Pub Date : 2022-12-01DOI: 10.1016/j.cec.2022.100008
Jie Li , Shidi Zhang , Yanan Jiang
Electronic waste (e-waste) refers to obsolete electronic and electrical equipment and its materials. Due to the complex structure and composition of e-waste, improper disposal may generate substances harmful to humans and the environment and result in the loss of recyclable substances. To tackle the challenges in the end-of-life management of e-waste, there is a need for a systematic review of what the literature has investigated and found. Therefore, this paper aims to explore the extensive scientific literature related to e-waste management using a visualized approach. Overall, 8149 research articles were selected and exported from the Web of Science and then analyzed based on mapping knowledge domains. CiteSpace and Gephi, as effective tools, were utilized to identify hidden patterns and correlations from large and complex research outcomes from 1998 to 2019. This research discussed the evolution of global e-waste management, the knowledge-based network, research topics, frontiers and the cooperation relationships. Finally, this state-of-the-art review generated a few research directions that can be further investigated in this research field.
电子垃圾(e-waste)是指废弃的电子电气设备及其材料。由于电子垃圾结构和成分复杂,处理不当可能会产生对人类和环境有害的物质,造成可回收物质的损失。为了应对电子废物报废管理方面的挑战,有必要对文献调查和发现的内容进行系统回顾。因此,本文旨在利用可视化方法探索与电子废物管理相关的广泛科学文献。总体而言,从Web of Science中选择并导出了8149篇研究论文,然后基于知识域映射进行分析。CiteSpace和Gephi作为有效工具,用于从1998 - 2019年的大型复杂研究成果中识别隐藏的模式和相关性。本研究讨论了全球电子废弃物管理的演变、知识网络、研究课题、前沿和合作关系。最后,本文总结了本研究领域有待进一步研究的几个研究方向。
{"title":"End-of-life management of electric and electronic equipment: A literature review based on mapping knowledge domains","authors":"Jie Li , Shidi Zhang , Yanan Jiang","doi":"10.1016/j.cec.2022.100008","DOIUrl":"10.1016/j.cec.2022.100008","url":null,"abstract":"<div><p>Electronic waste (e-waste) refers to obsolete electronic and electrical equipment and its materials. Due to the complex structure and composition of e-waste, improper disposal may generate substances harmful to humans and the environment and result in the loss of recyclable substances. To tackle the challenges in the end-of-life management of e-waste, there is a need for a systematic review of what the literature has investigated and found. Therefore, this paper aims to explore the extensive scientific literature related to e-waste management using a visualized approach. Overall, 8149 research articles were selected and exported from the Web of Science and then analyzed based on mapping knowledge domains. CiteSpace and Gephi, as effective tools, were utilized to identify hidden patterns and correlations from large and complex research outcomes from 1998 to 2019. This research discussed the evolution of global e-waste management, the knowledge-based network, research topics, frontiers and the cooperation relationships. Finally, this state-of-the-art review generated a few research directions that can be further investigated in this research field.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"1 2","pages":"Article 100008"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167722000085/pdfft?md5=3e6c411f3a74d1072e61d36ace03382a&pid=1-s2.0-S2773167722000085-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85488835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1016/j.cec.2022.100011
Narendra Singh , Oladele A. Ogunseitan
The benefits of consumer electronic products have transformed every societal sector worldwide. However, the adverse impacts of electronic waste (e-waste) disproportionately affect low-income communities and marginalized ecosystems in nations with economies in transition. The embodied carbon footprint of new electronic products, especially information and communications technology (ICT) devices, is an important source of greenhouse gas (GHG) emissions, accounting for 67% ± 15% of total lifetime emissions, instigated by mineral mining, manufacturing, and supply chain transportation. We estimate that between 2014 and 2020, embodied GHG emissions from selected e-waste generated from ICT devices increased by 53%, with 580 million metric tons (MMT) of CO2e emitted in 2020. Without specific interventions, emissions from this source will increase to ∼852 MMT of CO2e annually by 2030. Increasing the useful lifespan expectancy of electronic devices by 50%–100% can mitigate up to half of the total GHG emissions. Such outcomes will require coordination of eco-design and source reduction, repair, refurbishment, and reuse. These strategies can be a key to efforts towards climate neutrality for the electronics industry, which is currently among the top eight sectors accounting for more than 50% of the global carbon footprint.
{"title":"Disentangling the worldwide web of e-waste and climate change co-benefits","authors":"Narendra Singh , Oladele A. Ogunseitan","doi":"10.1016/j.cec.2022.100011","DOIUrl":"10.1016/j.cec.2022.100011","url":null,"abstract":"<div><p>The benefits of consumer electronic products have transformed every societal sector worldwide. However, the adverse impacts of electronic waste (e-waste) disproportionately affect low-income communities and marginalized ecosystems in nations with economies in transition. The embodied carbon footprint of new electronic products, especially information and communications technology (ICT) devices, is an important source of greenhouse gas (GHG) emissions, accounting for 67% ± 15% of total lifetime emissions, instigated by mineral mining, manufacturing, and supply chain transportation. We estimate that between 2014 and 2020, embodied GHG emissions from selected e-waste generated from ICT devices increased by 53%, with 580 million metric tons (MMT) of CO<sub>2</sub>e emitted in 2020. Without specific interventions, emissions from this source will increase to ∼852 MMT of CO<sub>2</sub>e annually by 2030. Increasing the useful lifespan expectancy of electronic devices by 50%–100% can mitigate up to half of the total GHG emissions. Such outcomes will require coordination of eco-design and source reduction, repair, refurbishment, and reuse. These strategies can be a key to efforts towards climate neutrality for the electronics industry, which is currently among the top eight sectors accounting for more than 50% of the global carbon footprint.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"1 2","pages":"Article 100011"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167722000115/pdfft?md5=03dc95b22480ebd613ea5a4a6e3b2c62&pid=1-s2.0-S2773167722000115-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87849646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1016/j.cec.2022.100014
Honggui Han , Qiyu Zhang , Fangyu Li , Yongping Du , Yifan Gu , Yufeng Wu
Visual recognition technologies based on deep learning have been gradually playing an important role in various resource recovery fields. However, in the field of metal resource recycling, there is still a lack of intelligent and accurate recognition of metallic products, which seriously hinders the operation of the metal resource recycling industry chain. In this article, a convolutional neural network with dual attention mechanism and multi-branch residual blocks is proposed to realize the recognition of metallic products with a high accuracy. First, a channel-spatial dual attention mechanism is introduced to enhance the model sensitivity on key features. The model can focus on key features even when extracting features of metallic products with too much confusing information. Second, a deep convolutional network with multi-branch residual blocks as the backbone while embedding a dual-attention mechanism module is designed to satisfy deeper and more effective feature extraction for metallic products with complex characteristic features. To evaluate the proposed model, a waste electrical and electronic equipment (WEEE) dataset containing 9266 images in 18 categories and a waste household metal appliance (WHMA) dataset containing 11,757 images in 23 categories are built. The experimental results show that the accuracy reaches 94.31% and 95.88% in WEEE and WHMA, respectively, achieving high accuracy and high quality recycling.
{"title":"Metallic product recognition with dual attention and multi-branch residual blocks-based convolutional neural networks","authors":"Honggui Han , Qiyu Zhang , Fangyu Li , Yongping Du , Yifan Gu , Yufeng Wu","doi":"10.1016/j.cec.2022.100014","DOIUrl":"10.1016/j.cec.2022.100014","url":null,"abstract":"<div><p>Visual recognition technologies based on deep learning have been gradually playing an important role in various resource recovery fields. However, in the field of metal resource recycling, there is still a lack of intelligent and accurate recognition of metallic products, which seriously hinders the operation of the metal resource recycling industry chain. In this article, a convolutional neural network with dual attention mechanism and multi-branch residual blocks is proposed to realize the recognition of metallic products with a high accuracy. First, a channel-spatial dual attention mechanism is introduced to enhance the model sensitivity on key features. The model can focus on key features even when extracting features of metallic products with too much confusing information. Second, a deep convolutional network with multi-branch residual blocks as the backbone while embedding a dual-attention mechanism module is designed to satisfy deeper and more effective feature extraction for metallic products with complex characteristic features. To evaluate the proposed model, a waste electrical and electronic equipment (WEEE) dataset containing 9266 images in 18 categories and a waste household metal appliance (WHMA) dataset containing 11,757 images in 23 categories are built. The experimental results show that the accuracy reaches 94.31% and 95.88% in WEEE and WHMA, respectively, achieving high accuracy and high quality recycling.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"1 2","pages":"Article 100014"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167722000140/pdfft?md5=13a787cc567184762ed8c2089983fa84&pid=1-s2.0-S2773167722000140-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77539343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-01DOI: 10.1016/j.cec.2022.100015
Muammer Kaya
Lithium (Li) is primarily found in mineral resources, brines, and seawater. Extraction of Li from mineral ore deposits is expensive and energy-intensive. Li-ion batteries (LIBs) are certainly one of the important alternatives to lessen the dependence on fossil fuel resources. The global demand for LIBs for portable electrical and electronic equipment (EEE) and EVs have increased significantly, and the amount of spent LIBs (S-LIBs) is rising logarithmically. S-LIBs contain both hazardous heavy metals and toxic organic chemicals that create a serious threat to human health and the ecosystem. The current position requires the recycling of S-LIBs indispensable for the protection of the environment and the recycling of scarce raw materials from economic aspects. In this manuscript, recent developments and state-of-the-art technologies for LIB recycling were focused on and reviewed comprehensively. Pretreatment methods (such as discharging, dismantling, cathode active material (CAM) removal, binder elimination methods, classification, and separation) for S-LIBs are introduced, and all available and novel technologies that are used in different physical and chemical recovery processes are summarized and compared. The pretreatment process in LIB recycling can both improve the recovery rate of the valuable components and significantly lessen the subsequent energy consumption. Notably, pretreatment, metal extraction, and product preparation stages play vital roles in all LIB recovery processes, based on pyrometallurgy, hydrometallurgy, biometallurgy, direct recycling, and mechanical treatment and water leaching. The main goal of this review is to address the novel S-LIB materials’ current recycling research status and innovations for integrated, eco-friendly, economic, low carbon, and clean energy technologies. In the end, different industrial recycling processes are compared, existing challenges are identified and suggestions and perspectives for future LIBs recycling applications are highlighted.
{"title":"State-of-the-art lithium-ion battery recycling technologies","authors":"Muammer Kaya","doi":"10.1016/j.cec.2022.100015","DOIUrl":"10.1016/j.cec.2022.100015","url":null,"abstract":"<div><p>Lithium (Li) is primarily found in mineral resources, brines, and seawater. Extraction of Li from mineral ore deposits is expensive and energy-intensive. Li-ion batteries (LIBs) are certainly one of the important alternatives to lessen the dependence on fossil fuel resources. The global demand for LIBs for portable electrical and electronic equipment (EEE) and EVs have increased significantly, and the amount of spent LIBs (S-LIBs) is rising logarithmically. S-LIBs contain both hazardous heavy metals and toxic organic chemicals that create a serious threat to human health and the ecosystem. The current position requires the recycling of S-LIBs indispensable for the protection of the environment and the recycling of scarce raw materials from economic aspects. In this manuscript, recent developments and state-of-the-art technologies for LIB recycling were focused on and reviewed comprehensively. Pretreatment methods (such as discharging, dismantling, cathode active material (CAM) removal, binder elimination methods, classification, and separation) for S-LIBs are introduced, and all available and novel technologies that are used in different physical and chemical recovery processes are summarized and compared. The pretreatment process in LIB recycling can both improve the recovery rate of the valuable components and significantly lessen the subsequent energy consumption. Notably, pretreatment, metal extraction, and product preparation stages play vital roles in all LIB recovery processes, based on pyrometallurgy, hydrometallurgy, biometallurgy, direct recycling, and mechanical treatment and water leaching. The main goal of this review is to address the novel S-LIB materials’ current recycling research status and innovations for integrated, eco-friendly, economic, low carbon, and clean energy technologies. In the end, different industrial recycling processes are compared, existing challenges are identified and suggestions and perspectives for future LIBs recycling applications are highlighted.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"1 2","pages":"Article 100015"},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167722000152/pdfft?md5=fc1ebeb19cae206fc8090b1d8b8ad1b7&pid=1-s2.0-S2773167722000152-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83661420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
There is growing interest in the role that the circular economy and natural capital might play in the transition to a more sustainable tourism and hospitality industry. While both concepts have attracted attention in the academic, professional and policy literature, few leading tourism and hospitality companies have publicly embraced the two concepts to inform their sustainability programmes. This paper is a narrative review that reports and reflects upon the existing literature, and offers two illustrative case examples of how hotel companies are publicly addressing these concepts. The paper concludes that the circular economy and the protection and enhancement of natural capital offer linked environmental and business benefits for the tourism and hospitality industry, but that, for a number of reasons, there is limited evidence that the two concepts have informed sustainability programmes within the sector. Further research could usefully build upon this study to examine, amongst other aspects, stakeholder involvement in pressuring companies to pursue circular economy and natural capital objectives, the role of digital technologies in supporting this transition, and the wider supply chain implications of such initiatives
{"title":"The Circular Economy and Natural Capital in the Tourism and Hospitality Industry","authors":"Peter Jones, M. Wynn","doi":"10.55845/irvu6231","DOIUrl":"https://doi.org/10.55845/irvu6231","url":null,"abstract":"There is growing interest in the role that the circular economy and natural capital might play in the transition to a more sustainable tourism and hospitality industry. While both concepts have attracted attention in the academic, professional and policy literature, few leading tourism and hospitality companies have publicly embraced the two concepts to inform their sustainability programmes. This paper is a narrative review that reports and reflects upon the existing literature, and offers two illustrative case examples of how hotel companies are publicly addressing these concepts. The paper concludes that the circular economy and the protection and enhancement of natural capital offer linked environmental and business benefits for the tourism and hospitality industry, but that, for a number of reasons, there is limited evidence that the two concepts have informed sustainability programmes within the sector. Further research could usefully build upon this study to examine, amongst other aspects, stakeholder involvement in pressuring companies to pursue circular economy and natural capital objectives, the role of digital technologies in supporting this transition, and the wider supply chain implications of such initiatives","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"15 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78180267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a theoretical and conceptual approach for measuring the supply chain’s performance in the circular economy era. Since not only economic but also environmental, social, and especially circularity performance must be measured within circular supply chains, adapted performance measurement systems are required. The proposed performance measurement system is based on a SCOR model adapted for circular supply chains (including the processes use and recover) and provides a comprehensive composition of indicators to holistically measure the supply chain’s performance from an economic, environmental, social, and circular perspective.
{"title":"Process performance measurement framework for circular supply chain: An updated SCOR perspective","authors":"Laura Montag, Tom Pettau","doi":"10.55845/kaiz3670","DOIUrl":"https://doi.org/10.55845/kaiz3670","url":null,"abstract":"This paper presents a theoretical and conceptual approach for measuring the supply chain’s performance in the circular economy era. Since not only economic but also environmental, social, and especially circularity performance must be measured within circular supply chains, adapted performance measurement systems are required. The proposed performance measurement system is based on a SCOR model adapted for circular supply chains (including the processes use and recover) and provides a comprehensive composition of indicators to holistically measure the supply chain’s performance from an economic, environmental, social, and circular perspective.","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"138 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80551559","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-01DOI: 10.1016/j.cec.2022.100007
Jing Bai , Peng Kang , Wenbo Zhang , Kunyang Chen , Yu Zhang , Ding Zhou , Huabo Duan
Urban construction, especially the ongoing large-scale expansion and utilization of underground space, has resulted in massive excavated soil and rock (ESR) from buildings and subways. Therefore, this study aims to explore the technical ways of ESR sintering utilization from the perspective of technology, environment, and policy through qualitative and quantitative methods. The study analyzes the soil properties and distribution of different depths, and the annual production of clay-rich ESR accounts for about 30 million m³ in Shenzhen. More importantly, the comparison between various pollutant concentrations of ESR in Shenzhen and local soil background values showed that the ESR in Shenzhen had no environmental risks. This study can not only provide a scientific basis for ESR as the raw material of sintering but also provide a theoretical basis for the promotion of the pilot of “Zero waste city”.
{"title":"Feasibility study on using excavated soil and rock to sintering utilization","authors":"Jing Bai , Peng Kang , Wenbo Zhang , Kunyang Chen , Yu Zhang , Ding Zhou , Huabo Duan","doi":"10.1016/j.cec.2022.100007","DOIUrl":"https://doi.org/10.1016/j.cec.2022.100007","url":null,"abstract":"<div><p>Urban construction, especially the ongoing large-scale expansion and utilization of underground space, has resulted in massive excavated soil and rock (ESR) from buildings and subways. Therefore, this study aims to explore the technical ways of ESR sintering utilization from the perspective of technology, environment, and policy through qualitative and quantitative methods. The study analyzes the soil properties and distribution of different depths, and the annual production of clay-rich ESR accounts for about 30 million m³ in Shenzhen. More importantly, the comparison between various pollutant concentrations of ESR in Shenzhen and local soil background values showed that the ESR in Shenzhen had no environmental risks. This study can not only provide a scientific basis for ESR as the raw material of sintering but also provide a theoretical basis for the promotion of the pilot of “Zero waste city”.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"1 1","pages":"Article 100007"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167722000073/pdfft?md5=bf6994383b1af744ca7afa9af83b8859&pid=1-s2.0-S2773167722000073-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89995249","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-01DOI: 10.1016/j.cec.2022.100003
Xianlai Zeng , Oladele A. Ogunseitan , Shinichiro Nakamura , Sangwon Suh , Ulrich Kral , Jinhui Li , Yong Geng
Circular economy is recognized as a powerful integrative framework envisioned to solve societal problems linked to environmental pollution and resource depletion. Its adoption is rapidly reforming manufacturing, production, consumption, and recycling across various segments of the economy. However, circular economy may not always be effective or even desirable owing to the spatiotemporal dimensions of environmental risk of materials, and variability of global policies. Circular flows involving toxic materials may impose a high risk on the environment and public health such that overemphasis on anthropogenic circularity is not desirable. Moreover, waste flows at a global scale might result in an uneven distribution of risks and costs associated with a circular economy. Among other benefits, circular economy needs to generate environmental advantages, energy savings, and reductions of greenhouse gas emissions. Recent attempts to implement the carbon neutrality strategy globally will likely push the circular economy further into more economic sectors, but challenges remain in implementing and enforcing international policies across national boundaries. The United Nations Basel Convention on the Transboundary Movement of Hazardous Waste and their disposal is used here as an example to illustrate the challenges and to propose a way forward for anthropogenic circularity.
{"title":"Reshaping global policies for circular economy","authors":"Xianlai Zeng , Oladele A. Ogunseitan , Shinichiro Nakamura , Sangwon Suh , Ulrich Kral , Jinhui Li , Yong Geng","doi":"10.1016/j.cec.2022.100003","DOIUrl":"https://doi.org/10.1016/j.cec.2022.100003","url":null,"abstract":"<div><p>Circular economy is recognized as a powerful integrative framework envisioned to solve societal problems linked to environmental pollution and resource depletion. Its adoption is rapidly reforming manufacturing, production, consumption, and recycling across various segments of the economy. However, circular economy may not always be effective or even desirable owing to the spatiotemporal dimensions of environmental risk of materials, and variability of global policies. Circular flows involving toxic materials may impose a high risk on the environment and public health such that overemphasis on anthropogenic circularity is not desirable. Moreover, waste flows at a global scale might result in an uneven distribution of risks and costs associated with a circular economy. Among other benefits, circular economy needs to generate environmental advantages, energy savings, and reductions of greenhouse gas emissions. Recent attempts to implement the carbon neutrality strategy globally will likely push the circular economy further into more economic sectors, but challenges remain in implementing and enforcing international policies across national boundaries. The United Nations Basel Convention on the Transboundary Movement of Hazardous Waste and their disposal is used here as an example to illustrate the challenges and to propose a way forward for anthropogenic circularity.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"1 1","pages":"Article 100003"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167722000036/pdfft?md5=396b1902acf2092419dc0cb71b671574&pid=1-s2.0-S2773167722000036-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91609069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-01DOI: 10.1016/j.cec.2022.100004
Yuqiong Long , Zheng Li , Qingbin Song , Kaihan Cai , Quanyin Tan , Guiming Yang
The construction industry is often seen as one of the most dynamic sectors, referring to large resource consumption and waste generation, and has grown rapidly in the last few decades. Under the background of “Zero Waste City,” it will be essential to understand the metabolic stock-flow process and the driving forces of urban building resources. By combining the top-down and bottom-up methods, this study establishes a dynamic material flow analysis (MFA) model to clarify the stock and flow characteristics, driving forces, and future trends of urban building resources in Macao China. The result shows that the total material stock increased from 14.13 million metric tons (Mt) in 1999 to 32.75 Mt in 2018, with an average annual growth rate of 4.29%. In 2018, metal resources accounted for 10.73% of the total building stock (steel and aluminum resources accounted for 10.30% and 0.43%, respectively), and non-metal resources accounted for 89.27%. The construction demolition waste (CD&W) increased from 0.02 Mt in 1999 to 0.69 Mt in 2018. Among metal materials, steel and aluminum accounted for 7.11% and 0.4%, respectively. The demolition quantity of metal resources increased from 1.6 kilotons (kt) in 1999 to 51.8 kt in 2018 (an average annual increase of 1.59%) and peaked at 95.2 kt in 2007. The IPAT (I-environment impact; P-population factor; A-social affluence factor; T-technology factor) method results show that the economy and population are always the driving force for urban building resources stock in Macao China. The scenario analysis shows that, by 2035, the maximum stock of urban building materials in Macao will reach 65.19 Mt, about twice in 2018. The results are expected to provide a theoretical basis for establishing scientific resource management and recycling systems for urban buildings.
{"title":"The dynamic stock-flow and driving force analysis of the building metal and non-metal resources at a city scale: An empirical study in Macao","authors":"Yuqiong Long , Zheng Li , Qingbin Song , Kaihan Cai , Quanyin Tan , Guiming Yang","doi":"10.1016/j.cec.2022.100004","DOIUrl":"https://doi.org/10.1016/j.cec.2022.100004","url":null,"abstract":"<div><p>The construction industry is often seen as one of the most dynamic sectors, referring to large resource consumption and waste generation, and has grown rapidly in the last few decades. Under the background of “Zero Waste City,” it will be essential to understand the metabolic stock-flow process and the driving forces of urban building resources. By combining the top-down and bottom-up methods, this study establishes a dynamic material flow analysis (MFA) model to clarify the stock and flow characteristics, driving forces, and future trends of urban building resources in Macao China. The result shows that the total material stock increased from 14.13 million metric tons (Mt) in 1999 to 32.75 Mt in 2018, with an average annual growth rate of 4.29%. In 2018, metal resources accounted for 10.73% of the total building stock (steel and aluminum resources accounted for 10.30% and 0.43%, respectively), and non-metal resources accounted for 89.27%. The construction demolition waste (CD&W) increased from 0.02 Mt in 1999 to 0.69 Mt in 2018. Among metal materials, steel and aluminum accounted for 7.11% and 0.4%, respectively. The demolition quantity of metal resources increased from 1.6 kilotons (kt) in 1999 to 51.8 kt in 2018 (an average annual increase of 1.59%) and peaked at 95.2 kt in 2007. The IPAT (I-environment impact; P-population factor; A-social affluence factor; T-technology factor) method results show that the economy and population are always the driving force for urban building resources stock in Macao China. The scenario analysis shows that, by 2035, the maximum stock of urban building materials in Macao will reach 65.19 Mt, about twice in 2018. The results are expected to provide a theoretical basis for establishing scientific resource management and recycling systems for urban buildings.</p></div>","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"1 1","pages":"Article 100004"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167722000048/pdfft?md5=42d7e4778dd4df671adef74f2e827dbc&pid=1-s2.0-S2773167722000048-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91609570","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-01DOI: 10.1016/j.cec.2022.100002
Jinhui Li, Guochang Xu
{"title":"Circular economy towards zero waste and decarbonization","authors":"Jinhui Li, Guochang Xu","doi":"10.1016/j.cec.2022.100002","DOIUrl":"https://doi.org/10.1016/j.cec.2022.100002","url":null,"abstract":"","PeriodicalId":100245,"journal":{"name":"Circular Economy","volume":"1 1","pages":"Article 100002"},"PeriodicalIF":0.0,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2773167722000024/pdfft?md5=7579f8c26788eb28d60aaf48cef923e4&pid=1-s2.0-S2773167722000024-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91609542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}