首页 > 最新文献

Biotechnology Notes最新文献

英文 中文
Synthetic biology landscape in the UK 英国合成生物学景观
Pub Date : 2022-01-01 DOI: 10.1016/j.biotno.2022.07.002
Georg K.A. Wachter , Olivia Gallup , James Bayne , Louise Horsfall

The UK is home to a vibrant and diverse synthetic biology community. Many of its successes in research innovation and technological commercialisation can be attributed to a strong base of dedicated academics, investors, industrial leadership, and policymakers. Here, we give an overview of the organisations making up the network that have been key to these successes and the roles that they play within the different levels of the community. We start with a brief history of synthetic biology in the UK and continue by describing the progression of the societies and institutions that were set up, with particular focus on the UK's active student and entrepreneurship scene, as well as centres of research. We then contextualise the UK's growing bioeconomy, detailing government trajectories of planned innovation and how these coincide with research translation. The path to commercialisation for researchers is put into comparison to that of the US, the world leader in synthetic biology and its translation, highlighting aspects that differentiate the UK globally. Finally, we conclude with a bright outlook on the current velocity of progress and the state of the community.

英国是一个充满活力和多样化的合成生物学社区的家园。它在研究创新和技术商业化方面的许多成功都可以归功于一个由敬业的学者、投资者、行业领导者和政策制定者组成的强大基础。在这里,我们概述了构成网络的组织,这些组织是这些成功的关键,以及它们在社区不同层面上发挥的作用。我们从英国合成生物学的简史开始,继续描述所建立的社会和机构的进展,特别关注英国活跃的学生和创业场景,以及研究中心。然后,我们将英国不断增长的生物经济置于背景下,详细介绍政府计划创新的轨迹,以及这些轨迹如何与研究转化相吻合。研究人员的商业化之路与美国的道路进行了比较,美国在合成生物学及其翻译方面处于世界领先地位,突出了英国在全球范围内的不同之处。最后,我们对目前的进展速度和社区状况进行了乐观的展望。
{"title":"Synthetic biology landscape in the UK","authors":"Georg K.A. Wachter ,&nbsp;Olivia Gallup ,&nbsp;James Bayne ,&nbsp;Louise Horsfall","doi":"10.1016/j.biotno.2022.07.002","DOIUrl":"10.1016/j.biotno.2022.07.002","url":null,"abstract":"<div><p>The UK is home to a vibrant and diverse synthetic biology community. Many of its successes in research innovation and technological commercialisation can be attributed to a strong base of dedicated academics, investors, industrial leadership, and policymakers. Here, we give an overview of the organisations making up the network that have been key to these successes and the roles that they play within the different levels of the community. We start with a brief history of synthetic biology in the UK and continue by describing the progression of the societies and institutions that were set up, with particular focus on the UK's active student and entrepreneurship scene, as well as centres of research. We then contextualise the UK's growing bioeconomy, detailing government trajectories of planned innovation and how these coincide with research translation. The path to commercialisation for researchers is put into comparison to that of the US, the world leader in synthetic biology and its translation, highlighting aspects that differentiate the UK globally. Finally, we conclude with a bright outlook on the current velocity of progress and the state of the community.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"3 ","pages":"Pages 70-74"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906922000071/pdfft?md5=8611cf0d49012fcd702dff39b1e10dcb&pid=1-s2.0-S2665906922000071-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91538793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Construction of an ultra-strong PtacM promoter via engineering the core-element spacer and 5′ untranslated region for versatile applications in Corynebacterium glutamicum 通过工程设计核心元件间隔区和5 '非翻译区构建超强PtacM启动子,用于谷氨酸棒状杆菌的多功能应用
Pub Date : 2022-01-01 DOI: 10.1016/j.biotno.2022.11.001
Yan Du , Miaomiao Wang , Claudia Chen Sun , Huimin Yu

As one of the most important synthetic biology elements in transcriptional regulation, promoters play irreplaceable roles in metabolic engineering. For the industrial microorganism Corynebacterium glutamicum, both the construction of a promoter library with gradient strength and the creation of ultra-strong promoters are essential for the production of target enzymes and compounds. In this work, the spacer sequence (both length and base) between the −35 and −10 regions, and the 5′-terminal untranslated region (5′UTR) were particularly highlighted to investigate their contributions to promoter strength. We constructed a series of artificially induced promoters based on the classical tac promoter using C. glutamicum ATCC13032 as the host. Here, we explored the effect of sequence length between the −35 and −10 regions on the strength of the tac promoter, and found that the mutant with 15 nt spacer length (PtacL15) was transcriptionally stronger than the classic Ptac (16 nt); subsequently, based on PtacL15, we explored the effect of the nucleotide sequence in the spacer region on transcriptional strength, and screened the strongest PtacL15m-110 (GAACAGGCTTTATCT), and PtacL15m-87 (AGTCGCTAAGACTCA); finally, we investigated the effect of the length of the 5′-terminal untranslated region (5′UTR) and screened out the optimal PtacM4 mutant with a 5′UTR length of 32 nt. Based on our new findings on the optimal spacer length (15 nt), nucleotide sequence (AGTCGCTAAGACTCA), and 5′UTR (truncated 32 nt), an ultra-strong PtacM, whose transcriptional strength was about 3.25 times that of the original Ptac, was obtained. We anticipate that these promoters with gradient transcriptional strength and the ultra-strong PtacM will play an important role in the construction of recombinant strains and industrial production.

启动子作为转录调控中最重要的合成生物学元件之一,在代谢工程中具有不可替代的作用。对于工业微生物谷氨棒状杆菌来说,构建具有梯度强度的启动子文库和创建超强启动子是产生目标酶和化合物的必要条件。在这项工作中,特别强调了- 35和- 10区域之间的间隔序列(长度和碱基),以及5 '端未翻译区(5 ' utr),以研究它们对启动子强度的贡献。以谷氨酰胺ATCC13032为宿主,在经典tac启动子的基础上,构建了一系列人工诱导启动子。在这里,我们探索了−35和−10区域之间的序列长度对tac启动子强度的影响,发现间隔长度为15 nt的突变体(PtacL15)比经典的Ptac (16 nt)在转录上更强;随后,我们以PtacL15为基础,探索间隔区核苷酸序列对转录强度的影响,筛选出最强的PtacL15m-110 (GAACAGGCTTTATCT)和PtacL15m-87 (AGTCGCTAAGACTCA);最后,我们考察了5′端非翻译区(5′utr)长度的影响,筛选出了5′utr长度为32 nt的最佳PtacM4突变体。基于我们对最佳间隔长度(15 nt)、核苷酸序列(AGTCGCTAAGACTCA)和5′utr(截断32 nt)的新发现,获得了一个转录强度约为原Ptac的3.25倍的超强PtacM。我们预计这些具有梯度转录强度和超强PtacM的启动子将在重组菌株的构建和工业生产中发挥重要作用。
{"title":"Construction of an ultra-strong PtacM promoter via engineering the core-element spacer and 5′ untranslated region for versatile applications in Corynebacterium glutamicum","authors":"Yan Du ,&nbsp;Miaomiao Wang ,&nbsp;Claudia Chen Sun ,&nbsp;Huimin Yu","doi":"10.1016/j.biotno.2022.11.001","DOIUrl":"10.1016/j.biotno.2022.11.001","url":null,"abstract":"<div><p>As one of the most important synthetic biology elements in transcriptional regulation, promoters play irreplaceable roles in metabolic engineering. For the industrial microorganism <em>Corynebacterium glutamicum</em>, both the construction of a promoter library with gradient strength and the creation of ultra-strong promoters are essential for the production of target enzymes and compounds. In this work, the spacer sequence (both length and base) between the −35 and −10 regions, and the 5′-terminal untranslated region (5′UTR) were particularly highlighted to investigate their contributions to promoter strength. We constructed a series of artificially induced promoters based on the classical tac promoter using <em>C. glutamicum</em> ATCC13032 as the host. Here, we explored the effect of sequence length between the −35 and −10 regions on the strength of the tac promoter, and found that the mutant with 15 nt spacer length (PtacL15) was transcriptionally stronger than the classic Ptac (16 nt); subsequently, based on PtacL15, we explored the effect of the nucleotide sequence in the spacer region on transcriptional strength, and screened the strongest PtacL15m-110 (GAACAGGCTTTATCT), and PtacL15m-87 (AGTCGCTAAGACTCA); finally, we investigated the effect of the length of the 5′-terminal untranslated region (5′UTR) and screened out the optimal PtacM4 mutant with a 5′UTR length of 32 nt. Based on our new findings on the optimal spacer length (15 nt), nucleotide sequence (AGTCGCTAAGACTCA), and 5′UTR (truncated 32 nt), an ultra-strong PtacM, whose transcriptional strength was about 3.25 times that of the original Ptac, was obtained. We anticipate that these promoters with gradient transcriptional strength and the ultra-strong PtacM will play an important role in the construction of recombinant strains and industrial production.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"3 ","pages":"Pages 88-96"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906922000125/pdfft?md5=7e38e4ed58f11fe6f762eb6c4d393b76&pid=1-s2.0-S2665906922000125-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84059005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunomodulatory effects of Abelmoschus esculentus water extract through MAPK and NF-κB signaling in RAW 264.7 cells 沙鼠水提物通过MAPK和NF-κB信号通路对RAW 264.7细胞的免疫调节作用
Pub Date : 2022-01-01 DOI: 10.1016/j.biotno.2022.05.002
Min Nyeong Ko , Su Bin Hyun , Keun Jae Ahn , Chang-Gu Hyun

During the current COVID-19 pandemic, the world is facing a new, highly contagious virus that suppresses innate immunity as one of its early virulence mechanisms. Therefore, finding new methods to enhance innate immunity is a promising strategy to attenuate the effects of this major global health problem. With the aim of characterizing bioactive ingredients as immune-enhancing agents, this study focuses on Abelmoschus esculentus (okra), which has several previously demonstrated bioactivities. Firstly, we investigated the immune-stimulatory effects of okra leaf ethanol extract (OLE) and okra leaf water extract (OLW) on nitric oxide (NO) production in macrophages. OLE significantly decreased nitrite accumulation in LPS-stimulated RAW 264.7 cells, indicating that it potentially inhibited NO production in a concentration-dependent manner. In contrast, OLW significantly enhanced the production of prostaglandin E2 (PGE2), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and NO in a dose-dependent manner. OLW also increased the expression levels of NO synthase (iNOS) and cyclooxygenase (COX)-2, potentially explaining the OLW-induced increase in NO and PGE2 production. In addition, OLW stimulated the phosphorylation of mitogen-activated protein kinases (MAPKs; ERK, p38, and JNK) as well as the activation and subsequent nuclear translocation of nuclear factor κB (NF-κB). This indicated that OLW activates macrophages to secrete PGE2, TNF-α, IL-1β, and NO, inducing iNOS and COX-2 expression via activation of the NF-κB and MAPK signaling pathways. In conclusion, our results demonstrate that OLW can effectively promote the activation of macrophages, suggesting that OLW may possess potent immunomodulatory effects and should be explored as a potential health-promoting materials to boost the immune system.

在当前的COVID-19大流行期间,世界正面临一种新的高传染性病毒,它抑制先天免疫是其早期毒力机制之一。因此,寻找增强先天免疫的新方法是减轻这一重大全球健康问题影响的有希望的策略。以表征生物活性成分作为免疫增强剂为目的,本研究重点研究了秋葵(Abelmoschus esculentus,秋葵),它具有几种先前证明的生物活性。首先,我们研究了秋葵叶乙醇提取物(OLE)和秋葵叶水提取物(OLW)对巨噬细胞一氧化氮(NO)产生的免疫刺激作用。OLE显著降低了lps刺激的RAW 264.7细胞中亚硝酸盐的积累,表明它可能以浓度依赖的方式抑制NO的产生。相反,OLW显著提高前列腺素E2 (PGE2)、肿瘤坏死因子-α (TNF-α)、白细胞介素-1β (IL-1β)和NO的产生,并呈剂量依赖性。OLW还增加了NO合成酶(iNOS)和环氧合酶(COX)-2的表达水平,这可能解释了OLW诱导NO和PGE2生成增加的原因。此外,OLW刺激了丝裂原活化蛋白激酶(MAPKs;ERK, p38和JNK)以及核因子κB (NF-κB)的激活和随后的核易位。这表明OLW可激活巨噬细胞分泌PGE2、TNF-α、IL-1β和NO,通过激活NF-κB和MAPK信号通路诱导iNOS和COX-2表达。综上所述,我们的研究结果表明,OLW可以有效地促进巨噬细胞的活化,表明OLW可能具有强大的免疫调节作用,值得作为一种潜在的促进免疫系统的健康物质进行探索。
{"title":"Immunomodulatory effects of Abelmoschus esculentus water extract through MAPK and NF-κB signaling in RAW 264.7 cells","authors":"Min Nyeong Ko ,&nbsp;Su Bin Hyun ,&nbsp;Keun Jae Ahn ,&nbsp;Chang-Gu Hyun","doi":"10.1016/j.biotno.2022.05.002","DOIUrl":"10.1016/j.biotno.2022.05.002","url":null,"abstract":"<div><p>During the current COVID-19 pandemic, the world is facing a new, highly contagious virus that suppresses innate immunity as one of its early virulence mechanisms. Therefore, finding new methods to enhance innate immunity is a promising strategy to attenuate the effects of this major global health problem. With the aim of characterizing bioactive ingredients as immune-enhancing agents, this study focuses on <em>Abelmoschus esculentus</em> (okra), which has several previously demonstrated bioactivities. Firstly, we investigated the immune-stimulatory effects of okra leaf ethanol extract (OLE) and okra leaf water extract (OLW) on nitric oxide (NO) production in macrophages. OLE significantly decreased nitrite accumulation in LPS-stimulated RAW 264.7 cells, indicating that it potentially inhibited NO production in a concentration-dependent manner. In contrast, OLW significantly enhanced the production of prostaglandin E<sub>2</sub> (PGE<sub>2</sub>), tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), and NO in a dose-dependent manner. OLW also increased the expression levels of NO synthase (iNOS) and cyclooxygenase (COX)-2, potentially explaining the OLW-induced increase in NO and PGE<sub>2</sub> production. In addition, OLW stimulated the phosphorylation of mitogen-activated protein kinases (MAPKs; ERK, p38, and JNK) as well as the activation and subsequent nuclear translocation of nuclear factor κB (NF-κB). This indicated that OLW activates macrophages to secrete PGE<sub>2</sub>, TNF-α, IL-1β, and NO, inducing iNOS and COX-2 expression via activation of the NF-κB and MAPK signaling pathways. In conclusion, our results demonstrate that OLW can effectively promote the activation of macrophages, suggesting that OLW may possess potent immunomodulatory effects and should be explored as a potential health-promoting materials to boost the immune system.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"3 ","pages":"Pages 38-44"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906922000046/pdfft?md5=6cd271c83623aa7f423fbbc004ef9174&pid=1-s2.0-S2665906922000046-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86851029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Synthetic biology in Europe: current community landscape and future perspectives 合成生物学在欧洲:当前的社区景观和未来的前景
Pub Date : 2022-01-01 DOI: 10.1016/j.biotno.2022.07.003
Stefano Donati , Içvara Barbier , Daniela A. García-Soriano , Stefano Grasso , Paola Handal-Marquez , Koray Malcı , Louis Marlow , Cauã Westmann , Adam Amara

Synthetic biology has captivated scientists' imagination. It promises answers to some of the grand challenges society is facing: worsening climate crisis, insufficient food supplies for ever growing populations, and many persisting infectious and genetic diseases. While many challenges remain unaddressed, after almost two decades since its inception a number of products created by engineered biology are starting to reach the public. European scientists and entrepreneurs have been participating in delivering on the promises of synthetic biology. Associations like the European Synthetic Biology Society (EUSynBioS) play a key role in disseminating advances in the field, connecting like-minded people and promoting scientific development. In this perspective article, we review the current landscape of the synthetic biology community in Europe, discussing the state of related academic research and industry. We also discuss how EUSynBioS has helped to build bridges between professionals across the continent.

合成生物学吸引了科学家们的想象力。它有望解决社会面临的一些重大挑战:日益恶化的气候危机,不断增长的人口无法获得足够的粮食供应,以及许多持续存在的传染性和遗传性疾病。尽管许多挑战仍未解决,但在工程生物学诞生近20年后,一些由工程生物学创造的产品开始走向公众。欧洲科学家和企业家一直在参与实现合成生物学的承诺。欧洲合成生物学学会(EUSynBioS)等协会在传播该领域的进展、联系志同道合的人和促进科学发展方面发挥着关键作用。在这篇前瞻性文章中,我们回顾了欧洲合成生物学社区的现状,讨论了相关的学术研究和产业状况。我们还讨论了EUSynBioS如何帮助在整个非洲大陆的专业人士之间建立桥梁。
{"title":"Synthetic biology in Europe: current community landscape and future perspectives","authors":"Stefano Donati ,&nbsp;Içvara Barbier ,&nbsp;Daniela A. García-Soriano ,&nbsp;Stefano Grasso ,&nbsp;Paola Handal-Marquez ,&nbsp;Koray Malcı ,&nbsp;Louis Marlow ,&nbsp;Cauã Westmann ,&nbsp;Adam Amara","doi":"10.1016/j.biotno.2022.07.003","DOIUrl":"10.1016/j.biotno.2022.07.003","url":null,"abstract":"<div><p>Synthetic biology has captivated scientists' imagination. It promises answers to some of the grand challenges society is facing: worsening climate crisis, insufficient food supplies for ever growing populations, and many persisting infectious and genetic diseases. While many challenges remain unaddressed, after almost two decades since its inception a number of products created by engineered biology are starting to reach the public. European scientists and entrepreneurs have been participating in delivering on the promises of synthetic biology. Associations like the European Synthetic Biology Society (EUSynBioS) play a key role in disseminating advances in the field, connecting like-minded people and promoting scientific development. In this perspective article, we review the current landscape of the synthetic biology community in Europe, discussing the state of related academic research and industry. We also discuss how EUSynBioS has helped to build bridges between professionals across the continent.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"3 ","pages":"Pages 54-61"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906922000083/pdfft?md5=303b84fd171ff4200000d35d06edae0d&pid=1-s2.0-S2665906922000083-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80524888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Resveratrol production of a recombinant Scheffersomyces stipitis strain from molasses 利用糖蜜生产白藜芦醇的重组芦花酵母菌株
Pub Date : 2022-01-01 DOI: 10.1016/j.biotno.2021.11.001
Yuma Kobayashi , Kentaro Inokuma , Mami Matsuda , Akihiko Kondo , Tomohisa Hasunuma

Resveratrol is a plant-derived aromatic compound with beneficial properties and it is required to develop a resveratrol production process from inexpensive biomass feedstocks. Here, we investigated the potential of Scheffersomyces stipitis, a non-conventional yeast with the capacity to utilize a wide range of sugars, to produce resveratrol from molasses, which is a by-product of sugar refineries. The S. stipitis strain metabolically engineered for resveratrol production produced resveratrol from 60 g/L mixed sugar (sucrose, glucose, and fructose), while its resveratrol titer decreased as the proportions of glucose and fructose increased. Sucrose consumption of the S. stipitis strain was clearly suppressed by the coexistence of glucose, fructose, and even ethanol. Quantitative analysis of intracellular metabolites involved in resveratrol biosynthesis using capillary electrophoresis time-of-flight mass spectrometry revealed that the composition of these sugars has a significant effect on the intracellular accumulation of glycolytic metabolites and AMP, which is an important factor involved in some cellular metabolic responses. Furthermore, the S. stipitis strain produced 1076 ± 167 mg/L of resveratrol in the fermentation with commercial sugarcane molasses (120 g/L of total sugars) as the substrate. To our knowledge, this is the first report on carbon catabolite repression in S. stipitis caused by the coexistence of sucrose, glucose, and fructose and resveratrol production from molasses. These results indicate great potential of the cost-effective resveratrol production process from molasses substrates using recombinant S. stipitis.

白藜芦醇是一种有益的植物源芳香族化合物,需要开发一种以廉价生物质为原料生产白藜芦醇的工艺。在这里,我们研究了Scheffersomyces stipitis的潜力,Scheffersomyces stipitis是一种非常规酵母,具有利用多种糖的能力,从糖蜜中生产白藜芦醇,这是糖精炼厂的副产品。通过代谢工程生产白藜芦醇的S. stipitis菌株从60 g/L的混合糖(蔗糖、葡萄糖和果糖)中产生白藜芦醇,而其白藜芦醇滴度随着葡萄糖和果糖比例的增加而降低。葡萄糖、果糖甚至乙醇的共存明显抑制了棘球菌菌株的蔗糖消耗。利用毛细管电泳飞行时间质谱法对参与白藜芦醇生物合成的细胞内代谢物进行定量分析,发现这些糖的组成对糖酵解代谢物和AMP的细胞内积累有显著影响,这是参与一些细胞代谢反应的重要因素。此外,在以商品甘蔗糖蜜(总糖120 g/L)为底物的发酵过程中,S. stipitis菌株的白藜芦醇产量为1076±167 mg/L。据我们所知,这是第一个关于由蔗糖、葡萄糖、果糖和糖蜜产生的白藜芦醇共存引起的刺蒺藜菌碳分解代谢抑制的报道。这些结果表明,利用重组芽孢杆菌从糖蜜基质中高效生产白藜芦醇的工艺具有很大的潜力。
{"title":"Resveratrol production of a recombinant Scheffersomyces stipitis strain from molasses","authors":"Yuma Kobayashi ,&nbsp;Kentaro Inokuma ,&nbsp;Mami Matsuda ,&nbsp;Akihiko Kondo ,&nbsp;Tomohisa Hasunuma","doi":"10.1016/j.biotno.2021.11.001","DOIUrl":"10.1016/j.biotno.2021.11.001","url":null,"abstract":"<div><p>Resveratrol is a plant-derived aromatic compound with beneficial properties and it is required to develop a resveratrol production process from inexpensive biomass feedstocks. Here, we investigated the potential of <em>Scheffersomyces stipitis</em>, a non-conventional yeast with the capacity to utilize a wide range of sugars, to produce resveratrol from molasses, which is a by-product of sugar refineries. The <em>S. stipitis</em> strain metabolically engineered for resveratrol production produced resveratrol from 60 g/L mixed sugar (sucrose, glucose, and fructose), while its resveratrol titer decreased as the proportions of glucose and fructose increased. Sucrose consumption of the <em>S. stipitis</em> strain was clearly suppressed by the coexistence of glucose, fructose, and even ethanol. Quantitative analysis of intracellular metabolites involved in resveratrol biosynthesis using capillary electrophoresis time-of-flight mass spectrometry revealed that the composition of these sugars has a significant effect on the intracellular accumulation of glycolytic metabolites and AMP, which is an important factor involved in some cellular metabolic responses. Furthermore, the <em>S. stipitis</em> strain produced 1076 ± 167 mg/L of resveratrol in the fermentation with commercial sugarcane molasses (120 g/L of total sugars) as the substrate. To our knowledge, this is the first report on carbon catabolite repression in S<em>. stipitis</em> caused by the coexistence of sucrose, glucose, and fructose and resveratrol production from molasses. These results indicate great potential of the cost-effective resveratrol production process from molasses substrates using recombinant <em>S. stipitis</em>.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"3 ","pages":"Pages 1-7"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S266590692100009X/pdfft?md5=7156ba008f96438394bb84a2cb448c3f&pid=1-s2.0-S266590692100009X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75561401","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Development of destabilized mCherry fluorescent proteins for applications in the model yeast Saccharomyces cerevisiae 不稳定mCherry荧光蛋白在酿酒酵母菌模型中的应用
Pub Date : 2022-01-01 DOI: 10.1016/j.biotno.2022.12.001
Yu Chyuan Heng , Jee Loon Foo

Fluorescent proteins are widely used molecular reporters in studying gene expression and subcellular protein localization. To enable the monitoring of transient cellular events in the model yeast Saccharomyces cerevisiae, destabilized green and cyan fluorescent proteins have been constructed. However, their co-utilization is limited by an overlap in their excitation and emission spectra. Although red fluorescent protein is compatible with both green and cyan fluorescent proteins with respect to spectra resolution, a destabilized red fluorescent protein is yet to be constructed for applications in S. cerevisiae. To realize this, we adopted a degron-fusion strategy to prompt destabilization of red fluorescent protein. Specifically, we fused two degrons derived from Cln2, a G1-specific cyclin that mediates cell cycle transition, to the N- or C-terminus of mCherry to generate four destabilized fluorescent proteins that are soluble and functional in S. cerevisiae. Importantly, the four mCherry fluorescent proteins are highly differential with regards to fluorescence half-life and intensity, which provides a greater choice of tools available for the study of dynamic gene expression and transient cellular processes in the model yeast.

荧光蛋白是广泛应用于研究基因表达和亚细胞蛋白定位的分子报告蛋白。为了能够监测模型酵母的瞬时细胞事件,构建了不稳定的绿色和青色荧光蛋白。然而,它们的共利用受到激发和发射光谱重叠的限制。尽管红色荧光蛋白与绿色和青色荧光蛋白在光谱分辨率上是兼容的,但尚未构建一种不稳定的红色荧光蛋白用于酿酒酵母。为了实现这一点,我们采用了退化融合策略来促进红色荧光蛋白的不稳定。具体来说,我们将来自介导细胞周期转变的g1特异性周期蛋白Cln2的两个片段融合到mCherry的N端或c端,生成了四个可溶且在酿酒酵母中起作用的不稳定荧光蛋白。重要的是,这四种mCherry荧光蛋白在荧光半衰期和强度方面存在高度差异,这为模型酵母中动态基因表达和瞬时细胞过程的研究提供了更多的工具选择。
{"title":"Development of destabilized mCherry fluorescent proteins for applications in the model yeast Saccharomyces cerevisiae","authors":"Yu Chyuan Heng ,&nbsp;Jee Loon Foo","doi":"10.1016/j.biotno.2022.12.001","DOIUrl":"10.1016/j.biotno.2022.12.001","url":null,"abstract":"<div><p>Fluorescent proteins are widely used molecular reporters in studying gene expression and subcellular protein localization. To enable the monitoring of transient cellular events in the model yeast <em>Saccharomyces cerevisiae</em>, destabilized green and cyan fluorescent proteins have been constructed. However, their co-utilization is limited by an overlap in their excitation and emission spectra. Although red fluorescent protein is compatible with both green and cyan fluorescent proteins with respect to spectra resolution, a destabilized red fluorescent protein is yet to be constructed for applications in <em>S. cerevisiae</em>. To realize this, we adopted a degron-fusion strategy to prompt destabilization of red fluorescent protein. Specifically, we fused two degrons derived from Cln2, a G<sub>1</sub>-specific cyclin that mediates cell cycle transition, to the N- or C-terminus of mCherry to generate four destabilized fluorescent proteins that are soluble and functional in <em>S</em>. <em>cerevisiae</em>. Importantly, the four mCherry fluorescent proteins are highly differential with regards to fluorescence half-life and intensity, which provides a greater choice of tools available for the study of dynamic gene expression and transient cellular processes in the model yeast.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"3 ","pages":"Pages 108-112"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906922000186/pdfft?md5=df705722db51df9e97bca5a8eb9484d7&pid=1-s2.0-S2665906922000186-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79992855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Building the SynBio community in the Czech Republic from the bottom up: You get what you give 在捷克共和国从下到上建立SynBio社区:你付出什么就会得到什么
Pub Date : 2022-01-01 DOI: 10.1016/j.biotno.2022.11.002
Stanislav Juračka , Barbora Hrnčířová , Barbora Burýšková , Daniel Georgiev , Pavel Dvořák

Given its highly innovative character and potential socioeconomic impact, Synthetic Biology is often ranked among prominent research areas and national research priorities in developed countries. The global evolution of this field is proceeding by leaps and bounds but its development at the level of individual states varies widely. Despite their current satisfactory economic status, the majority of 13, mostly post-communist, countries that entered the European Union family in and after 2004 (EU13) have long overlooked the blossoming of Synthetic Biology. Their prioritized lines of research have been directed elsewhere or “Synthetic Biology” did not become a widely accepted term to encompass their bioengineering and biotechnology domains. The Czech Republic is not an exception. The local SynBio mycelium already exists but is mainly built bottom-up through the activities of several academic labs, iGEM teams, and spin-off companies. In this article, we tell their individual stories and summarize the prerequisites that allowed their emergence in the Czech academic and business environment. In addition, we provide the reader with a brief overview of laboratories, research hubs, and companies that perform biotechnology and bioengineering-oriented research and that may be included in a notional “shadow SynBio community” but have not yet adopted Synthetic Biology as a unifying term for their ventures. We also map the current hindrances for a broader expansion of Synthetic Biology in the Czech Republic and suggest possible steps that should lead to the maturity of this fascinating research field in our country.

由于其高度创新性和潜在的社会经济影响,合成生物学经常被列为发达国家的突出研究领域和国家研究重点。该领域在全球范围内的发展是突飞猛进的,但在各国层面上的发展差异很大。尽管目前的经济状况令人满意,但在2004年及之后加入欧盟的13个国家中,大部分是后共产主义国家(EU13),长期以来忽视了合成生物学的蓬勃发展。他们的优先研究方向已经转向其他地方,或者“合成生物学”没有成为一个广泛接受的术语,以涵盖他们的生物工程和生物技术领域。捷克共和国也不例外。当地的SynBio菌丝体已经存在,但主要是通过几个学术实验室、iGEM团队和衍生公司的活动自下而上地构建的。在本文中,我们讲述了他们的个人故事,并总结了他们在捷克学术和商业环境中出现的先决条件。此外,我们为读者提供了实验室、研究中心和公司的简要概述,这些公司从事生物技术和生物工程导向的研究,可能包括在一个名义上的“影子合成生物学社区”中,但尚未采用合成生物学作为其企业的统一术语。我们还绘制了目前在捷克共和国更广泛地扩展合成生物学的障碍,并提出了可能导致我国这一迷人研究领域成熟的步骤。
{"title":"Building the SynBio community in the Czech Republic from the bottom up: You get what you give","authors":"Stanislav Juračka ,&nbsp;Barbora Hrnčířová ,&nbsp;Barbora Burýšková ,&nbsp;Daniel Georgiev ,&nbsp;Pavel Dvořák","doi":"10.1016/j.biotno.2022.11.002","DOIUrl":"10.1016/j.biotno.2022.11.002","url":null,"abstract":"<div><p>Given its highly innovative character and potential socioeconomic impact, Synthetic Biology is often ranked among prominent research areas and national research priorities in developed countries. The global evolution of this field is proceeding by leaps and bounds but its development at the level of individual states varies widely. Despite their current satisfactory economic status, the majority of 13, mostly post-communist, countries that entered the European Union family in and after 2004 (EU13) have long overlooked the blossoming of Synthetic Biology. Their prioritized lines of research have been directed elsewhere or “<em>Synthetic Biology</em>” did not become a widely accepted term to encompass their bioengineering and biotechnology domains. The Czech Republic is not an exception. The local SynBio mycelium already exists but is mainly built bottom-up through the activities of several academic labs, iGEM teams, and spin-off companies. In this article, we tell their individual stories and summarize the prerequisites that allowed their emergence in the Czech academic and business environment. In addition, we provide the reader with a brief overview of laboratories, research hubs, and companies that perform biotechnology and bioengineering-oriented research and that may be included in a notional “shadow SynBio community” but have not yet adopted <em>Synthetic Biology</em> as a unifying term for their ventures. We also map the current hindrances for a broader expansion of Synthetic Biology in the Czech Republic and suggest possible steps that should lead to the maturity of this fascinating research field in our country.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"3 ","pages":"Pages 124-134"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906922000137/pdfft?md5=6ea8a031cbd43c45b251d56089f4e241&pid=1-s2.0-S2665906922000137-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87930756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Ribosome purification from Escherichia coli by ultracentrifugation 超离心法纯化大肠杆菌核糖体
Pub Date : 2022-01-01 DOI: 10.1016/j.biotno.2022.12.003
Yi Cui , Xinjie Chen , Ze Wang , Yuan Lu

With more and more researchers conducting extensive research on all aspects of ribosomes, how to extract ribosomes with good effect and high activity has become a fundamental problem. In this article, Escherichia coli A19, MRE600, and JE28 cells often mentioned in the literature and ordinary E. coli BL21(DE3) cells were used to extract ribosomes by ultracentrifugation. The purpose was to study whether the ultracentrifugation method can be applied to extract effective ribosomes, and whether the ribosome extracts from different cells were different. The extracted ribosomes were validated by RNA electrophoresis, SDS-PAGE, PURE system, and mass spectrometry. The validation experiment results showed that ribosomes from these four cells had different effects. The success of the experiment confirmed that effective ribosomes could be extracted from E. coli by ultracentrifugation, which laid a good foundation for researchers to carry out further applications on ribosomes.

随着越来越多的研究者对核糖体的各个方面进行广泛的研究,如何提取出效果好、活性高的核糖体已成为一个根本性的问题。本文采用文献中经常提到的大肠埃希菌A19、MRE600、JE28细胞和普通的大肠埃希菌BL21(DE3)细胞进行超离心提取核糖体。目的是研究超离心方法是否可以提取有效的核糖体,不同细胞的核糖体提取物是否不同。提取的核糖体经RNA电泳、SDS-PAGE、PURE系统和质谱验证。验证实验结果表明,这四种细胞的核糖体具有不同的作用。实验的成功证实了利用超离心技术可以从大肠杆菌中提取有效的核糖体,为研究人员开展核糖体的进一步应用奠定了良好的基础。
{"title":"Ribosome purification from Escherichia coli by ultracentrifugation","authors":"Yi Cui ,&nbsp;Xinjie Chen ,&nbsp;Ze Wang ,&nbsp;Yuan Lu","doi":"10.1016/j.biotno.2022.12.003","DOIUrl":"10.1016/j.biotno.2022.12.003","url":null,"abstract":"<div><p>With more and more researchers conducting extensive research on all aspects of ribosomes, how to extract ribosomes with good effect and high activity has become a fundamental problem. In this article, <em>Escherichia coli</em> A19, MRE600, and JE28 cells often mentioned in the literature and ordinary <em>E. coli</em> BL21(DE3) cells were used to extract ribosomes by ultracentrifugation. The purpose was to study whether the ultracentrifugation method can be applied to extract effective ribosomes, and whether the ribosome extracts from different cells were different. The extracted ribosomes were validated by RNA electrophoresis, SDS-PAGE, PURE system, and mass spectrometry. The validation experiment results showed that ribosomes from these four cells had different effects. The success of the experiment confirmed that effective ribosomes could be extracted from <em>E. coli</em> by ultracentrifugation, which laid a good foundation for researchers to carry out further applications on ribosomes.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"3 ","pages":"Pages 118-123"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906922000198/pdfft?md5=b8a0277c40a42d6e56b858c408e6e958&pid=1-s2.0-S2665906922000198-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"84855345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
2022 The 1st Western China symposium on the international frontier of synthetic biomanufacturing 2022首届中国西部国际合成生物制造前沿研讨会
Pub Date : 2022-01-01 DOI: 10.1016/j.biotno.2022.12.004
Yaqi Kang, Ruoshi Luo, Dachun Gong, Yongkui Zhang, Dan Wang

The 1st western China symposium on the international frontier of synthetic biomanufacturing was successfully held on July 8–10 in 2022. The conference is firstly launched by Professor Dan Wang in Chongqing University, and will be organized regularly every year by different universities in western China. The aim of this symposium is to show the cutting-edge knowledge of the synthetic biology developed in China and worldwide, provide a chance to meet international colleagues, and also to promote the academic and economic development of western China. Due to COVID-19, the 2022 symposium was masterfully delivered on the combination of online and offline operation, and the organisers must be commended for a really excellent and interactive meeting.

The content of the conference involves two modules of synthetic biology and green biomanufacturing, covering eight aspects: synthetic biology, metabolic engineering, biological process engineering, industrial microbial breeding, biocatalysis and biotransformation, synthetic bio-materials, bio-medicine and biological separation engineering. More than 400 representatives were invited to gather together to exchange the latest research results and development trends in the field of synthetic biology and biomanufacturing. There was a significant focus on the younger scientists, both in terms of oral reports and posters. There were many excellent invited lectures and sessions beyond the remit of this short summary, including “Pharmaceutical manufacturing by biological methods” by Yuguo Zheng, Academician of the Chinese Academy of Engineering (CAE) Member of China, and a lecture “The third generation of biological manufacturing: preparing chemicals with CO2 as raw material” by Tianwei Tan, Academician of the CAE Member of China, a lecture on the biotransformation and green separation of natural products by Prof. Huizhou Liu, a lecture of the synthetic biology of Halophilic bacteria by Prof. Guoqiang Chen, a lecture of design principles to engineer yeasts as microbial factories by Ass. Prof. Zengyi Shao in Iowa State University, and a outstanding overview of the development of synthetic biology from basic research to industrialization in China to list just six.

In this article we will cover some pertinent areas of synthetic biology and biomanufacturing amidst the unavoidable spectra of COVID-19.

首届中国西部合成生物制造国际前沿研讨会于2022年7月8日至10日成功举办。该会议首先由重庆大学的王丹教授发起,并将由中国西部的不同大学每年定期举办。本次研讨会的目的是展示国内外合成生物学的前沿知识,提供一个与国际同行交流的机会,并促进中国西部地区的学术和经济发展。由于新冠肺炎疫情的影响,2022年的研讨会巧妙地实现了线上和线下的结合,组织者举办了一场非常出色的互动会议。会议内容涉及合成生物学和绿色生物制造两个模块,涵盖合成生物学、代谢工程、生物工艺工程、工业微生物育种、生物催化与生物转化、合成生物材料、生物医药和生物分离工程八个方面。大会邀请了400多名代表齐聚一堂,交流合成生物学和生物制造领域的最新研究成果和发展趋势。无论是口头报告还是海报,年轻科学家都受到了极大的关注。除了这篇简短的总结之外,还有许多优秀的特邀讲座和会议,包括中国工程院院士郑育国的“生物方法制药”,以及“第三代生物制造:中国科学院院士谭天威的“以二氧化碳为原料制备化学品”讲座,刘惠洲教授的“天然产物生物转化与绿色分离”讲座,陈国强教授的“嗜盐细菌合成生物学”讲座,爱荷华州立大学邵增义教授的“酵母作为微生物工厂的设计原理”讲座,以及对中国合成生物学从基础研究到产业化发展的杰出概述,这仅是其中的六项。在本文中,我们将在COVID-19不可避免的光谱中介绍合成生物学和生物制造的一些相关领域。
{"title":"2022 The 1st Western China symposium on the international frontier of synthetic biomanufacturing","authors":"Yaqi Kang,&nbsp;Ruoshi Luo,&nbsp;Dachun Gong,&nbsp;Yongkui Zhang,&nbsp;Dan Wang","doi":"10.1016/j.biotno.2022.12.004","DOIUrl":"10.1016/j.biotno.2022.12.004","url":null,"abstract":"<div><p>The 1st western China symposium on the international frontier of synthetic biomanufacturing was successfully held on July 8–10 in 2022. The conference is firstly launched by Professor Dan Wang in Chongqing University, and will be organized regularly every year by different universities in western China. The aim of this symposium is to show the cutting-edge knowledge of the synthetic biology developed in China and worldwide, provide a chance to meet international colleagues, and also to promote the academic and economic development of western China. Due to COVID-19, the 2022 symposium was masterfully delivered on the combination of online and offline operation, and the organisers must be commended for a really excellent and interactive meeting.</p><p>The content of the conference involves two modules of synthetic biology and green biomanufacturing, covering eight aspects: synthetic biology, metabolic engineering, biological process engineering, industrial microbial breeding, biocatalysis and biotransformation, synthetic bio-materials, bio-medicine and biological separation engineering. More than 400 representatives were invited to gather together to exchange the latest research results and development trends in the field of synthetic biology and biomanufacturing. There was a significant focus on the younger scientists, both in terms of oral reports and posters. There were many excellent invited lectures and sessions beyond the remit of this short summary, including “Pharmaceutical manufacturing by biological methods” by Yuguo Zheng, Academician of the Chinese Academy of Engineering (CAE) Member of China, and a lecture “The third generation of biological manufacturing: preparing chemicals with CO<sub>2</sub> as raw material” by Tianwei Tan, Academician of the CAE Member of China, a lecture on the biotransformation and green separation of natural products by Prof. Huizhou Liu, a lecture of the synthetic biology of Halophilic bacteria by Prof. Guoqiang Chen, a lecture of design principles to engineer yeasts as microbial factories by Ass. Prof. Zengyi Shao in Iowa State University, and a outstanding overview of the development of synthetic biology from basic research to industrialization in China to list just six.</p><p>In this article we will cover some pertinent areas of synthetic biology and biomanufacturing amidst the unavoidable spectra of COVID-19.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"3 ","pages":"Pages 113-117"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906922000204/pdfft?md5=923d8f870d395c8dd672cddcd68a7cd3&pid=1-s2.0-S2665906922000204-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77117058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Model-based dynamic engineering of Escherichia coli for N-acetylglucosamine overproduction 基于模型的大肠杆菌n -乙酰氨基葡萄糖过量生产动态工程
Pub Date : 2022-01-01 DOI: 10.1016/j.biotno.2022.02.001
Jiangong Lu , Yaokang Wu , Chen Deng , Yanfeng Liu , Xueqin Lv , Jianghua Li , Guocheng Du , Long Liu

N-acetylglucosamine (GlcNAc), a glucosamine derivative, has a wide range of applications in pharmaceutical fields, and there is an increasing interest in the efficient production of GlcNAc genetic engineered bacteria. In this work, Escherichia coli ATCC 25947 (DE3) strain was engineered by a model-based dynamic regulation strategy achieving GlcNAc overproduction. First, the GlcNAc synthetic pathway was introduced into E. coli, and through flux balance analysis of the genome-scale metabolic network model, metabolic engineering strategies were generated to further increase GlcNAc yield. Knock-out of genes poxB and ldhA, encoding pyruvate oxidase and lactate dehydrogenase, increased GlcNAc titer by 5.1%. Furthermore, knocking out N-acetylmuramic acid 6-phosphate etherase encoded by murQ and enhancing glutamine synthetase encoded by glnA gene further increased GlcNAc titer to 130.8 g/L. Analysis of metabolic flux balance showed that GlcNAc production maximization requires the strict dynamic restriction of the reactions catalyzed by pfkA and zwf to balance cell growth and product synthesis. Hence, a dynamic regulatory system was constructed by combining the CRISPRi (clustered regularly interspaced short palindromic repeats interference) system with the lactose operon lacI and the transcription factor pdhR, allowing the cell to respond to the concentration of pyruvate and IPTG to dynamically repress pfkA and zwf transcription. Finally, the engineered bacteria with the dynamic regulatory system produced 143.8 g/L GlcNAc in a 30-L bioreactor in 55 h with a yield reaching 0.539 g/g glucose. Taken together, this work significantly enhanced the GlcNAc production of E. coli. Moreover, it provides a systematic, effective, and universal way to improve the synthetic ability of other engineered strains.

n -乙酰氨基葡萄糖(GlcNAc)是一种氨基葡萄糖衍生物,在制药领域有着广泛的应用,高效生产GlcNAc基因工程菌日益受到人们的关注。在这项工作中,大肠杆菌ATCC 25947 (DE3)菌株通过基于模型的动态调控策略实现了GlcNAc的过量生产。首先,将GlcNAc合成途径引入大肠杆菌,通过基因组尺度代谢网络模型通量平衡分析,生成代谢工程策略,进一步提高GlcNAc产量。敲除编码丙酮酸氧化酶和乳酸脱氢酶的基因poxB和ldhA,使GlcNAc滴度提高了5.1%。敲除murQ基因编码的n -乙酰氨基乙酸6-磷酸醚酶,增强glnA基因编码的谷氨酰胺合成酶,进一步将GlcNAc滴度提高到130.8 g/L。代谢通量平衡分析表明,要使GlcNAc产量最大化,需要对pfkA和zwf催化的反应进行严格的动态限制,以平衡细胞生长和产物合成。因此,我们将CRISPRi (clustered regularly interspaced short palindromic repeats interference)系统与乳糖操纵子lacI和转录因子pdhR结合,构建了一个动态调控系统,使细胞能够响应丙酮酸盐和IPTG的浓度,动态抑制pfkA和zwf的转录。最后,采用动态调控系统的工程菌在30-L的生物反应器中,在55 h内产生了143.8 g/L的GlcNAc,产量达到0.539 g/g葡萄糖。综上所述,这项工作显著提高了大肠杆菌的GlcNAc产量。为提高其他工程菌株的合成能力提供了系统、有效、通用的途径。
{"title":"Model-based dynamic engineering of Escherichia coli for N-acetylglucosamine overproduction","authors":"Jiangong Lu ,&nbsp;Yaokang Wu ,&nbsp;Chen Deng ,&nbsp;Yanfeng Liu ,&nbsp;Xueqin Lv ,&nbsp;Jianghua Li ,&nbsp;Guocheng Du ,&nbsp;Long Liu","doi":"10.1016/j.biotno.2022.02.001","DOIUrl":"10.1016/j.biotno.2022.02.001","url":null,"abstract":"<div><p>N-acetylglucosamine (GlcNAc), a glucosamine derivative, has a wide range of applications in pharmaceutical fields, and there is an increasing interest in the efficient production of GlcNAc genetic engineered bacteria. In this work, <em>Escherichia coli</em> ATCC 25947 (DE3) strain was engineered by a model-based dynamic regulation strategy achieving GlcNAc overproduction. First, the GlcNAc synthetic pathway was introduced into <em>E. coli</em>, and through flux balance analysis of the genome-scale metabolic network model, metabolic engineering strategies were generated to further increase GlcNAc yield. Knock-out of genes <em>poxB</em> and <em>ldhA,</em> encoding pyruvate oxidase and lactate dehydrogenase, increased GlcNAc titer by 5.1%. Furthermore, knocking out N-acetylmuramic acid 6-phosphate etherase encoded by <em>murQ</em> and enhancing glutamine synthetase encoded by <em>glnA</em> gene further increased GlcNAc titer to 130.8 g/L. Analysis of metabolic flux balance showed that GlcNAc production maximization requires the strict dynamic restriction of the reactions catalyzed by <em>pfkA</em> and <em>zwf</em> to balance cell growth and product synthesis. Hence, a dynamic regulatory system was constructed by combining the CRISPRi (clustered regularly interspaced short palindromic repeats interference) system with the lactose operon <em>lacI</em> and the transcription factor pdhR, allowing the cell to respond to the concentration of pyruvate and IPTG to dynamically repress <em>pfkA</em> and <em>zwf</em> transcription. Finally, the engineered bacteria with the dynamic regulatory system produced 143.8 g/L GlcNAc in a 30-L bioreactor in 55 h with a yield reaching 0.539 g/g glucose. Taken together, this work significantly enhanced the GlcNAc production of <em>E. coli.</em> Moreover, it provides a systematic, effective, and universal way to improve the synthetic ability of other engineered strains.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"3 ","pages":"Pages 15-24"},"PeriodicalIF":0.0,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906922000010/pdfft?md5=d9ac951ebd53945cab58d872f59424a8&pid=1-s2.0-S2665906922000010-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85337379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
期刊
Biotechnology Notes
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1