pages":"Pages 58-63"},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906924000072/pdfft?md5=c3071d5a3a69f15bfd265d3655c1bb84&pid=1-s2.0-S2665906924000072-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140351146","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}