The Ni/CeO2 catalyst stands out among various solid metal oxide catalysts for its exceptional catalytic proficiency, positioning it as a prime candidate for the industrialization of methanation processes. This review thoroughly examines the prevalent challenges associated with Ni/CeO2 in methanation reactions, compiles current strategies to overcome these hurdles, and presents novel perspectives. The review elucidates the structural characteristics of Ni/CeO2 and its applications in catalytic reactions, discusses various synthesis methods and their respective merits and demerits, explores catalytic reaction systems at both laboratory and industrial scales, and clarifies the underlying reaction mechanisms. Furthermore, it underscores the mainstream approaches to enhance the low-temperature activity of Ni/CeO2 in methanation and to mitigate activity decrement due to Ni agglomeration. The review concludes by proposing future directions for improving low-temperature methanation activity and preventing catalyst deactivation, encompassing the development of innovative catalyst architectures, integrating in-situ characterization with theoretical calculations, and investigating photothermal methanation catalytic systems. Undoubtedly, scientific researchers will persistently strive to develop Ni/CeO2 catalysts with high activity across a broad temperature range and robust stability, driving the industrialization of CO2 methanation technology in the foreseeable future.
{"title":"Progress and Future Challenges in Designing High-Performance Ni/CeO2 Catalysts for CO2 Methanation: A Critical Review","authors":"Kun Liu, Muhammad Asif Nawaz, Guangfu Liao","doi":"10.1002/cnl2.190","DOIUrl":"https://doi.org/10.1002/cnl2.190","url":null,"abstract":"<p>The Ni/CeO<sub>2</sub> catalyst stands out among various solid metal oxide catalysts for its exceptional catalytic proficiency, positioning it as a prime candidate for the industrialization of methanation processes. This review thoroughly examines the prevalent challenges associated with Ni/CeO<sub>2</sub> in methanation reactions, compiles current strategies to overcome these hurdles, and presents novel perspectives. The review elucidates the structural characteristics of Ni/CeO<sub>2</sub> and its applications in catalytic reactions, discusses various synthesis methods and their respective merits and demerits, explores catalytic reaction systems at both laboratory and industrial scales, and clarifies the underlying reaction mechanisms. Furthermore, it underscores the mainstream approaches to enhance the low-temperature activity of Ni/CeO<sub>2</sub> in methanation and to mitigate activity decrement due to Ni agglomeration. The review concludes by proposing future directions for improving low-temperature methanation activity and preventing catalyst deactivation, encompassing the development of innovative catalyst architectures, integrating in-situ characterization with theoretical calculations, and investigating photothermal methanation catalytic systems. Undoubtedly, scientific researchers will persistently strive to develop Ni/CeO<sub>2</sub> catalysts with high activity across a broad temperature range and robust stability, driving the industrialization of CO<sub>2</sub> methanation technology in the foreseeable future.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.190","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143117442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Pan, Yujie Li, Ziqing Yao, Shuangke Liu, Yuhao Zhu, Xuanjun Wang, Jian Wang, Chunman Zheng, Weiwei Sun
In military reserve power supplies, there is an urgent need for superior secondary batteries to replace conventional primary batteries, and lithium-ion batteries (LIBs) emerge as one of the best choices due to their exceptional performance. The life of LIBs includes cycle life and calendar life, with calendar life spanning from years to decades. Accurate prediction of calendar life is crucial for optimizing the deployment and maintenance of LIBs in military applications. Model-based prognostics are usually established to estimate calendar life using accelerated aging methods under various storage conditions. This review firstly outlines the general prognostic workflow for calendar life of LIBs, analyzes degradation mechanisms, and summarizes influencing factors; then, we introduce calendar life prognostic models, evolving from simplistic empirical models (EMs) to nonempirical mechanistic models (MMs) based on LIB calendar aging knowledge and then to traditional hybrid empirical-mechanistic models (trad-EMMs). Finally, the data-driven models (DDMs) based on machine learning (ML) are discussed due to the limitation of the traditional methods, evolving from pure data-driven to knowledge-integrated models and establishing a comprehensive framework for calendar life assessment. To the best of our knowledge, this paper presents the first comprehensive review in this field, summarizing calendar life prognostic models of LIBs and offering some insights into future model development directions. Model-based prognostics can facilitate researchers in calendar aging analysis and calendar life prolongation, thereby better serving the application of LIBs in national economic life.
{"title":"Research Advances on Lithium-Ion Batteries Calendar Life Prognostic Models","authors":"Tao Pan, Yujie Li, Ziqing Yao, Shuangke Liu, Yuhao Zhu, Xuanjun Wang, Jian Wang, Chunman Zheng, Weiwei Sun","doi":"10.1002/cnl2.192","DOIUrl":"https://doi.org/10.1002/cnl2.192","url":null,"abstract":"<p>In military reserve power supplies, there is an urgent need for superior secondary batteries to replace conventional primary batteries, and lithium-ion batteries (LIBs) emerge as one of the best choices due to their exceptional performance. The life of LIBs includes cycle life and calendar life, with calendar life spanning from years to decades. Accurate prediction of calendar life is crucial for optimizing the deployment and maintenance of LIBs in military applications. Model-based prognostics are usually established to estimate calendar life using accelerated aging methods under various storage conditions. This review firstly outlines the general prognostic workflow for calendar life of LIBs, analyzes degradation mechanisms, and summarizes influencing factors; then, we introduce calendar life prognostic models, evolving from simplistic empirical models (EMs) to nonempirical mechanistic models (MMs) based on LIB calendar aging knowledge and then to traditional hybrid empirical-mechanistic models (trad-EMMs). Finally, the data-driven models (DDMs) based on machine learning (ML) are discussed due to the limitation of the traditional methods, evolving from pure data-driven to knowledge-integrated models and establishing a comprehensive framework for calendar life assessment. To the best of our knowledge, this paper presents the first comprehensive review in this field, summarizing calendar life prognostic models of LIBs and offering some insights into future model development directions. Model-based prognostics can facilitate researchers in calendar aging analysis and calendar life prolongation, thereby better serving the application of LIBs in national economic life.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.192","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jianfang Yang, Xianyong Zhang, Minchen Hou, Chang Ni, Chao Chen, Siliu Liu, Yan Wang, Xueyi Lu, Xia Lu
Solid-state lithium batteries have attracted increasing attention due to their high ionic conductivity, potential high safety performance, and high energy density. However, their practical application is limited by a series of interface issues. In recent years, many efforts have been dedicated to solving these problems via interface engineering by providing feasible strategies for the optimization of lithiumion solid-state battery interfaces. This paper reviews the recent developments of interface engineering in addressing interfacial issues. The existing interface problems are first systematically summarized, including poor contact, electrochemical instability, lithium dendrites, space-charge layers, and element diffusion. Then, the corresponding interface characteristics and engineering strategies are thoroughly analyzed from the perspective of the cathode/electrolyte interface, the anode/electrolyte interface, and battery structure design. Finally, future research directions for the interface modification of solid-state lithium batteries are discussed.
{"title":"Research Advances in Interface Engineering of Solid-State Lithium Batteries","authors":"Jianfang Yang, Xianyong Zhang, Minchen Hou, Chang Ni, Chao Chen, Siliu Liu, Yan Wang, Xueyi Lu, Xia Lu","doi":"10.1002/cnl2.188","DOIUrl":"https://doi.org/10.1002/cnl2.188","url":null,"abstract":"<p>Solid-state lithium batteries have attracted increasing attention due to their high ionic conductivity, potential high safety performance, and high energy density. However, their practical application is limited by a series of interface issues. In recent years, many efforts have been dedicated to solving these problems via interface engineering by providing feasible strategies for the optimization of lithiumion solid-state battery interfaces. This paper reviews the recent developments of interface engineering in addressing interfacial issues. The existing interface problems are first systematically summarized, including poor contact, electrochemical instability, lithium dendrites, space-charge layers, and element diffusion. Then, the corresponding interface characteristics and engineering strategies are thoroughly analyzed from the perspective of the cathode/electrolyte interface, the anode/electrolyte interface, and battery structure design. Finally, future research directions for the interface modification of solid-state lithium batteries are discussed.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.188","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wen Huang, Xindong Zhu, He Zhu, Zhihua Wang, Haoran Yu, Yu Shao, Qi Liu, Si Lan
Carbon-based nanomaterials play a significant role in the field of electrochemistry because of their outstanding electrical conductivity, chemical and thermal resistance, structural flexibility, and so on. In recent years, we have observed a rapid rise of research interest in the high-temperature shock (HTS) method, which is fast, stable, environmentally friendly, and versatile. The HTS method offers excellent controllability and repeatability while tackling challenges and limitations of traditional preparation methods, providing a new way to prepare and optimize carbon-based nanomaterials for electrochemical applications. During the HTS synthesis, the reaction is driven by the high temperature while further growth of obtained nanoparticles is inhibited by the rapid heating and cooling rates. The preparation of carbon-based nanomaterials by HTS has many advantages, including controlled carbon vacancy that may drive phase transformation, precise engineering of carbon, and other defects that may function as active centers, formation and preservation of metastable phase owing to the high energy and rapid cooling, fine-tuning of the interaction between loaded species and carbon support for optimized performance, and facile doping and compounding to induce synergy between different constituents. This article provides a comprehensive review of various carbon-based nanomaterials prepared by the HTS method and their applications in the field of electrochemistry during the past decade, emphasizing their synthesis and principles to optimize their performance. Studies showcasing the merits of HTS-derived carbon-based nanomaterials in advancing Lithium-ion batteries, Lithium-sulfur batteries, Lithium-air batteries, water-splitting reaction, oxygen reduction reaction, CO2 reduction reaction, nitrate reduction reaction, other electrocatalytic reactions, and fuel cells are highlighted. Finally, the prospects of carbon-based nanomaterials prepared by HTS method for electrochemical applications are recommended.
{"title":"High Temperature Shock (HTS) Synthesis of Carbon-Based Nanomaterials for Electrochemical Applications","authors":"Wen Huang, Xindong Zhu, He Zhu, Zhihua Wang, Haoran Yu, Yu Shao, Qi Liu, Si Lan","doi":"10.1002/cnl2.189","DOIUrl":"https://doi.org/10.1002/cnl2.189","url":null,"abstract":"<p>Carbon-based nanomaterials play a significant role in the field of electrochemistry because of their outstanding electrical conductivity, chemical and thermal resistance, structural flexibility, and so on. In recent years, we have observed a rapid rise of research interest in the high-temperature shock (HTS) method, which is fast, stable, environmentally friendly, and versatile. The HTS method offers excellent controllability and repeatability while tackling challenges and limitations of traditional preparation methods, providing a new way to prepare and optimize carbon-based nanomaterials for electrochemical applications. During the HTS synthesis, the reaction is driven by the high temperature while further growth of obtained nanoparticles is inhibited by the rapid heating and cooling rates. The preparation of carbon-based nanomaterials by HTS has many advantages, including controlled carbon vacancy that may drive phase transformation, precise engineering of carbon, and other defects that may function as active centers, formation and preservation of metastable phase owing to the high energy and rapid cooling, fine-tuning of the interaction between loaded species and carbon support for optimized performance, and facile doping and compounding to induce synergy between different constituents. This article provides a comprehensive review of various carbon-based nanomaterials prepared by the HTS method and their applications in the field of electrochemistry during the past decade, emphasizing their synthesis and principles to optimize their performance. Studies showcasing the merits of HTS-derived carbon-based nanomaterials in advancing Lithium-ion batteries, Lithium-sulfur batteries, Lithium-air batteries, water-splitting reaction, oxygen reduction reaction, CO<sub>2</sub> reduction reaction, nitrate reduction reaction, other electrocatalytic reactions, and fuel cells are highlighted. Finally, the prospects of carbon-based nanomaterials prepared by HTS method for electrochemical applications are recommended.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.189","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143115272","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The growing use of lithium iron phosphate (LFP) batteries has raised concerns about their environmental impact and recycling challenges, particularly the recovery of Li. Here, we propose a new strategy for the priority recovery of Li and precise separation of Fe and P from spent LFP cathode materials via H2O-based deep eutectic solvents (DESs). Through adjusting the form of the metal complexes and precipitation mode, above 99.95% Li and Fe can be dissolved in choline chloride-anhydrous oxalic acid-water (ChCl-OA-H2O) DES, and the high recovery efficiency of Li and Fe about 93.41% and 97.40% accordingly are obtained. The effects of the main parameters are comprehensively investigated during the leaching and recovery processes. The recovery mechanism of the pretreated LFP is clarified and the rate-controlling step of the heterogeneous dissolution reactions is also identified. Results show that soluble phases of Li3Fe2(PO4)3 and Fe2O3 are formed after roasting pretreatment, and Li(I) ions tend to form Li2C2O4 precipitates with C2O42− during the leaching process so that Li can be recovered preferentially in purity of 99.82%. After UV-visible light irradiation, Fe(III) ions are converted into Fe(II) ions, which can react with C2O42− to form FeC2O4 precipitates by adjusting the H2O content, and P is recovered as Na3PO4∙12H2O (99.98% purity). Additionally, a plan for the recycling of used DES is proposed and the leaching and recovery performances still maintain stable after three recycling circles. The method offers an approach with a simple process, high efficiency, and waste-free recycling for priority recovery Li and precise separation of Fe and P from spent LFP batteries in DESs.
{"title":"Priority Recovery of Lithium From Spent Lithium Iron Phosphate Batteries via H2O-Based Deep Eutectic Solvents","authors":"Yinghua Zhang, Juanjian Ru, Yixin Hua, Mingqiang Cheng, Lianwu Lu, Ding Wang","doi":"10.1002/cnl2.186","DOIUrl":"https://doi.org/10.1002/cnl2.186","url":null,"abstract":"<p>The growing use of lithium iron phosphate (LFP) batteries has raised concerns about their environmental impact and recycling challenges, particularly the recovery of Li. Here, we propose a new strategy for the priority recovery of Li and precise separation of Fe and P from spent LFP cathode materials via H<sub>2</sub>O-based deep eutectic solvents (DESs). Through adjusting the form of the metal complexes and precipitation mode, above 99.95% Li and Fe can be dissolved in choline chloride-anhydrous oxalic acid-water (ChCl-OA-H<sub>2</sub>O) DES, and the high recovery efficiency of Li and Fe about 93.41% and 97.40% accordingly are obtained. The effects of the main parameters are comprehensively investigated during the leaching and recovery processes. The recovery mechanism of the pretreated LFP is clarified and the rate-controlling step of the heterogeneous dissolution reactions is also identified. Results show that soluble phases of Li<sub>3</sub>Fe<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub> and Fe<sub>2</sub>O<sub>3</sub> are formed after roasting pretreatment, and Li(I) ions tend to form Li<sub>2</sub>C<sub>2</sub>O<sub>4</sub> precipitates with C<sub>2</sub>O<sub>4</sub><sup>2−</sup> during the leaching process so that Li can be recovered preferentially in purity of 99.82%. After UV-visible light irradiation, Fe(III) ions are converted into Fe(II) ions, which can react with C<sub>2</sub>O<sub>4</sub><sup>2−</sup> to form FeC<sub>2</sub>O<sub>4</sub> precipitates by adjusting the H<sub>2</sub>O content, and P is recovered as Na<sub>3</sub>PO<sub>4</sub>∙12H<sub>2</sub>O (99.98% purity). Additionally, a plan for the recycling of used DES is proposed and the leaching and recovery performances still maintain stable after three recycling circles. The method offers an approach with a simple process, high efficiency, and waste-free recycling for priority recovery Li and precise separation of Fe and P from spent LFP batteries in DESs.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.186","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143114991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Front cover image: Zinc-ion batteries (ZIBs) demonstrate great potential for applications in extreme temperature environments. In the center of the cover image, a massive ZIB is depicted. On the left, a fiery volcano landscape with lava and a phoenix symbolizes the battery's adaptability to high temperatures. On the right, a snow-covered world with a majestic ice dragon represents the battery's durability in sub-zero cold conditions. Above the batteries, the ZIBs encircle the earth, demonstrating the wide range of applications for ZIB batteries around the world, from scorching deserts to frigid polar regions, showcasing their ability to provide reliable energy solutions in diverse environments.