To overcome the inherent drawback of low thermal conductivity (0.3 W/m·K) in conventional thermoplastic polymers, this work reports a scalable synthesis of cost-effective, thermally stable geopolymers using waste fly ash (FA) as a precursor material. By synergistically tailoring the Si/Al ratio and incorporating graphene oxide, a three-dimensional percolative thermal conductive network is engineered to dramatically enhance the thermal conductivity of geopolymer–graphene aerogel composites. Experimental results show that optimizing the Si/Al ratio effectively improves the matrix performance. With the optimal Si/Al ratios of 1.35 and 1.50, the thermal conductivities of the geopolymer reach up to 1.03 and 1.14 W/m·K, respectively, representing a nearly 245% increase over conventional polymers. Notably, the further introduction of ultra-low content of thermal conductive graphene aerogel filler (0.34 wt%) with a regulated Si/Al ratio of 1.64 results in a 34.2% increase in the thermal conductivity of the composite, achieving an exceptional specific improvement (thermal conductivity improvement/filler content) of 100.7%. Moreover, these composites maintain 75.5% of their initial conductivity at high temperature (100°C), demonstrating robust thermal stability. This breakthrough enables efficient thermal management for miniaturized electronic systems using ultra-low loading of high-performance fillers.
{"title":"Synergistic Thermal Conductivity Enhancement in Geopolymer–Graphene Aerogel Composites Through 3D Structuring and Gelation Kinetics","authors":"Wentao Sheng, Lei Chen, Fan Zhang, Hailong Hu","doi":"10.1002/cnl2.70067","DOIUrl":"https://doi.org/10.1002/cnl2.70067","url":null,"abstract":"<p>To overcome the inherent drawback of low thermal conductivity (0.3 W/m·K) in conventional thermoplastic polymers, this work reports a scalable synthesis of cost-effective, thermally stable geopolymers using waste fly ash (FA) as a precursor material. By synergistically tailoring the Si/Al ratio and incorporating graphene oxide, a three-dimensional percolative thermal conductive network is engineered to dramatically enhance the thermal conductivity of geopolymer–graphene aerogel composites. Experimental results show that optimizing the Si/Al ratio effectively improves the matrix performance. With the optimal Si/Al ratios of 1.35 and 1.50, the thermal conductivities of the geopolymer reach up to 1.03 and 1.14 W/m·K, respectively, representing a nearly 245% increase over conventional polymers. Notably, the further introduction of ultra-low content of thermal conductive graphene aerogel filler (0.34 wt%) with a regulated Si/Al ratio of 1.64 results in a 34.2% increase in the thermal conductivity of the composite, achieving an exceptional specific improvement (thermal conductivity improvement/filler content) of 100.7%. Moreover, these composites maintain 75.5% of their initial conductivity at high temperature (100°C), demonstrating robust thermal stability. This breakthrough enables efficient thermal management for miniaturized electronic systems using ultra-low loading of high-performance fillers.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 6","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70067","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145317189","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hedong Chen, Mei Hu, Yizhi Liao, Fan Xu, Dao Wang, Feng Weiwei, Qiu Yecheng, Yin Feng, Fuming Chen, Wenhao Liang, Guofu Zhou
The construction of efficient light-harvesting/conversion materials is the key to photoelectrochemical (PEC) water splitting. It should not be overlooked that the precise construction of materials and electrode structures plays a crucial role in the performance of its photoelectricity. Traditional structures (including dense film, pyramid and vertical nanowire (NW)) usually result in nonnegligible light loss, hierarchical antireflection structures of NW arrays on nonplanar substrates are efficient approaches to maximize the light absorption for PEC water splitting. Here, we constructed InGaN NW arrays with adjustable tilt angle on nonplanar substrates by plasma assisted-molecular beam epitaxy, and find the photoelectrical properties are closely related to their tilt angle and NW spacing. As a function of tilt, the photocurrent is dependent on the inclination, showing a trend of first increasing and then decreasing. NW arrays with more separated NWs exhibit larger photocurrent enhancement at larger tilt angle up to 116% at 81.9°. This study compiles the effects of various NW array morphologies on the PEC performance under varied light incidence angle, provides reference for the design of vertical NW arrays on nonplanar substrates acting as hierarchical antireflection structures for efficient light absorption on PEC and photoelectric applications.
{"title":"Light Trapping Regulation of Tilted InGaN Nanowire Arrays to Enhance Photoelectrochemical Performance","authors":"Hedong Chen, Mei Hu, Yizhi Liao, Fan Xu, Dao Wang, Feng Weiwei, Qiu Yecheng, Yin Feng, Fuming Chen, Wenhao Liang, Guofu Zhou","doi":"10.1002/cnl2.70066","DOIUrl":"https://doi.org/10.1002/cnl2.70066","url":null,"abstract":"<p>The construction of efficient light-harvesting/conversion materials is the key to photoelectrochemical (PEC) water splitting. It should not be overlooked that the precise construction of materials and electrode structures plays a crucial role in the performance of its photoelectricity. Traditional structures (including dense film, pyramid and vertical nanowire (NW)) usually result in nonnegligible light loss, hierarchical antireflection structures of NW arrays on nonplanar substrates are efficient approaches to maximize the light absorption for PEC water splitting. Here, we constructed InGaN NW arrays with adjustable tilt angle on nonplanar substrates by plasma assisted-molecular beam epitaxy, and find the photoelectrical properties are closely related to their tilt angle and NW spacing. As a function of tilt, the photocurrent is dependent on the inclination, showing a trend of first increasing and then decreasing. NW arrays with more separated NWs exhibit larger photocurrent enhancement at larger tilt angle up to 116% at 81.9°. This study compiles the effects of various NW array morphologies on the PEC performance under varied light incidence angle, provides reference for the design of vertical NW arrays on nonplanar substrates acting as hierarchical antireflection structures for efficient light absorption on PEC and photoelectric applications.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 6","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70066","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145317101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The membrane-based reverse electrodialysis (RED) is considered as the most promising technique for salinity-gradient energy harvesting. However, the high cost and difficult processing of traditional membrane materials usually limit their development in the field. Herein, a salinity-gradient cell is constructed based on a group of anion- and cation-selective 2D clay nanofluidic membranes. The opposite surface charge and confined 2D nanofluidic channels contribute to the opposite ion selectivity of the two membranes. For constructing the salinity-gradient cell, a superposed electrochemical potential difference is created by complementing the diffusion of oppositely charged ions, and an output power density of up to 5.48 W m−2 can be obtained at a salinity gradient of 0.5/0.01 M NaCl without the contribution of electrode material redox reaction, superior to other existing natural nanofluidic RED systems to our best knowledge. Furthermore, the output voltage of the cell can reach 1.8 V by connecting 15 tandem LM-RED stacks under artificial seawater and river water, which can power the electronic devices. According to detailed life cycle assessments, the fabrication of 2D clay nanofluidic pairs achieves a significant reduction in resource consumption by 90%, a decrease in greenhouse gas emissions by 90%, and a notable reduction in production costs by 67% compared with the classical 2D nanofluidics, promising good sustainability and paves the way for clay-based membranes in RED devices for the salinity-gradient energy harvesting.
膜基反电渗析(RED)被认为是最有前途的盐梯度能量收集技术。然而,传统膜材料成本高、加工难度大,限制了其在该领域的发展。在此,基于一组阴离子和阳离子选择性的二维粘土纳米流体膜构建了盐度梯度细胞。相反的表面电荷和受限的二维纳米流体通道导致两种膜的离子选择性相反。在构建盐度梯度电池时,通过补充相反电荷离子的扩散产生叠加电化学电位差,在0.5/0.01 m NaCl的盐度梯度下,无需电极材料氧化还原反应,即可获得高达5.48 W m−2的输出功率密度,优于目前已知的其他天然纳米流体RED系统。此外,通过在人工海水和河水下连接15个串联LM-RED电池组,电池输出电压可达到1.8 V,为电子设备供电。根据详细的生命周期评估,与传统的二维纳米流体相比,二维粘土纳米流体对的制造可显着减少90%的资源消耗,减少90%的温室气体排放,并显着降低67%的生产成本,具有良好的可持续性,并为RED装置中用于盐梯度能量收集的粘土基膜铺平了道路。
{"title":"2D Clay Nanofluidic Pairs With Opposite Ion Selectivity for Constructing Salinity-Gradient Cells","authors":"Jiadong Tang, Linhan Xie, Shiwen Wang, Yiqi Jing, Bing Liu, Yifan Gu, Yuhong Jin, Qianqian Zhang","doi":"10.1002/cnl2.70058","DOIUrl":"https://doi.org/10.1002/cnl2.70058","url":null,"abstract":"<p>The membrane-based reverse electrodialysis (RED) is considered as the most promising technique for salinity-gradient energy harvesting. However, the high cost and difficult processing of traditional membrane materials usually limit their development in the field. Herein, a salinity-gradient cell is constructed based on a group of anion- and cation-selective 2D clay nanofluidic membranes. The opposite surface charge and confined 2D nanofluidic channels contribute to the opposite ion selectivity of the two membranes. For constructing the salinity-gradient cell, a superposed electrochemical potential difference is created by complementing the diffusion of oppositely charged ions, and an output power density of up to 5.48 W m<sup>−2</sup> can be obtained at a salinity gradient of 0.5/0.01 M NaCl without the contribution of electrode material redox reaction, superior to other existing natural nanofluidic RED systems to our best knowledge. Furthermore, the output voltage of the cell can reach 1.8 V by connecting 15 tandem LM-RED stacks under artificial seawater and river water, which can power the electronic devices. According to detailed life cycle assessments, the fabrication of 2D clay nanofluidic pairs achieves a significant reduction in resource consumption by 90%, a decrease in greenhouse gas emissions by 90%, and a notable reduction in production costs by 67% compared with the classical 2D nanofluidics, promising good sustainability and paves the way for clay-based membranes in RED devices for the salinity-gradient energy harvesting.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 6","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70058","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145271816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Dong, Chenxu Shen, Boyang Yu, Shengyang Zhao, Haoyu Wu, Chenyuan Ding, Binkai Shi, Ziyu Cai, Wenzheng Hu, Biyun Shi, Feng Ye, Qiufeng Ye, Zebo Fang
As an intermediate composition between CsPbI2Br and CsPbIBr2, the inorganic perovskite material CsPbI1.5Br1.5 is expected to exhibit both high efficiency and enhanced stability, attracting significant attention. However, as a Br-rich perovskite, CsPbI1.5Br1.5 suffers from poor film quality, primarily due to the substantial disparity in solvent evaporation rates and nucleation growth kinetics of the precursor films. This leads to severe non-radiative recombination, closely related to the larger open-circuit voltage loss (VOC loss) and lower efficiencies compared to mainstream inorganic perovskites (e.g., CsPbI3 and CsPbI2Br). To address these issues, we employed a Sequential Extraction Vacuum Method (SEVM), which integrates antisolvent extraction with vacuum treatment, to minimize solvent residues in perovskite films. This approach promotes grain densification, mitigates pinhole formation, and enhances film coverage, thereby significantly inhibiting non-radiative recombination. Following SEVM treatment, the champion device achieved a power conversion efficiency (PCE) of 14.29% and a VOC of 1.336 V, representing the highest PCE and smallest VOC loss for ultra-wide bandgap (> 1.95 eV) inorganic perovskite solar cells (PSCs). Furthermore, the SEVM-based PSCs retained 90% of their initial PCE after 500 h of unencapsulated storage.
{"title":"Minimizing Solvent Residues in CsPbI1.5Br1.5 Perovskite Films for Efficient Ultra-Wide Bandgap Solar Cells","authors":"Tao Dong, Chenxu Shen, Boyang Yu, Shengyang Zhao, Haoyu Wu, Chenyuan Ding, Binkai Shi, Ziyu Cai, Wenzheng Hu, Biyun Shi, Feng Ye, Qiufeng Ye, Zebo Fang","doi":"10.1002/cnl2.70061","DOIUrl":"https://doi.org/10.1002/cnl2.70061","url":null,"abstract":"<p>As an intermediate composition between CsPbI<sub>2</sub>Br and CsPbIBr<sub>2</sub>, the inorganic perovskite material CsPbI<sub>1.5</sub>Br<sub>1.5</sub> is expected to exhibit both high efficiency and enhanced stability, attracting significant attention. However, as a Br-rich perovskite, CsPbI<sub>1.5</sub>Br<sub>1.5</sub> suffers from poor film quality, primarily due to the substantial disparity in solvent evaporation rates and nucleation growth kinetics of the precursor films. This leads to severe non-radiative recombination, closely related to the larger open-circuit voltage loss (<i>V</i><sub>OC</sub> loss) and lower efficiencies compared to mainstream inorganic perovskites (e.g., CsPbI<sub>3</sub> and CsPbI<sub>2</sub>Br). To address these issues, we employed a Sequential Extraction Vacuum Method (SEVM), which integrates antisolvent extraction with vacuum treatment, to minimize solvent residues in perovskite films. This approach promotes grain densification, mitigates pinhole formation, and enhances film coverage, thereby significantly inhibiting non-radiative recombination. Following SEVM treatment, the champion device achieved a power conversion efficiency (PCE) of 14.29% and a <i>V</i><sub>OC</sub> of 1.336 V, representing the highest PCE and smallest V<sub>OC</sub> loss for ultra-wide bandgap (> 1.95 eV) inorganic perovskite solar cells (PSCs). Furthermore, the SEVM-based PSCs retained 90% of their initial PCE after 500 h of unencapsulated storage.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 6","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70061","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145271817","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xugang Dang, Yanting Cai, Shuang Liang, Xuechuan Wang
Leather plays a significant role in daily life due to its exceptional permeability, mechanical strength, and durability. However, traditional tanning processes not only lead to chromium pollution but also promote bacterial growth and yellowing. This study aims to develop an all green processing technology of multifunctional chromium-free tanning agent (OKC-EGDE) based on kappa-carrageenan (KC), in which natural plant-derived KC was pretreated by a green H₂O₂/Cu²⁺ oxidation system, followed by cross-linking modification with ethylene glycol diglycidyl ether (EGDE). The aldehyde (–CHO) and carboxyl (–COOH) groups introduced during the oxidation process significantly enhance the antimicrobial properties of OKC-EGDE. During tanning, these aldehyde and epoxy groups bind with amino and carboxyl groups on collagen fibers, leading to significant improvements in the mechanical properties of the tanned leather. Characterization results from FTIR, ¹H NMR, and XRD analyses indicate that the epoxy value of OKC-EGDE is 0.37 mol/100 g, the oxidation value is 71%. Compared to traditional commercial chromium-free tanning agents (TWS and F-90), leather tanned with OKC-EGDE exhibits superior mechanical properties (tensile strength: 17.5 MPa, elongation at break: 38.7%, tear strength: 55.6 N/mm), thermal stability, yellowing resistance, and biocompatibility. Meanwhile, the OKC-EGDE has high antimicrobial rate of 99% against both Escherichia coli and Staphylococcus aureus. The degradation of tanning wastewater and life cycle analysis confirm that OKC-EGDE-tanned leather achieves full-process environmental sustainability. This study demonstrates the significant application potential of natural plant polysaccharides and provides a new approach for sustainable and clean leather production.
{"title":"All Green Processing Technology of Multifunctional Kappa-Carrageenan-Based Chrome-Free Tanning Agent Toward Efficient and Sustainable Leather Processing","authors":"Xugang Dang, Yanting Cai, Shuang Liang, Xuechuan Wang","doi":"10.1002/cnl2.70060","DOIUrl":"https://doi.org/10.1002/cnl2.70060","url":null,"abstract":"<p>Leather plays a significant role in daily life due to its exceptional permeability, mechanical strength, and durability. However, traditional tanning processes not only lead to chromium pollution but also promote bacterial growth and yellowing. This study aims to develop an all green processing technology of multifunctional chromium-free tanning agent (OKC-EGDE) based on kappa-carrageenan (KC), in which natural plant-derived KC was pretreated by a green H₂O₂/Cu²⁺ oxidation system, followed by cross-linking modification with ethylene glycol diglycidyl ether (EGDE). The aldehyde (–CHO) and carboxyl (–COOH) groups introduced during the oxidation process significantly enhance the antimicrobial properties of OKC-EGDE. During tanning, these aldehyde and epoxy groups bind with amino and carboxyl groups on collagen fibers, leading to significant improvements in the mechanical properties of the tanned leather. Characterization results from FTIR, ¹H NMR, and XRD analyses indicate that the epoxy value of OKC-EGDE is 0.37 mol/100 g, the oxidation value is 71%. Compared to traditional commercial chromium-free tanning agents (TWS and F-90), leather tanned with OKC-EGDE exhibits superior mechanical properties (tensile strength: 17.5 MPa, elongation at break: 38.7%, tear strength: 55.6 N/mm), thermal stability, yellowing resistance, and biocompatibility. Meanwhile, the OKC-EGDE has high antimicrobial rate of 99% against both <i>Escherichia coli</i> and <i>Staphylococcus aureus</i>. The degradation of tanning wastewater and life cycle analysis confirm that OKC-EGDE-tanned leather achieves full-process environmental sustainability. This study demonstrates the significant application potential of natural plant polysaccharides and provides a new approach for sustainable and clean leather production.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 6","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70060","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145197261","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tao Ye, Zhenlong Wang, Shaoyang Ma, Zihui Liang, Binghe Ma, Yifan Wang, Xinrui Zhang, Haoyang Sun, Xingxu Zhang, Kai Tao, Congcong Wu, Dong Yang, Jinjun Deng, Jian Luo, Weizheng Yuan, Jin Qian, Tianming Li, Kai Wang
Flexible perovskite solar cells (FPSCs) have emerged as a promising next- generation photovoltaic technology due to their lightweight, conformal design, and compatibility with low-cost, scalable fabrication. This review systematically summarizes recent advances in FPSC development, focusing on low-temperature fabrication strategies, functional material engineering, and device integration. We first detail one- step and two-step deposition methods, along with other novel approaches for producing high-quality perovskite films on flexible substrates at reduced thermal budgets. Subsequently, we examine the design of key functional layers, including perovskite absorbers, electron and hole transport layers, flexible electrodes, and substrates, highlighting innovations that enhance performance and mechanical resilience. A dedicated section explores Sn-based perovskite solar cells as a low-toxicity alternative to lead-based systems, covering compositional optimization, device architecture, and their growing deployment in flexible configurations. This review further discusses the scalable realization of flexible perovskite solar modules, including module architecture, charge transport management, and environmental safety strategies such as lead encapsulation and sustainable substrates. We conclude with an overview of application scenarios ranging from wearable electronics and high-altitude platforms to self-powered IoT systems and evaluate commercialization prospects through integrated portable energy systems. Together, these insights provide a comprehensive roadmap toward the development of high-efficiency, mechanically robust, and environmentally responsible FPSCs for real-world deployment.
{"title":"Flexible Perovskite Solar Cells: Low Temperature Processing, Material Design, and Pathways to Scalable Green Photovoltaics","authors":"Tao Ye, Zhenlong Wang, Shaoyang Ma, Zihui Liang, Binghe Ma, Yifan Wang, Xinrui Zhang, Haoyang Sun, Xingxu Zhang, Kai Tao, Congcong Wu, Dong Yang, Jinjun Deng, Jian Luo, Weizheng Yuan, Jin Qian, Tianming Li, Kai Wang","doi":"10.1002/cnl2.70047","DOIUrl":"https://doi.org/10.1002/cnl2.70047","url":null,"abstract":"<p>Flexible perovskite solar cells (FPSCs) have emerged as a promising next- generation photovoltaic technology due to their lightweight, conformal design, and compatibility with low-cost, scalable fabrication. This review systematically summarizes recent advances in FPSC development, focusing on low-temperature fabrication strategies, functional material engineering, and device integration. We first detail one- step and two-step deposition methods, along with other novel approaches for producing high-quality perovskite films on flexible substrates at reduced thermal budgets. Subsequently, we examine the design of key functional layers, including perovskite absorbers, electron and hole transport layers, flexible electrodes, and substrates, highlighting innovations that enhance performance and mechanical resilience. A dedicated section explores Sn-based perovskite solar cells as a low-toxicity alternative to lead-based systems, covering compositional optimization, device architecture, and their growing deployment in flexible configurations. This review further discusses the scalable realization of flexible perovskite solar modules, including module architecture, charge transport management, and environmental safety strategies such as lead encapsulation and sustainable substrates. We conclude with an overview of application scenarios ranging from wearable electronics and high-altitude platforms to self-powered IoT systems and evaluate commercialization prospects through integrated portable energy systems. Together, these insights provide a comprehensive roadmap toward the development of high-efficiency, mechanically robust, and environmentally responsible FPSCs for real-world deployment.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 5","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70047","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145146329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Silicon (Si) is a promising anode material for boosting the energy density of current lithium-ion batteries; however, Si anodes suffer from enormous volume modulations and unstable solid electrolyte interphases (SEI) associated with the voltage window. Nevertheless, the relationship between voltage changes and deterioration of electrochemical performance remains unclear. Through systematic investigation of Si anodes under various cut-off voltages, we reveal that an increased degree of delithiation generates high hoop stress around the particle surface, ultimately leading to SEI thickening, fragmentation, and reformation. Furthermore, residual Li retained within Si particles after delithiation facilitates bidirectional Li+ diffusion, from Si core to shell and from electrolyte to shell, during the subsequent lithiation process. This phenomenon reduces the internal Li+ concentration gradient, delays the formation of crystalline Li15Si4, and alters delithiation kinetics. In addition, we observed that maintaining the voltage window within a range that induces high hoop stress and prevents the formation of crystalline Li15Si4 enables the Si anode to achieve optimized cycling performance and capacity. This voltage modulation criterion is also applicable for nano-sized Si, graphite-Si composite anodes, and solid-state batteries. The practical effectiveness of this approach is demonstrated through the successful operation of 5 Ah LiCoO2/Si pouch cells, confirming that dynamic voltage control based on polarization can substantially enhance the cycle life of lithium-ion batteries.
{"title":"Towards High-Performance Lithium-Ion Batteries via Voltage Modulation of Silicon Anodes","authors":"Zhiwei Wu, Jianming Tao, Lixin Lin, Jiangjie Wang, Jiaxin Li, Sanjay Mathur, Yingbin Lin","doi":"10.1002/cnl2.70052","DOIUrl":"https://doi.org/10.1002/cnl2.70052","url":null,"abstract":"<p>Silicon (Si) is a promising anode material for boosting the energy density of current lithium-ion batteries; however, Si anodes suffer from enormous volume modulations and unstable solid electrolyte interphases (SEI) associated with the voltage window. Nevertheless, the relationship between voltage changes and deterioration of electrochemical performance remains unclear. Through systematic investigation of Si anodes under various cut-off voltages, we reveal that an increased degree of delithiation generates high hoop stress around the particle surface, ultimately leading to SEI thickening, fragmentation, and reformation. Furthermore, residual Li retained within Si particles after delithiation facilitates bidirectional Li<sup>+</sup> diffusion, from Si core to shell and from electrolyte to shell, during the subsequent lithiation process. This phenomenon reduces the internal Li<sup>+</sup> concentration gradient, delays the formation of crystalline Li<sub>15</sub>Si<sub>4</sub>, and alters delithiation kinetics. In addition, we observed that maintaining the voltage window within a range that induces high hoop stress and prevents the formation of crystalline Li<sub>15</sub>Si<sub>4</sub> enables the Si anode to achieve optimized cycling performance and capacity. This voltage modulation criterion is also applicable for nano-sized Si, graphite-Si composite anodes, and solid-state batteries. The practical effectiveness of this approach is demonstrated through the successful operation of 5 Ah LiCoO<sub>2</sub>/Si pouch cells, confirming that dynamic voltage control based on polarization can substantially enhance the cycle life of lithium-ion batteries.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 5","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70052","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145102283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhen Yang, Yifu Zhang, Huiwen Zhou, Miao Cui, Yi Zhong, Tao Hu, Qiushi Wang, Changgong Meng
The practical application of biomass-derived hard carbon (HC) in sodium-ion batteries (SIBs) remains hindered by low initial Coulombic efficiency (ICE) and limited rate capability, primarily caused by unstable surface functionalities and inefficient interfacial chemistry. In this study, we propose a facile precisely controlled partial oxidation strategy to selectively regulate the surface chemical environment of glucose-derived hard carbon, enabling the transformation of unstable hydroxyl and carboxyl groups into more stable carbonyl functionalities without significantly altering the carbon framework. This mild, low-temperature partial oxidation process partially unifies surface functional groups, promotes the formation of a thin and uniform solid electrolyte interphase (SEI), and enhances Na+ adsorption and diffusion kinetics. The optimized sample (CS-HO) exhibits a reversible capacity of 310.5 at 50 mA g–1, a high ICE exceeding 70%, and excellent rate performance and cycling stability, with 73% capacity retention after 1000 cycles at 1 A g–1. Mechanistic investigations, including in situ Raman spectroscopy and galvanostatic intermittent titration technique (GITT), reveal a dominant “adsorption–intercalation–pore filling” storage mechanism, attributed to the homogenized carbonyl-rich surface and optimized porous environment. This study offers mechanistic insights into bond-specific surface engineering and establishes a scalable, energy-efficient, and chemically rational pathway toward the design of high-performance SIB anode materials.
生物源硬碳(HC)在钠离子电池(sib)中的实际应用仍然受到初始库仑效率(ICE)低和速率能力有限的阻碍,这主要是由不稳定的表面官能和低效的界面化学引起的。在本研究中,我们提出了一种易于精确控制的部分氧化策略,以选择性地调节葡萄糖衍生的硬碳的表面化学环境,使不稳定的羟基和羧基转化为更稳定的羰基官能团,而不会显著改变碳框架。这种温和的低温部分氧化过程部分地统一了表面官能团,促进了薄而均匀的固体电解质界面(SEI)的形成,并增强了Na+的吸附和扩散动力学。优化后的样品(CS-HO)在50 mA g-1下的可逆容量为310.5,ICE超过70%,具有优异的倍率性能和循环稳定性,在1 mA g-1下循环1000次后容量保留率为73%。包括原位拉曼光谱和恒流间歇滴定技术(git)在内的机理研究揭示了主要的“吸附-插层-孔隙填充”存储机制,这归因于均匀的富含羰基的表面和优化的多孔环境。该研究为键特异性表面工程提供了机理见解,并为高性能SIB阳极材料的设计建立了可扩展、节能和化学合理的途径。
{"title":"Partial Oxidation Strategy Toward Carbonyl-Dominated Surfaces for Enhanced Sodium Storage in Biomass-Derived Hard Carbon","authors":"Zhen Yang, Yifu Zhang, Huiwen Zhou, Miao Cui, Yi Zhong, Tao Hu, Qiushi Wang, Changgong Meng","doi":"10.1002/cnl2.70057","DOIUrl":"https://doi.org/10.1002/cnl2.70057","url":null,"abstract":"<p>The practical application of biomass-derived hard carbon (HC) in sodium-ion batteries (SIBs) remains hindered by low initial Coulombic efficiency (ICE) and limited rate capability, primarily caused by unstable surface functionalities and inefficient interfacial chemistry. In this study, we propose a facile precisely controlled partial oxidation strategy to selectively regulate the surface chemical environment of glucose-derived hard carbon, enabling the transformation of unstable hydroxyl and carboxyl groups into more stable carbonyl functionalities without significantly altering the carbon framework. This mild, low-temperature partial oxidation process partially unifies surface functional groups, promotes the formation of a thin and uniform solid electrolyte interphase (SEI), and enhances Na<sup>+</sup> adsorption and diffusion kinetics. The optimized sample (CS-HO) exhibits a reversible capacity of 310.5 at 50 mA g<sup>–1</sup>, a high ICE exceeding 70%, and excellent rate performance and cycling stability, with 73% capacity retention after 1000 cycles at 1 A g<sup>–1</sup>. Mechanistic investigations, including in situ Raman spectroscopy and galvanostatic intermittent titration technique (GITT), reveal a dominant “adsorption–intercalation–pore filling” storage mechanism, attributed to the homogenized carbonyl-rich surface and optimized porous environment. This study offers mechanistic insights into bond-specific surface engineering and establishes a scalable, energy-efficient, and chemically rational pathway toward the design of high-performance SIB anode materials.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 5","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70057","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145102284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The narrow electrochemical stability window (ESW), gaseous by-products, and interfacial issues in aqueous electrolytes have long hindered the advancement of Zn-ion batteries. Herein, we report the first application of a zinc trifluoromethylsulfonate/1-ethyl-3-methylimidazolium trifluoromethylsulfonate (Zn(TfO)2/[EMIm]TfO) ionic liquid electrolyte with wide ESW exceeding 3 V in nonaqueous zinc-selenium (Zn-Se) batteries. To further enhance the reaction kinetics, the Co single atoms anchored onto N-doped ordered mesoporous carbon (Co-N/C) with Co-N4 sites is designed as a Se host (Se@Co-N/C). Significantly, the Se@Co-N/C composite demonstrates an improved electrochemical performance, delivering a high discharge voltage of 1.5 V and a capacity of 410.6 mAh g−1. Comprehensive mechanistic studies reveal that the Co-N4 structure in the Co-N/C host acts as dual-function catalytic sites, lowering the energy barrier for both Zn(TfO)42− dissociation and Se(TfO)4 formation, thereby accelerating the conversion kinetics. This finding provides novel insights into designing stable Zn-Se batteries in nonaqueous ionic liquid electrolytes.
窄的电化学稳定窗口(ESW)、气态副产物和水溶液中的界面问题长期以来一直阻碍着锌离子电池的发展。本文报道了三氟甲基磺酸锌/1-乙基-3-甲基咪唑三氟甲基磺酸锌(Zn(TfO)2/[EMIm]TfO)离子液体电解质在非水锌硒(Zn- se)电池中的首次应用,其宽ESW超过3v。为了进一步提高反应动力学,将Co单原子锚定在具有Co- n4位的n掺杂有序介孔碳(Co- n /C)上,设计为Se宿主(Se@Co-N/C)。值得注意的是,Se@Co-N/C复合材料的电化学性能得到了改善,具有1.5 V的高放电电压和410.6 mAh g−1的容量。综合机理研究表明,Co-N4结构在Co-N/C载体中作为双功能催化位点,降低了Zn(TfO)42−解离和Se(TfO)4生成的能垒,从而加速了转化动力学。这一发现为在非水离子液体电解质中设计稳定的锌硒电池提供了新的见解。
{"title":"Electrocatalytic Selenium Hosts Toward High-Voltage Nonaqueous Zinc-Selenium Batteries","authors":"Xiaoyun Wang, Jiguo Tu, Yan Li, Haiping Lei, Shuai Wang, Libo Chen, Meng Zhang, Shuqiang Jiao","doi":"10.1002/cnl2.70053","DOIUrl":"https://doi.org/10.1002/cnl2.70053","url":null,"abstract":"<p>The narrow electrochemical stability window (ESW), gaseous by-products, and interfacial issues in aqueous electrolytes have long hindered the advancement of Zn-ion batteries. Herein, we report the first application of a zinc trifluoromethylsulfonate/1-ethyl-3-methylimidazolium trifluoromethylsulfonate (Zn(TfO)<sub>2</sub>/[EMIm]TfO) ionic liquid electrolyte with wide ESW exceeding 3 V in nonaqueous zinc-selenium (Zn-Se) batteries. To further enhance the reaction kinetics, the Co single atoms anchored onto N-doped ordered mesoporous carbon (Co-N/C) with Co-N<sub>4</sub> sites is designed as a Se host (Se@Co-N/C). Significantly, the Se@Co-N/C composite demonstrates an improved electrochemical performance, delivering a high discharge voltage of 1.5 V and a capacity of 410.6 mAh g<sup>−1</sup>. Comprehensive mechanistic studies reveal that the Co-N<sub>4</sub> structure in the Co-N/C host acts as dual-function catalytic sites, lowering the energy barrier for both Zn(TfO)<sub>4</sub><sup>2−</sup> dissociation and Se(TfO)<sub>4</sub> formation, thereby accelerating the conversion kinetics. This finding provides novel insights into designing stable Zn-Se batteries in nonaqueous ionic liquid electrolytes.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 5","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70053","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145102280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Step-scheme (S-scheme) heterojunctions offer significant potential for enhancing photocatalytic hydrogen evolution (PHE) by promoting charge separation while preserving high redox capabilities. Herein, theoretical calculations predict that constructing a ZnMoO4@ZnIn2S4 S-scheme (ZMO@ZIS) heterojunction significantly lowers the Gibbs free energy for H2 evolution compared to the individual monomers, indicating a thermodynamically and kinetically favored pathway. Guided by this prediction, we synthesized the ZMO@ZIS heterojunction by in situ anchoring ZnIn2S4 nanosheets onto ZnMoO4 hexagonal platform, with the expectation of achieving excellent photocatalytic H2 evolution performance. This unique trans-scale assembly strategy spontaneously organizes ZIS into a hierarchical porous network, markedly increasing the surface area and providing abundant accessible active sites and efficient mass transfer channels. Comprehensive experimental characterization combined with detailed theoretical simulation provides compelling evidence confirming the S-scheme electron transfer mechanism and establishment of an internal electric field, where high-potential electrons in ZIS and holes in ZMO are retained for PHE. Consequently, the ZMO@ZIS-13 S-scheme heterojunction achieves an exceptional visible-light PHE rate of 5.045 mmol g−1 h−1 under visible light, representing a 10.7-fold improvement compared to that of pure ZnIn2S4. This study demonstrates the efficacy of theory-guided design and trans-scale assembly for creating efficient S-scheme photocatalysts with optimized charge dynamics.
{"title":"Boosting Photocatalytic H2 Evolution Performance of ZnIn2S4 via S-Scheme Heterostructuring With ZnMoO4","authors":"Shikai Wang, Qinghua Liu, Wei Zhang, Junchang Liu, Xueyang Ji, Peiqing Cai, Ruiqi Chen, Siyu Liu, Wenqing Ma, Dafeng Zhang, Xipeng Pu","doi":"10.1002/cnl2.70054","DOIUrl":"https://doi.org/10.1002/cnl2.70054","url":null,"abstract":"<p>Step-scheme (S-scheme) heterojunctions offer significant potential for enhancing photocatalytic hydrogen evolution (PHE) by promoting charge separation while preserving high redox capabilities. Herein, theoretical calculations predict that constructing a ZnMoO<sub>4</sub>@ZnIn<sub>2</sub>S<sub>4</sub> S-scheme (ZMO@ZIS) heterojunction significantly lowers the Gibbs free energy for H<sub>2</sub> evolution compared to the individual monomers, indicating a thermodynamically and kinetically favored pathway. Guided by this prediction, we synthesized the ZMO@ZIS heterojunction by in situ anchoring ZnIn<sub>2</sub>S<sub>4</sub> nanosheets onto ZnMoO<sub>4</sub> hexagonal platform, with the expectation of achieving excellent photocatalytic H<sub>2</sub> evolution performance. This unique trans-scale assembly strategy spontaneously organizes ZIS into a hierarchical porous network, markedly increasing the surface area and providing abundant accessible active sites and efficient mass transfer channels. Comprehensive experimental characterization combined with detailed theoretical simulation provides compelling evidence confirming the S-scheme electron transfer mechanism and establishment of an internal electric field, where high-potential electrons in ZIS and holes in ZMO are retained for PHE. Consequently, the ZMO@ZIS-13 S-scheme heterojunction achieves an exceptional visible-light PHE rate of 5.045 mmol g<sup>−1</sup> h<sup>−1</sup> under visible light, representing a 10.7-fold improvement compared to that of pure ZnIn<sub>2</sub>S<sub>4</sub>. This study demonstrates the efficacy of theory-guided design and trans-scale assembly for creating efficient S-scheme photocatalysts with optimized charge dynamics.</p>","PeriodicalId":100214,"journal":{"name":"Carbon Neutralization","volume":"4 5","pages":""},"PeriodicalIF":12.0,"publicationDate":"2025-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cnl2.70054","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145101784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}