首页 > 最新文献

Biotechnology Notes最新文献

英文 中文
Rational engineering approaches for establishing insect olfaction reporters in yeast 在酵母中建立昆虫嗅觉报告基因的合理工程方法
Pub Date : 2023-01-01 DOI: 10.1016/j.biotno.2023.11.002
Emma Elise Hoch-Schneider, Tatyana Saleski, Emil D. Jensen, Michael Krogh Jensen

Insect olfaction directly impacts insect behavior and thus is an important consideration in the development of smart farming tools and in integrated pest management strategies. Insect olfactory receptors (ORs) have been traditionally studied using Drosophila empty neuron systems or with expression and functionalization in HEK293 cells or Xenopus laevis oocytes. Recently, the yeast Saccharomyces cerevisiae (S. cerevisiae) has emerged as a promising chassis for the functional expression of heterologous seven transmembrane receptors. S. cerevisiae provides a platform for the cheap and high throughput study of these receptors and potential deorphanization. In this study, we explore the foundations of a scalable yeast-based platform for the functional expression of insect olfactory receptors by employing a genetically encoded calcium sensor for quantitative evaluation of fluorescence and optimized experimental parameters for enhanced functionality. While the co-receptor of insect olfactory receptors remains non-functional in our yeast-based system, we thoroughly evaluated various experimental variables and identified future research directions for establishing an OR platform in S. cerevisiae.

昆虫嗅觉直接影响昆虫的行为,因此是开发智能农业工具和综合虫害管理策略的重要考虑因素。昆虫嗅觉受体(ORs)传统上是利用果蝇空神经元系统或在HEK293细胞或非洲爪蟾卵母细胞中表达和功能化来研究的。近年来,酿酒酵母(Saccharomyces cerevisiae)已成为异种7跨膜受体功能表达的良好载体。葡萄球菌为廉价、高通量地研究这些受体和潜在的去孤儿化提供了一个平台。在这项研究中,我们探索了一个可扩展的基于酵母的昆虫嗅觉受体功能表达平台的基础,利用基因编码的钙传感器对荧光进行定量评估,并优化实验参数以增强功能。虽然在我们的酵母系统中昆虫嗅觉受体的共受体仍然没有功能,但我们对各种实验变量进行了全面评估,并确定了在酿酒酵母中建立OR平台的未来研究方向。
{"title":"Rational engineering approaches for establishing insect olfaction reporters in yeast","authors":"Emma Elise Hoch-Schneider,&nbsp;Tatyana Saleski,&nbsp;Emil D. Jensen,&nbsp;Michael Krogh Jensen","doi":"10.1016/j.biotno.2023.11.002","DOIUrl":"https://doi.org/10.1016/j.biotno.2023.11.002","url":null,"abstract":"<div><p>Insect olfaction directly impacts insect behavior and thus is an important consideration in the development of smart farming tools and in integrated pest management strategies. Insect olfactory receptors (ORs) have been traditionally studied using <em>Drosophila</em> empty neuron systems or with expression and functionalization in HEK293 cells or <em>Xenopus laevis</em> oocytes<em>.</em> Recently, the yeast <em>Saccharomyces cerevisia</em>e (<em>S. cerevisiae</em>) has emerged as a promising chassis for the functional expression of heterologous seven transmembrane receptors. <em>S. cerevisiae</em> provides a platform for the cheap and high throughput study of these receptors and potential deorphanization. In this study, we explore the foundations of a scalable yeast-based platform for the functional expression of insect olfactory receptors by employing a genetically encoded calcium sensor for quantitative evaluation of fluorescence and optimized experimental parameters for enhanced functionality. While the co-receptor of insect olfactory receptors remains non-functional in our yeast-based system, we thoroughly evaluated various experimental variables and identified future research directions for establishing an OR platform in <em>S. cerevisiae</em>.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"4 ","pages":"Pages 90-99"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906923000089/pdfft?md5=d694b5387164088876d639cb0d7fc7f5&pid=1-s2.0-S2665906923000089-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138467299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SynBio Africa's story from the grassroots, the present, and the future 非洲合成生物的故事从基层,现在和未来
Pub Date : 2023-01-01 DOI: 10.1016/j.biotno.2022.11.003
Geoffrey Otim , Sandra Matinyi , Erikan Baluku , Ivy S.G. Chimulwa , George P. Magoola , Alex Katumba , Stephen Mukuze , Alex Kyabarongo , Stephen O. Opiyo

SynBio Africa is a forum for researchers, students, citizen scientists, policymakers and the public to convene and develop successful pathways for the propagation of synthetic biology technologies, products, and services throughout Africa. Our vision is to have a healthy, safe, and sustainable world through synthetic biology. In Africa, synthetic biology has the potential to greatly contribute to national development agenda through the following ways: i) by anchoring a sustainable bioeconomy; ii) by helping develop innovative medicines; iii) by reducing pollution, and iv) by increasing crop production to reduce hunger. However, there is little to no information on synthetic biology and its regulatory policies in Africa. Across the continent, scientists, policy makers, researchers and others are still working in silos—only partaking in consultative meetings to try and develop a set of unified policy guidelines. SynBio Africa is therefore proposing to establish the first Center of Excellence in Synthetic Biology in Africa with six themes, namely: research, capacity development, innovation hub, biosafety and biosecurity, and bioinformatics and data science, and one-health. Accordingly, SynBio Africa will work with collaborators from government and non-governmental organizations, the public and private sectors, and educational institutions from Uganda, Africa, and around the world to implement these six themes.

SynBio Africa是一个研究人员、学生、公民科学家、政策制定者和公众的论坛,旨在召集和开发合成生物学技术、产品和服务在整个非洲传播的成功途径。我们的愿景是通过合成生物学建立一个健康、安全和可持续的世界。在非洲,合成生物学有潜力通过以下方式为国家发展议程做出重大贡献:一)通过锚定可持续的生物经济;ii)通过帮助开发创新药物;iii)通过减少污染,以及iv)通过增加作物产量来减少饥饿。然而,关于合成生物学及其在非洲的监管政策,几乎没有信息。在整个非洲大陆,科学家、政策制定者、研究人员和其他人仍在各自为政——只是参加协商会议,试图制定一套统一的政策指南。因此,SynBio Africa提议在非洲建立第一个合成生物学卓越中心,共有六个主题,即:研究、能力发展、创新中心、生物安全和生物安保、生物信息学和数据科学,以及一个健康。因此,SynBio Africa将与乌干达、非洲和世界各地的政府和非政府组织、公共和私营部门以及教育机构的合作者合作,实施这六个主题。
{"title":"SynBio Africa's story from the grassroots, the present, and the future","authors":"Geoffrey Otim ,&nbsp;Sandra Matinyi ,&nbsp;Erikan Baluku ,&nbsp;Ivy S.G. Chimulwa ,&nbsp;George P. Magoola ,&nbsp;Alex Katumba ,&nbsp;Stephen Mukuze ,&nbsp;Alex Kyabarongo ,&nbsp;Stephen O. Opiyo","doi":"10.1016/j.biotno.2022.11.003","DOIUrl":"https://doi.org/10.1016/j.biotno.2022.11.003","url":null,"abstract":"<div><p>SynBio Africa is a forum for researchers, students, citizen scientists, policymakers and the public to convene and develop successful pathways for the propagation of synthetic biology technologies, products, and services throughout Africa. Our vision is to have a healthy, safe, and sustainable world through synthetic biology. In Africa, synthetic biology has the potential to greatly contribute to national development agenda through the following ways: i) by anchoring a sustainable bioeconomy; ii) by helping develop innovative medicines; iii) by reducing pollution, and iv) by increasing crop production to reduce hunger. However, there is little to no information on synthetic biology and its regulatory policies in Africa. Across the continent, scientists, policy makers, researchers and others are still working in silos—only partaking in consultative meetings to try and develop a set of unified policy guidelines. SynBio Africa is therefore proposing to establish the first Center of Excellence in Synthetic Biology in Africa with six themes, namely: research, capacity development, innovation hub, biosafety and biosecurity, and bioinformatics and data science, and one-health. Accordingly, SynBio Africa will work with collaborators from government and non-governmental organizations, the public and private sectors, and educational institutions from Uganda, Africa, and around the world to implement these six themes.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"4 ","pages":"Pages 1-6"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49716401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Over-expression of α-bisabolene by metabolic engineering of Yarrowia lipolytica employing a golden gate DNA assembly toolbox 利用金门DNA组装工具箱进行脂质体耶氏菌代谢工程对α-双abolene的过表达
Pub Date : 2023-01-01 DOI: 10.1016/j.biotno.2022.12.005
Walid M. El-Sharoud , Samar A. Zalma , Leonardo Rios-Solis , Rodrigo Ledesma-Amaro

Yarrowia lipolytica is a modern workhorse for biotechnology that is amenable to genetic manipulations and can produce high levels of various enzymes. The present study was designed to engineer Y. lipolytica for the overexpression of α-bisabolene, a valuable biofuel precursor and pharmaceutical, making use of this yeast's ability to accumulate lipids, and with the use of a golden gate DNA assembly (GG) toolbox. By transforming Y. lipolytica with a GG genetic construct involving truncated 3-hydroxy-3-methyl-glutaryle coenzyme A reductase (tHMG) and α-bisabolene synthase (Bis) genes controlled by the strong TEF promoter and Lip2 terminator, the engineered yeast was able to produce 489 mg l−1 of α-bisabolene. This was increased to 816 mg l−1 by transforming a lipid-over-accumulating Y. lipolytica strain with the same genetic construct. Higher production titers of up to 1243 mg l−1 could be also achieved by varying the culture conditions of the transformed strains.

解脂Yarrowia是一种现代生物技术的主力,可以进行基因操作,并可以产生高水平的各种酶。本研究旨在利用这种酵母积累脂质的能力,并使用金门DNA组装(GG)工具箱,设计溶脂酵母,使其过表达α-双abolene,这是一种有价值的生物燃料前体和药物。通过用GG基因构建体转化Y.lipolytica,该基因构建体包含由强TEF启动子和Lip2终止子控制的截短的3-羟基-3-甲基戊二酰辅酶a还原酶(tHMG)和α-双abolene合成酶(Bis)基因,工程酵母能够产生489 mg l−1的α-双Abolene。通过转化具有相同基因构建体的脂质过多的溶脂Y。通过改变转化菌株的培养条件,也可以获得高达1243 mg l−1的更高生产滴度。
{"title":"Over-expression of α-bisabolene by metabolic engineering of Yarrowia lipolytica employing a golden gate DNA assembly toolbox","authors":"Walid M. El-Sharoud ,&nbsp;Samar A. Zalma ,&nbsp;Leonardo Rios-Solis ,&nbsp;Rodrigo Ledesma-Amaro","doi":"10.1016/j.biotno.2022.12.005","DOIUrl":"https://doi.org/10.1016/j.biotno.2022.12.005","url":null,"abstract":"<div><p><em>Yarrowia lipolytica</em> is a modern workhorse for biotechnology that is amenable to genetic manipulations and can produce high levels of various enzymes. The present study was designed to engineer <em>Y. lipolytica</em> for the overexpression of α-bisabolene, a valuable biofuel precursor and pharmaceutical, making use of this yeast's ability to accumulate lipids, and with the use of a golden gate DNA assembly (GG) toolbox. By transforming <em>Y. lipolytica</em> with a GG genetic construct involving truncated 3-hydroxy-3-methyl-glutaryle coenzyme A reductase (<em>tHMG</em>) and α-bisabolene synthase (<em>Bis</em>) genes controlled by the strong TEF promoter and Lip2 terminator, the engineered yeast was able to produce 489 mg l<sup>−1</sup> of α-bisabolene. This was increased to 816 mg l<sup>−1</sup> by transforming a lipid-over-accumulating <em>Y. lipolytica</em> strain with the same genetic construct. Higher production titers of up to 1243 mg l<sup>−1</sup> could be also achieved by varying the culture conditions of the transformed strains.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"4 ","pages":"Pages 14-19"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49761128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
The electrical transport and antibacterial properties of Fe doped MgO nanoparticles synthesized by a soft chemical technique 软化学技术合成的掺铁氧化镁纳米粒子的电传输和抗菌特性
Pub Date : 2023-01-01 DOI: 10.1016/j.biotno.2023.12.002
Joyshree Maji , Sanjeev Pandey , Soumen Basu

Fe doped MgO nanoparticles were synthesized using a straightforward soft chemical method. We conducted a comprehensive examination of the electrical properties of Fe-doped MgO nanoparticles with a crystalline size range of 7–10 nm. Simultaneously, we explored their antibacterial capabilities. Our findings indicate that an increase in the concentration of Fe-doped MgO correlates with an enhanced bactericidal effect. To gain a deeper understanding of charge transfer processes, the AC conductivity and dielectric characteristics of the samples across various temperatures and frequencies was studied.The antibacterial activity was studied utilising the MIC methodology, the live count (LC) method, and the agar cup technique in addition to the electrical characteristics. After exposure to nanoparticles, we observed the disruption of pathogenic cell walls through transmission electron microscopy (TEM) analysis. These results suggest that Fe-doped MgO nanoparticles hold promise for the development of novel, more effective antibacterial drugs. The ½ MIC for E.coli was found to be 2.75 μg/ml, while for Bacillus sp., it was 1.75 μg/ml when exposed to Fe-doped MgO nanoparticles. This dosage level may find applications in the medical field. However, further investigations are required to assess potential toxicity and long-term environmental and human health effects. If successful in vivo tests follow, Fe-doped MgO nanoparticles could emerge as valuable antibacterial agents.

采用一种简单的软化学方法合成了Fe掺杂MgO纳米颗粒。我们对晶粒尺寸范围为7-10 nm的fe掺杂MgO纳米颗粒的电学性能进行了全面的测试。同时,我们探索了它们的抗菌能力。我们的研究结果表明,铁掺杂MgO浓度的增加与增强的杀菌效果相关。为了更深入地了解电荷转移过程,研究了样品在不同温度和频率下的交流电导率和介电特性。除电特性外,还利用MIC方法,活计数(LC)方法和琼脂杯技术研究了抗菌活性。暴露于纳米颗粒后,我们通过透射电子显微镜(TEM)分析观察到致病细胞壁的破坏。这些结果表明,铁掺杂的MgO纳米颗粒有望开发出新的、更有效的抗菌药物。fe掺杂MgO纳米粒子对大肠杆菌和芽孢杆菌的MIC值分别为2.75 μg/ml和1.75 μg/ml。这一剂量水平可能在医学领域得到应用。然而,需要进一步调查以评估潜在的毒性以及对环境和人类健康的长期影响。如果体内试验成功,掺铁氧化镁纳米颗粒可能成为有价值的抗菌剂。
{"title":"The electrical transport and antibacterial properties of Fe doped MgO nanoparticles synthesized by a soft chemical technique","authors":"Joyshree Maji ,&nbsp;Sanjeev Pandey ,&nbsp;Soumen Basu","doi":"10.1016/j.biotno.2023.12.002","DOIUrl":"10.1016/j.biotno.2023.12.002","url":null,"abstract":"<div><p>Fe doped MgO nanoparticles were synthesized using a straightforward soft chemical method. We conducted a comprehensive examination of the electrical properties of Fe-doped MgO nanoparticles with a crystalline size range of 7–10 nm. Simultaneously, we explored their antibacterial capabilities. Our findings indicate that an increase in the concentration of Fe-doped MgO correlates with an enhanced bactericidal effect. To gain a deeper understanding of charge transfer processes, the AC conductivity and dielectric characteristics of the samples across various temperatures and frequencies was studied.The antibacterial activity was studied utilising the MIC methodology, the live count (LC) method, and the agar cup technique in addition to the electrical characteristics. After exposure to nanoparticles, we observed the disruption of pathogenic cell walls through transmission electron microscopy (TEM) analysis. These results suggest that Fe-doped MgO nanoparticles hold promise for the development of novel, more effective antibacterial drugs. The ½ MIC for <em>E.coli</em> was found to be 2.75 μg/ml, while for <em>Bacillus</em> sp., it was 1.75 μg/ml when exposed to Fe-doped MgO nanoparticles. This dosage level may find applications in the medical field. However, further investigations are required to assess potential toxicity and long-term environmental and human health effects. If successful in vivo tests follow, Fe-doped MgO nanoparticles could emerge as valuable antibacterial agents.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"4 ","pages":"Pages 150-159"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906923000144/pdfft?md5=685971f28d934a479bde548ad1c8eba7&pid=1-s2.0-S2665906923000144-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138615447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fine-tuning the cell morphology of Corynebacterium glutamicum via dual-valve regulation for enhanced hyaluronic acid production 通过双阀调节微调谷氨酸棒状杆菌的细胞形态以提高透明质酸产量
Pub Date : 2023-01-01 DOI: 10.1016/j.biotno.2023.12.003
Shuting Yuan , Yukun Zheng , Yan Du , Mingye Song , Claudia Chen Sun , Fangyu Cheng , Huimin Yu

Enhanced synthesis of hyaluronic acid (HA) with recombinant Corynebacterium glutamicum as production host was achieved in this work. Hyaluronan synthase (HAS), which is a membrane protein acting as a key enzyme in HA biosynthesis, impacts both HA yield and its molecular weight. Cell morphology, which includes size, shape, and surface area, has a large impact on the expression and activity of HAS. Therefore, deliberate regulation of cell morphology holds the potential to enhance HA production. Here, we constructed three modules, namely the transporter module, the morphology tuning module and the HA synthesis module. The transporter module contains a strong constitutive promoter Ptuf and arabinose transport protein was used to control the maximum amount of inducer entering the cell, thus reducing excessive cell deformation. The morphology tuning module contains an arabinose-inducible weak promoter PBAD and a cell-division-relevant gene was used to sense intracellular inducer concentrations and achieve different degrees of change in cell size. These two modules worked together, described as a dual-valve regulation, to achieve fine-tuning of cell morphology, resulting in a 1.87-fold increase in cell length and a 2.08-fold increase in cell membrane. When combined with the HA synthesis module, the HA titer reached 16.0 g/L, which was 1.6 times the yield reported in the previous morphology-engineered strain. Hence, for the first time, a morphologically engineered strain resulting in both high cell density and HA titer was constructed.

这项研究以重组谷氨酸棒状杆菌为生产宿主,实现了透明质酸(HA)的强化合成。透明质酸合成酶(HAS)是一种膜蛋白,是 HA 生物合成过程中的关键酶,对 HA 的产量和分子量都有影响。细胞形态(包括大小、形状和表面积)对 HAS 的表达和活性有很大影响。因此,有意调节细胞形态有可能提高 HA 产量。在这里,我们构建了三个模块,即转运模块、形态调节模块和HA合成模块。转运模块包含一个强组成型启动子 Ptuf,并使用阿拉伯糖转运蛋白来控制进入细胞的诱导剂的最大数量,从而减少细胞的过度变形。形态调节模块包含一个阿拉伯糖诱导的弱启动子 PBAD 和一个与细胞分裂相关的基因,用于感知细胞内诱导剂的浓度,实现细胞大小的不同程度变化。这两个模块被描述为双阀调节,共同作用实现了细胞形态的微调,使细胞长度增加了 1.87 倍,细胞膜增加了 2.08 倍。结合 HA 合成模块,HA 滴度达到 16.0 克/升,是之前形态学工程菌株产量的 1.6 倍。因此,这是首次构建出细胞密度和 HA 滴度都很高的形态学工程菌株。
{"title":"Fine-tuning the cell morphology of Corynebacterium glutamicum via dual-valve regulation for enhanced hyaluronic acid production","authors":"Shuting Yuan ,&nbsp;Yukun Zheng ,&nbsp;Yan Du ,&nbsp;Mingye Song ,&nbsp;Claudia Chen Sun ,&nbsp;Fangyu Cheng ,&nbsp;Huimin Yu","doi":"10.1016/j.biotno.2023.12.003","DOIUrl":"https://doi.org/10.1016/j.biotno.2023.12.003","url":null,"abstract":"<div><p>Enhanced synthesis of hyaluronic acid (HA) with recombinant <em>Corynebacterium glutamicum</em> as production host was achieved in this work. Hyaluronan synthase (HAS), which is a membrane protein acting as a key enzyme in HA biosynthesis, impacts both HA yield and its molecular weight. Cell morphology, which includes size, shape, and surface area, has a large impact on the expression and activity of HAS. Therefore, deliberate regulation of cell morphology holds the potential to enhance HA production. Here, we constructed three modules, namely the transporter module, the morphology tuning module and the HA synthesis module. The transporter module contains a strong constitutive promoter P<sub>tuf</sub> and arabinose transport protein was used to control the maximum amount of inducer entering the cell, thus reducing excessive cell deformation. The morphology tuning module contains an arabinose-inducible weak promoter P<sub>BAD</sub> and a cell-division-relevant gene was used to sense intracellular inducer concentrations and achieve different degrees of change in cell size. These two modules worked together, described as a dual-valve regulation, to achieve fine-tuning of cell morphology, resulting in a 1.87-fold increase in cell length and a 2.08-fold increase in cell membrane. When combined with the HA synthesis module, the HA titer reached 16.0 g/L, which was 1.6 times the yield reported in the previous morphology-engineered strain. Hence, for the first time, a morphologically engineered strain resulting in both high cell density and HA titer was constructed.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"4 ","pages":"Pages 135-145"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906923000156/pdfft?md5=38eb27e8aab2ba5af848b5013bd6c72b&pid=1-s2.0-S2665906923000156-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138577568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Circular mRNA: A novel therapeutic agent 环状mRNA:一种新型治疗剂
Pub Date : 2023-01-01 DOI: 10.1016/j.biotno.2023.09.001
Xiaoxue Wang , Jian Dong , Yuan Lu

Circular mRNA (circmRNA) is a covalent closed loop formed by reverse splicing of the 3′ end to the 5′ end of mRNA. Compared to traditional linear mRNAs, circmRNAs can mediate efficient, stable, and durable protein expression and are considered an alternative to linear mRNAs in terms of therapeutic reagents. With the continuous development of circmRNA research, circmRNA has also made significant progress in vaccines and cellular therapies. In this review, we present research advances in the in vitro synthesis of circmRNAs, focusing on the biological ligation methods of circmRNAs and current applications, with a summary of challenges regarding circmRNA design, synthesis, and applications. Based on the enhanced stability of circmRNAs, further research on circmRNAs could help expand their applications in biotherapeutics and strengthen their role in basic medical applications.

环状信使核糖核酸(circmRNA)是信使核糖核酸3′端与5′端反向剪接形成的共价闭环。与传统的线性mRNA相比,circmRNA可以介导高效、稳定和持久的蛋白质表达,并且在治疗试剂方面被认为是线性mRNA的替代品。随着circmRNA研究的不断发展,circmRNA在疫苗和细胞治疗方面也取得了重大进展。在这篇综述中,我们介绍了circmRNAs体外合成的研究进展,重点是circmRNA的生物连接方法和当前的应用,并总结了circmRNA设计、合成和应用方面的挑战。基于circmRNA稳定性的增强,对circmRNAs的进一步研究有助于扩大其在生物治疗中的应用,并加强其在基础医学应用中的作用。
{"title":"Circular mRNA: A novel therapeutic agent","authors":"Xiaoxue Wang ,&nbsp;Jian Dong ,&nbsp;Yuan Lu","doi":"10.1016/j.biotno.2023.09.001","DOIUrl":"https://doi.org/10.1016/j.biotno.2023.09.001","url":null,"abstract":"<div><p>Circular mRNA (circmRNA) is a covalent closed loop formed by reverse splicing of the 3′ end to the 5′ end of mRNA. Compared to traditional linear mRNAs, circmRNAs can mediate efficient, stable, and durable protein expression and are considered an alternative to linear mRNAs in terms of therapeutic reagents. With the continuous development of circmRNA research, circmRNA has also made significant progress in vaccines and cellular therapies. In this review, we present research advances in the <em>in vitro</em> synthesis of circmRNAs, focusing on the biological ligation methods of circmRNAs and current applications, with a summary of challenges regarding circmRNA design, synthesis, and applications. Based on the enhanced stability of circmRNAs, further research on circmRNAs could help expand their applications in biotherapeutics and strengthen their role in basic medical applications.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"4 ","pages":"Pages 58-63"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49731576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A facile microfluidic chip design for DNA detection using dengue serotypes as a proof-of-concept case study 一种简单的微流控芯片设计用于DNA检测,使用登革热血清型作为概念验证案例研究
Pub Date : 2023-01-01 DOI: 10.1016/j.biotno.2023.11.001
Y.H. Foo , Norhidayah Abu , Rafidah Hanim Shueb , Tuan Nur Akmalina Mat Jusoh , Zuhana Ahmad Zubir , Nur Ellina Azmi , Hamidah Sidek , Leon C.Z. Chan

Dengue fever is caused by any of the four serotypes of dengue viruses, DENV-1, DENV-2, DENV-3 and DENV-4 spread by mosquito bites and is important to distinguish between them due to lack of cross-protective neutralizing antibodies for each serotype. Secondary infections also put individuals at higher risk for severe dengue illness than those who have not been previously infected. Current preferred assays include reverse transcription-PCR (RT-PCR) and ELISA. To enable on-field diagnosis of dengue serotypes, the detection process would need to be simplified or at least semi-automated. A downstream detection module was conceptualized and fabricated to detect the amplified DNA from the provided PCR mix (product) of previously developed modular microfluidic chips involving sample loading, cell lysis, RNA extraction and RT-PCR. Further, to ensure accuracy, each serotype assay necessitates a positive control, negative control and test sample, which constitutes 3 separate channels for the diagnosis of just 1 serotype. In this study, a 6-channel bi-assay microfluidic chip was designed with pre-loaded diluent and cyanine dye, sample chamber for loading, sequential fluidic sample mixing, and integrated membranes for simultaneous (6-channel) fluidic manipulation from a single actuation source. Positive samples will turn the dye from blue to violet while the negative controls will remain blue. The integrated membranes provided color contrast and facilitated the manipulation of the samples to the same line of sight for simultaneous analysis, paving the way for automated color analysis via smartphone.

登革热是由登革热病毒的四种血清型(DENV-1、DENV-2、DENV-3和DENV-4)中的任何一种引起的,通过蚊虫叮咬传播。由于缺乏针对每种血清型的交叉保护性中和抗体,区分它们非常重要。继发感染也使个体比以前没有感染过的人患严重登革热疾病的风险更高。目前首选的检测方法包括逆转录pcr (RT-PCR)和ELISA。为了能够对登革热血清型进行现场诊断,需要简化检测过程,或至少实现半自动化。我们构想并制作了一个下游检测模块,用于从先前开发的模块化微流控芯片提供的PCR混合物(产物)中检测扩增的DNA,包括样品装载、细胞裂解、RNA提取和RT-PCR。此外,为了确保准确性,每种血清型分析都需要阳性对照、阴性对照和测试样本,这构成了仅一种血清型诊断的3个独立渠道。在本研究中,设计了一种6通道双检测微流控芯片,该芯片采用预加载的稀释剂和花青素染料,样品室用于加载,顺序流体-样品混合,以及集成膜用于从单个驱动源同时(6通道)进行流体操作。阳性样品会将染料从蓝色变为紫色,而阴性对照将保持蓝色。集成膜提供了颜色对比,便于将样品操作到同一视线进行同时分析,为通过智能手机进行自动颜色分析铺平了道路。
{"title":"A facile microfluidic chip design for DNA detection using dengue serotypes as a proof-of-concept case study","authors":"Y.H. Foo ,&nbsp;Norhidayah Abu ,&nbsp;Rafidah Hanim Shueb ,&nbsp;Tuan Nur Akmalina Mat Jusoh ,&nbsp;Zuhana Ahmad Zubir ,&nbsp;Nur Ellina Azmi ,&nbsp;Hamidah Sidek ,&nbsp;Leon C.Z. Chan","doi":"10.1016/j.biotno.2023.11.001","DOIUrl":"10.1016/j.biotno.2023.11.001","url":null,"abstract":"<div><p>Dengue fever is caused by any of the four serotypes of dengue viruses, DENV-1, DENV-2, DENV-3 and DENV-4 spread by mosquito bites and is important to distinguish between them due to lack of cross-protective neutralizing antibodies for each serotype. Secondary infections also put individuals at higher risk for severe dengue illness than those who have not been previously infected. Current preferred assays include reverse transcription-PCR (RT-PCR) and ELISA. To enable on-field diagnosis of dengue serotypes, the detection process would need to be simplified or at least semi-automated. A downstream detection module was conceptualized and fabricated to detect the amplified DNA from the provided PCR mix (product) of previously developed modular microfluidic chips involving sample loading, cell lysis, RNA extraction and RT-PCR. Further, to ensure accuracy, each serotype assay necessitates a positive control, negative control and test sample, which constitutes 3 separate channels for the diagnosis of just 1 serotype. In this study, a 6-channel bi-assay microfluidic chip was designed with pre-loaded diluent and cyanine dye, sample chamber for loading, sequential fluidic sample mixing, and integrated membranes for simultaneous (6-channel) fluidic manipulation from a single actuation source. Positive samples will turn the dye from blue to violet while the negative controls will remain blue. The integrated membranes provided color contrast and facilitated the manipulation of the samples to the same line of sight for simultaneous analysis, paving the way for automated color analysis via smartphone.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"4 ","pages":"Pages 77-82"},"PeriodicalIF":0.0,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906923000077/pdfft?md5=bf20248ccda9b52bf047b5649e629ad8&pid=1-s2.0-S2665906923000077-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135564703","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
De novo synthesis of synthetic biology ecosystem in Slovakia: Challenges and opportunities 斯洛伐克合成生物学生态系统的重新合成:挑战和机遇
Pub Date : 2022-01-01 DOI: 10.1016/j.biotno.2022.06.001
Miroslav Gasparek , Jakub Hantabal

Synthetic biology is an engineering discipline that applies engineering principles to rationally design novel biological systems. It has the potential to contribute to solving major global challenges in a multitude of areas, from healthcare to sustainability. While the engineering biology landscape is robust and well-established in certain countries, the ecosystem and infrastructure for genetic engineering in other countries, including Slovakia, are underdeveloped. Consequently, such countries are missing the major economic and social benefits that the practical applications of the rational design of biological systems may provide. In this work, we briefly assess the status of the synthetic biology landscape in Slovakia in different areas, including research efforts, industrial participation, governmental policy, and the educational landscape. We describe the major challenges that the Slovak synthetic biology sector faces and propose a strategy that academics, policymakers, and industry could take to activate the proliferation of the Slovak synthetic biology ecosystem.

合成生物学是一门应用工程原理合理设计新型生物系统的工程学科。它有潜力为解决从医疗保健到可持续性等众多领域的重大全球挑战作出贡献。虽然工程生物学的景观在某些国家是健全和完善的,但在包括斯洛伐克在内的其他国家,基因工程的生态系统和基础设施是不发达的。因此,这些国家错过了合理设计生物系统的实际应用可能提供的主要经济和社会效益。在这项工作中,我们简要地评估了斯洛伐克合成生物学景观在不同领域的现状,包括研究努力、工业参与、政府政策和教育景观。我们描述了斯洛伐克合成生物学部门面临的主要挑战,并提出了学术界、政策制定者和工业界可以采取的战略,以激活斯洛伐克合成生物学生态系统的扩散。
{"title":"De novo synthesis of synthetic biology ecosystem in Slovakia: Challenges and opportunities","authors":"Miroslav Gasparek ,&nbsp;Jakub Hantabal","doi":"10.1016/j.biotno.2022.06.001","DOIUrl":"https://doi.org/10.1016/j.biotno.2022.06.001","url":null,"abstract":"<div><p>Synthetic biology is an engineering discipline that applies engineering principles to rationally design novel biological systems. It has the potential to contribute to solving major global challenges in a multitude of areas, from healthcare to sustainability. While the engineering biology landscape is robust and well-established in certain countries, the ecosystem and infrastructure for genetic engineering in other countries, including Slovakia, are underdeveloped. Consequently, such countries are missing the major economic and social benefits that the practical applications of the rational design of biological systems may provide. In this work, we briefly assess the status of the synthetic biology landscape in Slovakia in different areas, including research efforts, industrial participation, governmental policy, and the educational landscape. We describe the major challenges that the Slovak synthetic biology sector faces and propose a strategy that academics, policymakers, and industry could take to activate the proliferation of the Slovak synthetic biology ecosystem.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"3 ","pages":"Pages 45-49"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906922000058/pdfft?md5=a6173eb35b98a985032fab7450ce9079&pid=1-s2.0-S2665906922000058-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"92051850","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coupled synthetic pathways improve the production of 3-hydroxypropionic acid in recombinant Escherichia coli strains 偶联合成途径提高了重组大肠杆菌菌株3-羟基丙酸的产量
Pub Date : 2022-01-01 DOI: 10.1016/j.biotno.2022.02.002
Dafeng Zhou , Diego Leandro Quiroga-Sánchez , Xuan Zhang , Yanhong Chang , Hui Luo

To improve the production of 3-HP with glucose as a substrate, the malonyl-CoA and propionyl-CoA pathways were coupled to regulate NADP+/NADPH regeneration in the recombinant E. coli. The strain Ec-AM that overexpressed the key enzymes of the malonyl-CoA pathway, acetyl CoA carboxylase (ACC) from Ustilago maydis and malonyl CoA reductase (MCR) from Chloroflexus aurantiacus, produced 0.26 g/L of 3-HP in 25-h shake flask cultivation. The strain Ec-P overexpressing the key enzyme of the propionyl-CoA pathway, propionyl-CoA dehydrogenase (PACD) from Candida rugosa, produced 0.11 g/L of 3-HP. However, 3-HP titer of the strain Ec-PAM overexpressing PACD along with ACC and MCR, via two pathways cooperation, was 1.29 g/L. The addition of biotin and bicarbonate improved the 3-HP production of the strain Ec-PAM. 3-HP titer of strain Ec-ΔY-ΔP-PAM with double deletion of ygfH (encoding propionyl-CoA: succinate-CoA transferase) and prpC (encoding methylcitrate synthase) genes reached 1.94 g/L, which was 1.5-fold higher than that of the strain Ec-PAM cultured under the same conditions.

为了提高以葡萄糖为底物的3-HP的产量,我们在重组大肠杆菌中偶联丙二酰辅酶a和丙二酰辅酶a途径来调节NADP+/NADPH的再生。菌株Ec-AM在摇瓶培养25 h后产生了0.26 g/L的3-HP,表达了丙二酰辅酶a途径的关键酶——黑穗病菌的乙酰辅酶a羧化酶(ACC)和金绿草的丙二酰辅酶a还原酶(MCR)。菌株Ec-P过表达了产自念珠菌的丙酰辅酶a途径关键酶丙酰辅酶a脱氢酶(PACD),产生了0.11 g/L的3-HP。而过表达PACD、ACC和MCR的Ec-PAM,通过两种途径合作,其3-HP滴度为1.29 g/L。生物素和碳酸氢盐的加入提高了菌株Ec-PAM的3 hp产量。编码丙酰辅酶a:琥珀酸辅酶a转移酶的ygfH和编码柠檬酸甲基合酶的prpC基因双缺失菌株Ec-ΔY-ΔP-PAM的3-HP滴度达到1.94 g/L,比在相同条件下培养的菌株Ec- pam的3-HP滴度高1.5倍。
{"title":"Coupled synthetic pathways improve the production of 3-hydroxypropionic acid in recombinant Escherichia coli strains","authors":"Dafeng Zhou ,&nbsp;Diego Leandro Quiroga-Sánchez ,&nbsp;Xuan Zhang ,&nbsp;Yanhong Chang ,&nbsp;Hui Luo","doi":"10.1016/j.biotno.2022.02.002","DOIUrl":"10.1016/j.biotno.2022.02.002","url":null,"abstract":"<div><p>To improve the production of 3-HP with glucose as a substrate, the malonyl-CoA and propionyl-CoA pathways were coupled to regulate NADP<sup>+</sup>/NADPH regeneration in the recombinant <em>E. coli</em>. The strain <em>Ec</em>-AM that overexpressed the key enzymes of the malonyl-CoA pathway, acetyl CoA carboxylase (ACC) from <em>Ustilago maydis</em> and malonyl CoA reductase (MCR) from <em>Chloroflexus aurantiacus</em>, produced 0.26 g/L of 3-HP in 25-h shake flask cultivation. The strain <em>Ec</em>-P overexpressing the key enzyme of the propionyl-CoA pathway, propionyl-CoA dehydrogenase (PACD) from <em>Candida rugosa</em>, produced 0.11 g/L of 3-HP. However, 3-HP titer of the strain <em>Ec</em>-PAM overexpressing PACD along with ACC and MCR, via two pathways cooperation, was 1.29 g/L. The addition of biotin and bicarbonate improved the 3-HP production of the strain <em>Ec</em>-PAM. 3-HP titer of strain <em>Ec</em>-ΔY-ΔP-PAM with double deletion of <em>ygfH</em> (encoding propionyl-CoA: succinate-CoA transferase) and <em>prpC</em> (encoding methylcitrate synthase) genes reached 1.94 g/L, which was 1.5-fold higher than that of the strain <em>Ec</em>-PAM cultured under the same conditions.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"3 ","pages":"Pages 25-31"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906922000022/pdfft?md5=4d83ace221b089dcb22838fe7b325ec8&pid=1-s2.0-S2665906922000022-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89710370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Micelle morphology observation method of lipopeptide by negative-staining-based transmission electron microscopy 基于负染色的透射电镜脂肽胶束形态观察方法
Pub Date : 2022-01-01 DOI: 10.1016/j.biotno.2022.10.001
Ruizhao Jiang , Lu Cai , Miaomiao Wang , Huimin Yu

Lipopeptides, novel biosurfactants showing versatile promising applications in enhanced oil recovery, textile industry, agriculture and daily chemical products, etc., are profoundly highlighted recently. Surfactin is one of the most typical representatives of lipopetide family. The critical micelle concentration (CMC) of surfactin is as low as 10–20 mg/L. When its concentration reaches above the CMC, different micelle structure will be formed and the surface-active performances might be changed with varied micelle morphologies. Thus, observation of the changes of surfactin micellar form at different concentrations is of great significance for its new applications. But so far, the micelle structure of surfactin (and also other lipopeptide molecules) is not reported yet, and the method for effectively observing the micelle morphology is limited as well. Here, we developed a method based on transmission electron microscopy combined with negative staining to observe the morphology of surfactin micelles, with which we can clearly observe the changes of micelle morphology of surfactin (or other lipopeptides) at different concentrations. Spherical micelles only form when the concentration of surfactin is low. With the increase in concentration, rod-shaped micelles of surfactin can form. Furthermore, complex rod-shaped-micelle-layer and big ring structure will form when the concentration of surfactin is very high.

脂肽作为一种新型生物表面活性剂,在提高石油采收率、纺织工业、农业和日化产品等方面具有广泛的应用前景。表面肽是脂肽家族中最典型的代表之一。表面素的临界胶束浓度(CMC)低至10 ~ 20mg /L。当其浓度达到CMC以上时,会形成不同的胶束结构,不同的胶束形态会改变表面活性性能。因此,观察不同浓度下表面素胶束形态的变化对其新的应用具有重要意义。但到目前为止,表面素(以及其他脂肽分子)的胶束结构尚未报道,有效观察胶束形态的方法也有限。在这里,我们开发了一种基于透射电镜结合阴性染色观察表面素胶束形态的方法,可以清楚地观察到不同浓度下表面素(或其他脂肽)胶束形态的变化。球状胶束只有在表面素浓度较低时才会形成。随着浓度的增加,表面蛋白可形成棒状胶束。当表面锡浓度很高时,会形成复杂的棒状胶束层和大环状结构。
{"title":"Micelle morphology observation method of lipopeptide by negative-staining-based transmission electron microscopy","authors":"Ruizhao Jiang ,&nbsp;Lu Cai ,&nbsp;Miaomiao Wang ,&nbsp;Huimin Yu","doi":"10.1016/j.biotno.2022.10.001","DOIUrl":"10.1016/j.biotno.2022.10.001","url":null,"abstract":"<div><p>Lipopeptides, novel biosurfactants showing versatile promising applications in enhanced oil recovery, textile industry, agriculture and daily chemical products, etc., are profoundly highlighted recently. Surfactin is one of the most typical representatives of lipopetide family. The critical micelle concentration (CMC) of surfactin is as low as 10–20 mg/L. When its concentration reaches above the CMC, different micelle structure will be formed and the surface-active performances might be changed with varied micelle morphologies. Thus, observation of the changes of surfactin micellar form at different concentrations is of great significance for its new applications. But so far, the micelle structure of surfactin (and also other lipopeptide molecules) is not reported yet, and the method for effectively observing the micelle morphology is limited as well. Here, we developed a method based on transmission electron microscopy combined with negative staining to observe the morphology of surfactin micelles, with which we can clearly observe the changes of micelle morphology of surfactin (or other lipopeptides) at different concentrations. Spherical micelles only form when the concentration of surfactin is low. With the increase in concentration, rod-shaped micelles of surfactin can form. Furthermore, complex rod-shaped-micelle-layer and big ring structure will form when the concentration of surfactin is very high.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"3 ","pages":"Pages 75-78"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906922000101/pdfft?md5=a307f0581f846960b89c5159e7078001&pid=1-s2.0-S2665906922000101-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91372490","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Biotechnology Notes
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1