Changxin Li, Kangkang Jia, Qimin Liang, Yingchun Li, Sisi He
In recent years, wearable electrochemical biosensors have received increasing attention, benefiting from the growing demand for continuous monitoring for personalized medicine and point-of-care medical assistance. Incorporating electrochemical biosensing and corresponding power supply into everyday textiles could be a promising strategy for next-generation non-invasive and comfort interaction mode with healthcare. This review starts with the manufacturing and structural design of electrochemical biosensing textiles and discusses a series of wearable electrochemical biosensing textiles monitoring various biomarkers (e.g., pH, electrolytes, metabolite, and cytokines) at the molecular level. The fiber-shaped or textile-based solar cells and aqueous batteries as corresponding energy harvesting and storage devices are further introduced as a complete power supply for electrochemical biosensing textiles. Finally, we discuss the challenges and prospects relating to sensing textile systems from wearability, durability, washability, sample collection and analysis, and clinical validation.
{"title":"Electrochemical biosensors and power supplies for wearable health-managing textile systems","authors":"Changxin Li, Kangkang Jia, Qimin Liang, Yingchun Li, Sisi He","doi":"10.1002/idm2.12154","DOIUrl":"10.1002/idm2.12154","url":null,"abstract":"<p>In recent years, wearable electrochemical biosensors have received increasing attention, benefiting from the growing demand for continuous monitoring for personalized medicine and point-of-care medical assistance. Incorporating electrochemical biosensing and corresponding power supply into everyday textiles could be a promising strategy for next-generation non-invasive and comfort interaction mode with healthcare. This review starts with the manufacturing and structural design of electrochemical biosensing textiles and discusses a series of wearable electrochemical biosensing textiles monitoring various biomarkers (e.g., pH, electrolytes, metabolite, and cytokines) at the molecular level. The fiber-shaped or textile-based solar cells and aqueous batteries as corresponding energy harvesting and storage devices are further introduced as a complete power supply for electrochemical biosensing textiles. Finally, we discuss the challenges and prospects relating to sensing textile systems from wearability, durability, washability, sample collection and analysis, and clinical validation.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 2","pages":"270-296"},"PeriodicalIF":0.0,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12154","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140255252","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tianci Xiang, Ting Liu, Ting Ouyang, Shenlong Zhao, Zhao-Qing Liu
The development of stable and efficient low-cost electrocatalysts is conducive to the industrialization of CO2. The synergy effect between the heterogeneous interface of metal/oxide can promote the conversion of CO2. In this work, Cu2O/ZnO heterostructures with partially reduced metal/oxide heterointerfaces in Zn plates (CZZ) have been synthesized for CO2 electroreduction in different cationic solutions (K+ and Cs+). Physical characterizations were used to demonstrate the heterojunction of Cu2O/ZnO and the heterointerfaces of metal/oxide; electrochemical tests were used to illustrate the enhancement of the selectivity of CO2 to CO in different cationic solutions. Faraday efficiency for CO with CZZ as catalyst reaches 70.9% in K+ solution (current density for CO −3.77 mA cm−2 and stability 24 h), and the Faraday efficiency for CO is 55.2% in Cs+ solution (−2.47 mA cm−2 and 21 h). In addition, in situ techniques are used to elucidate possible reaction mechanisms for the conversion of CO2 to CO in K+ and Cs+ solutions.
开发稳定高效的低成本电催化剂有利于实现二氧化碳的工业化。金属/氧化物异质界面之间的协同效应可以促进 CO2 的转化。本研究合成了在锌板中具有部分还原金属/氧化物异质界面的 Cu2O/ZnO 异质结构(CZZ),用于不同阳离子溶液(K+ 和 Cs+)中的 CO2 电还原。物理表征用于证明 Cu2O/ZnO 的异质结和金属/氧化物的异质界面;电化学测试用于说明在不同阳离子溶液中 CO2 对 CO 的选择性的提高。在 K+ 溶液中,以 CZZ 为催化剂的一氧化碳法拉第效率达到 70.9%(一氧化碳的电流密度为 -3.77 mA cm-2,稳定性为 24 小时);在 Cs+ 溶液中,一氧化碳的法拉第效率为 55.2%(-2.47 mA cm-2,稳定性为 21 小时)。此外,还利用原位技术阐明了在 K+ 和 Cs+ 溶液中将 CO2 转化为 CO 的可能反应机制。
{"title":"Tuning the selectivity of CO2 conversion to CO on partially reduced Cu2O/ZnO heterogeneous interface","authors":"Tianci Xiang, Ting Liu, Ting Ouyang, Shenlong Zhao, Zhao-Qing Liu","doi":"10.1002/idm2.12157","DOIUrl":"10.1002/idm2.12157","url":null,"abstract":"<p>The development of stable and efficient low-cost electrocatalysts is conducive to the industrialization of CO<sub>2</sub>. The synergy effect between the heterogeneous interface of metal/oxide can promote the conversion of CO<sub>2</sub>. In this work, Cu<sub>2</sub>O/ZnO heterostructures with partially reduced metal/oxide heterointerfaces in Zn plates (CZZ) have been synthesized for CO<sub>2</sub> electroreduction in different cationic solutions (K<sup>+</sup> and Cs<sup>+</sup>). Physical characterizations were used to demonstrate the heterojunction of Cu<sub>2</sub>O/ZnO and the heterointerfaces of metal/oxide; electrochemical tests were used to illustrate the enhancement of the selectivity of CO<sub>2</sub> to CO in different cationic solutions. Faraday efficiency for CO with CZZ as catalyst reaches 70.9% in K<sup>+</sup> solution (current density for CO −3.77 mA cm<sup>−2</sup> and stability 24 h), and the Faraday efficiency for CO is 55.2% in Cs<sup>+</sup> solution (−2.47 mA cm<sup>−2</sup> and 21 h). In addition, in situ techniques are used to elucidate possible reaction mechanisms for the conversion of CO<sub>2</sub> to CO in K<sup>+</sup> and Cs<sup>+</sup> solutions.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 3","pages":"380-388"},"PeriodicalIF":0.0,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12157","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140255379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fullerene derivatives are highly attractive materials in solar cells, organic thermoelectrics, and other devices. However, the intrinsic low electron mobility and electrical conductivity restrict their potential device performance, such as perovskite solar cells (PSCs). Herein, we successfully enhanced the electric properties and morphology of phenyl-C61-butyric acid methyl ester (PCBM) by n-doping it with a benzimidazoline derivative, 9-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)-julolidine (JLBI-H) via a solution process. We found the n-doping can not only improve the conductivity and optimize the band alignment but also enable the PCBM to have a constantly strong charge extraction ability in a wide temperature from 173 to 373 K, which guarantees a stable photovoltaic performance of the corresponding PSCs under a wide range of operating temperatures. With the JLBI-H-doped PCBM, we improved the efficiency from 17.9% to 19.8%, along with enhanced stability of the nonencapsulated devices following the aging protocol of ISOS-D-1.
{"title":"Julolidine functionalized benzimidazoline-doped fullerene derivatives for efficient and stable perovskite solar cells","authors":"Yanqing Zhu, Chenglong Li, JiaHui Chen, Yuxi Zhang, Jianfeng Lu, Min Hu, Wangnan Li, Fuzhi Huang, Yi-Bing Cheng, Hyesung Park, Shengqiang Xiao","doi":"10.1002/idm2.12155","DOIUrl":"10.1002/idm2.12155","url":null,"abstract":"<p>Fullerene derivatives are highly attractive materials in solar cells, organic thermoelectrics, and other devices. However, the intrinsic low electron mobility and electrical conductivity restrict their potential device performance, such as perovskite solar cells (PSCs). Herein, we successfully enhanced the electric properties and morphology of phenyl-C<sub>61</sub>-butyric acid methyl ester (PCBM) by n-doping it with a benzimidazoline derivative, 9-(1,3-dimethyl-2,3-dihydro-1H-benzoimidazol-2-yl)-julolidine (JLBI-H) via a solution process. We found the n-doping can not only improve the conductivity and optimize the band alignment but also enable the PCBM to have a constantly strong charge extraction ability in a wide temperature from 173 to 373 K, which guarantees a stable photovoltaic performance of the corresponding PSCs under a wide range of operating temperatures. With the JLBI-H-doped PCBM, we improved the efficiency from 17.9% to 19.8%, along with enhanced stability of the nonencapsulated devices following the aging protocol of ISOS-D-1.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 3","pages":"369-379"},"PeriodicalIF":0.0,"publicationDate":"2024-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12155","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140255453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hao Liu, Yuchen Ji, Yang Li, Shisheng Zheng, Zihang Dong, Kai Yang, Aimin Cao, Yuxiang Huang, Yinchao Wang, Haifeng Shen, Shao-jian Zhang, Feng Pan, Luyi Yang
Lithium (Li) metal batteries are regarded as the “holy grail” of next-generation rechargeable batteries, but the poor redox reversibility of Li anode hinders its practical applications. While extensive studies have been carried out to design lithiophilic substrates for facile Li plating, their effects on Li stripping are often neglected. In this study, by homogeneously loading indium (In) single atoms on N-doped graphene via In-N bonds, the affinity between Li and hosting substrates is regulated. In situ observation of Li deposition/stripping processes shows that compared with the N-doped graphene substrate, the introduction of In effectively promotes its reversibility of Li redox, achieving a dendrite-free Li anode with much-improved coulombic efficiency. Interestingly, theoretical calculations demonstrate that In atoms have actually made the substrate less lithophilic via passivating the N sites to avoid the formation of irreversible Li–N bonding. Therefore, a “volcano curve” for reversible Li redox processes is proposed: the affinity of substrates toward Li should be optimized to a moderate value, where the balance for both Li plating and Li stripping processes could be reached. By demonstrating a crucial design principle for Li metal hosting substrates, our finding could trigger the rapid development of related research.
锂(Li)金属电池被视为下一代可充电电池的 "圣杯",但锂阳极的氧化还原性较差,阻碍了其实际应用。虽然人们已经开展了大量研究来设计亲锂基底以方便锂的电镀,但它们对锂剥离的影响往往被忽视。在本研究中,通过 In-N 键在 N 掺杂石墨烯上均匀负载铟(In)单原子,调节了锂与承载基底之间的亲和力。对锂沉积/剥离过程的现场观察表明,与掺杂 N 的石墨烯基底相比,铟的引入有效地促进了锂氧化还原的可逆性,从而实现了无树枝状晶粒的锂阳极,并大大提高了库仑效率。有趣的是,理论计算表明,In 原子通过钝化 N 位点,避免形成不可逆的锂-N 键,实际上降低了衬底的亲石性。因此,我们提出了可逆锂氧化还原过程的 "火山曲线":衬底对锂的亲和力应优化到一个适中的值,在这个值上,锂电镀和锂剥离过程都能达到平衡。通过展示锂金属承载基底的关键设计原则,我们的发现可能会引发相关研究的快速发展。
{"title":"Regulating lithium affinity of hosts for reversible lithium metal batteries","authors":"Hao Liu, Yuchen Ji, Yang Li, Shisheng Zheng, Zihang Dong, Kai Yang, Aimin Cao, Yuxiang Huang, Yinchao Wang, Haifeng Shen, Shao-jian Zhang, Feng Pan, Luyi Yang","doi":"10.1002/idm2.12153","DOIUrl":"https://doi.org/10.1002/idm2.12153","url":null,"abstract":"<p>Lithium (Li) metal batteries are regarded as the “holy grail” of next-generation rechargeable batteries, but the poor redox reversibility of Li anode hinders its practical applications. While extensive studies have been carried out to design lithiophilic substrates for facile Li plating, their effects on Li stripping are often neglected. In this study, by homogeneously loading indium (In) single atoms on N-doped graphene via In-N bonds, the affinity between Li and hosting substrates is regulated. In situ observation of Li deposition/stripping processes shows that compared with the N-doped graphene substrate, the introduction of In effectively promotes its reversibility of Li redox, achieving a dendrite-free Li anode with much-improved coulombic efficiency. Interestingly, theoretical calculations demonstrate that In atoms have actually made the substrate less lithophilic via passivating the N sites to avoid the formation of irreversible Li–N bonding. Therefore, a “volcano curve” for reversible Li redox processes is proposed: the affinity of substrates toward Li should be optimized to a moderate value, where the balance for both Li plating and Li stripping processes could be reached. By demonstrating a crucial design principle for Li metal hosting substrates, our finding could trigger the rapid development of related research.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 2","pages":"297-305"},"PeriodicalIF":0.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12153","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140310301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ziyang Wu, Yanhui Song, Haocheng Guo, Fengting Xie, Yuting Cong, Min Kuang, Jianping Yang
The electrochemical nitrate reduction reaction (NO3RR) holds promise for ecofriendly nitrate removal. However, the challenge of achieving high selectivity and efficiency in electrocatalyst systems still significantly hampers the mechanism understanding and the large-scale application. Tandem catalysts, comprising multiple catalytic components working synergistically, offer promising potential for improving the efficiency and selectivity of the NO3RR. This review highlights recent progress in designing tandem catalysts for electrochemical NO3RR, including the noble metal-related system, transition metal electrocatalysts, and pulsed electrocatalysis strategies. Specifically, the optimization of active sites, interface engineering, synergistic effects between catalyst components, various in situ technologies, and theory simulations are discussed in detail. Challenges and opportunities in the development of tandem catalysts for scaling up electrochemical NO3RR are further discussed, such as stability, durability, and reaction mechanisms. By outlining possible solutions for future tandem catalyst design, this review aims to open avenues for efficient nitrate reduction and comprehensive insights into the mechanisms for energy sustainability and environmental safety.
{"title":"Tandem catalysis in electrocatalytic nitrate reduction: Unlocking efficiency and mechanism","authors":"Ziyang Wu, Yanhui Song, Haocheng Guo, Fengting Xie, Yuting Cong, Min Kuang, Jianping Yang","doi":"10.1002/idm2.12152","DOIUrl":"https://doi.org/10.1002/idm2.12152","url":null,"abstract":"<p>The electrochemical nitrate reduction reaction (NO<sub>3</sub>RR) holds promise for ecofriendly nitrate removal. However, the challenge of achieving high selectivity and efficiency in electrocatalyst systems still significantly hampers the mechanism understanding and the large-scale application. Tandem catalysts, comprising multiple catalytic components working synergistically, offer promising potential for improving the efficiency and selectivity of the NO<sub>3</sub>RR. This review highlights recent progress in designing tandem catalysts for electrochemical NO<sub>3</sub>RR, including the noble metal-related system, transition metal electrocatalysts, and pulsed electrocatalysis strategies. Specifically, the optimization of active sites, interface engineering, synergistic effects between catalyst components, various in situ technologies, and theory simulations are discussed in detail. Challenges and opportunities in the development of tandem catalysts for scaling up electrochemical NO<sub>3</sub>RR are further discussed, such as stability, durability, and reaction mechanisms. By outlining possible solutions for future tandem catalyst design, this review aims to open avenues for efficient nitrate reduction and comprehensive insights into the mechanisms for energy sustainability and environmental safety.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 2","pages":"245-269"},"PeriodicalIF":0.0,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12152","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140310350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Carbon has been widely utilized as electrode in electrochemical energy storage, relying on the interaction between ions and electrode. The performance of a carbon electrode is determined by a variety of factors including the structural features of carbon material and the behavior of ions adsorbed on the carbon surface in the specific environment. As the fundamental unit of graphitic carbons, graphene has been employed as a model to understand the energy storage mechanism of carbon materials through various experimental and computational methods, ex-situ or in-situ. In this article, we provide a succinct overview of the state-of-the-art proceedings on the ion storage mechanism on graphene. Topics include the structure engineering of carbons, electric gating effect of ions, ion dynamics on the interface or in the confined space, and specifically lithium-ion storage/reaction on graphene. Our aim is to facilitate the understanding of electrochemistry on carbon electrodes.
{"title":"Storage dynamics of ions on graphene","authors":"Minghao Guo, Kun Ni, Yanwu Zhu","doi":"10.1002/idm2.12146","DOIUrl":"https://doi.org/10.1002/idm2.12146","url":null,"abstract":"<p>Carbon has been widely utilized as electrode in electrochemical energy storage, relying on the interaction between ions and electrode. The performance of a carbon electrode is determined by a variety of factors including the structural features of carbon material and the behavior of ions adsorbed on the carbon surface in the specific environment. As the fundamental unit of graphitic carbons, graphene has been employed as a model to understand the energy storage mechanism of carbon materials through various experimental and computational methods, ex-situ or in-situ. In this article, we provide a succinct overview of the state-of-the-art proceedings on the ion storage mechanism on graphene. Topics include the structure engineering of carbons, electric gating effect of ions, ion dynamics on the interface or in the confined space, and specifically lithium-ion storage/reaction on graphene. Our aim is to facilitate the understanding of electrochemistry on carbon electrodes.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 2","pages":"189-202"},"PeriodicalIF":0.0,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12146","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140310258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zijun Yi, Xin Li, Yuchen Xiong, Guibin Shen, Wenguang Zhang, Yihuai Huang, Qinghui Jiang, Xin Ren Ng, Yubo Luo, Jianghui Zheng, Wei Lin Leong, Fan Fu, Tongle Bu, Junyou Yang
Self-assembled monolayers (SAMs) employed in inverted perovskite solar cells (PSCs) have achieved groundbreaking progress in device efficiency and stability for both single-junction and tandem configurations, owing to their distinctive and versatile ability to manipulate chemical and physical interface properties. In this regard, we present a comprehensive review of recent research advancements concerning SAMs in inverted perovskite single-junction and tandem solar cells, where the prevailing challenges and future development prospects in the applications of SAMs are emphasized. We thoroughly examine the mechanistic roles of diverse SAMs in energy-level regulation, interface modification, defect passivation, and charge transportation. This is achieved by understanding how interfacial molecular interactions can be finely tuned to mitigate charge recombination losses in inverted PSCs. Through this comprehensive review, we aim to provide valuable insights and references for further investigation and utilization of SAMs in inverted perovskite single-junction and tandem solar cells.
由于自组装单层具有操纵化学和物理界面特性的独特能力和多功能性,倒置包晶体太阳能电池(PSCs)中使用的自组装单层在单结和串联配置的器件效率和稳定性方面取得了突破性进展。在这方面,我们全面综述了最近有关反相包晶石单结和串联太阳能电池中 SAM 的研究进展,并强调了 SAM 应用中的当前挑战和未来发展前景。我们深入研究了各种 SAM 在能级调节、界面修饰、缺陷钝化和电荷传输中的机理作用。通过了解如何对界面分子相互作用进行微调,以减轻倒置 PSC 中的电荷重组损耗,从而实现这一目标。通过本综述,我们希望为进一步研究和利用倒置包晶单结和串联太阳能电池中的 SAM 提供有价值的见解和参考。
{"title":"Self-assembled monolayers (SAMs) in inverted perovskite solar cells and their tandem photovoltaics application","authors":"Zijun Yi, Xin Li, Yuchen Xiong, Guibin Shen, Wenguang Zhang, Yihuai Huang, Qinghui Jiang, Xin Ren Ng, Yubo Luo, Jianghui Zheng, Wei Lin Leong, Fan Fu, Tongle Bu, Junyou Yang","doi":"10.1002/idm2.12145","DOIUrl":"https://doi.org/10.1002/idm2.12145","url":null,"abstract":"<p>Self-assembled monolayers (SAMs) employed in inverted perovskite solar cells (PSCs) have achieved groundbreaking progress in device efficiency and stability for both single-junction and tandem configurations, owing to their distinctive and versatile ability to manipulate chemical and physical interface properties. In this regard, we present a comprehensive review of recent research advancements concerning SAMs in inverted perovskite single-junction and tandem solar cells, where the prevailing challenges and future development prospects in the applications of SAMs are emphasized. We thoroughly examine the mechanistic roles of diverse SAMs in energy-level regulation, interface modification, defect passivation, and charge transportation. This is achieved by understanding how interfacial molecular interactions can be finely tuned to mitigate charge recombination losses in inverted PSCs. Through this comprehensive review, we aim to provide valuable insights and references for further investigation and utilization of SAMs in inverted perovskite single-junction and tandem solar cells.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 2","pages":"203-244"},"PeriodicalIF":0.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12145","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140310370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the realm of photovoltaics, organometallic hybridized perovskite solar cells (PSCs) stand out as promising contenders for achieving high-efficiency photoelectric conversion, owing to their remarkable performance attributes. Nevertheless, defects within the perovskite layer, especially at the perovskite grain boundaries and surface, have a substantial impact on both the overall photoelectric performance and long-term operational stability of PSCs. To mitigate this challenge, we propose a method for water-induced condensation polymerization of small molecules involving the incorporation of 1,3-phenylene diisocyanate (1,3-PDI) into the perovskite film using an antisolvent technique. Subsequent to this step, the introduction of water triggers the polymerization of [P(1,3-PDI)], thereby facilitating the in situ passivation of uncoordinated lead defects inherent in the perovskite film. This passivation process demonstrates a notable enhancement in both the efficiency and stability of PSCs. This approach has led to the attainment of a noteworthy power conversion efficiency (PCE) of 24.66% in inverted PSCs. Furthermore, based on the P(1,3-PDI) modification, these devices maintain 90.15% of their initial efficiency after 5000 h of storage under ambient conditions of 25°C and 50 ± 5% relative humidity. Additionally, even after maximum power point tracking for 1000 h, the PSCs modified with P(1,3-PDI) sustain 82.05% of the initial PCE. Small molecules can rationally manipulate water and turn harm into benefit, providing new directions and methods for improving the efficiency and stability of PSCs.
{"title":"In situ polymerization of water-induced 1,3-phenylene diisocyanate for enhanced efficiency and stability of inverted perovskite solar cells","authors":"Shiyao Jia, Jiabao Yang, Tong Wang, Xingyu Pu, Hui Chen, Xilai He, Guangpeng Feng, Xingyuan Chen, Yijun Bai, Qi Cao, Xuanhua Li","doi":"10.1002/idm2.12147","DOIUrl":"https://doi.org/10.1002/idm2.12147","url":null,"abstract":"<p>In the realm of photovoltaics, organometallic hybridized perovskite solar cells (PSCs) stand out as promising contenders for achieving high-efficiency photoelectric conversion, owing to their remarkable performance attributes. Nevertheless, defects within the perovskite layer, especially at the perovskite grain boundaries and surface, have a substantial impact on both the overall photoelectric performance and long-term operational stability of PSCs. To mitigate this challenge, we propose a method for water-induced condensation polymerization of small molecules involving the incorporation of 1,3-phenylene diisocyanate (1,3-PDI) into the perovskite film using an antisolvent technique. Subsequent to this step, the introduction of water triggers the polymerization of [P(1,3-PDI)], thereby facilitating the in situ passivation of uncoordinated lead defects inherent in the perovskite film. This passivation process demonstrates a notable enhancement in both the efficiency and stability of PSCs. This approach has led to the attainment of a noteworthy power conversion efficiency (PCE) of 24.66% in inverted PSCs. Furthermore, based on the P(1,3-PDI) modification, these devices maintain 90.15% of their initial efficiency after 5000 h of storage under ambient conditions of 25°C and 50 ± 5% relative humidity. Additionally, even after maximum power point tracking for 1000 h, the PSCs modified with P(1,3-PDI) sustain 82.05% of the initial PCE. Small molecules can rationally manipulate water and turn harm into benefit, providing new directions and methods for improving the efficiency and stability of PSCs.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 2","pages":"316-325"},"PeriodicalIF":0.0,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12147","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140310304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Biomineralization is the intricate process by which living organisms orchestrate the formation of organic–inorganic composites by regulating the nucleation, orientation, growth, and assembly of inorganic minerals. As our comprehension of biomineralization principles deepens, novel strategies for fabricating inorganic materials based on these principles have emerged. Researchers can also harness biomineralization strategies to tackle challenges in both materials' science and biomedical fields, demonstrating a thriving research field. This review begins by introducing the concept of biomineralization and subsequently shifts its focus to a recently discovered chemical concept: inorganic ionic oligomers and their cross-linking. As a novel approach for constructing inorganic materials, the inorganic ionic oligomer-based strategy finds applications in biomimetic regeneration and repair of hard tissues, such as teeth and bones. Aside from innovative methods for material fabrication, biomineralization has emerged as an alternative method for tackling biomedical challenges by integrating materials with biological organisms, facilitating advancements in biomedical fields. Emerging material-biological integrators play a critical role in areas like vaccine improvement, cancer therapy, universal blood transfusion, and arthritis treatment. This review highlights the profound impact of biomineralization in the development and design of high-performance materials that go beyond traditional disciplinary boundaries, potentially promoting breakthroughs in materials science, chemical biology, biomedical, and numerous other domains.
{"title":"Expanding from materials to biology inspired by biomineralization","authors":"Qi Wang, Lishan Hu, Xiaoyu Wang, Ruikang Tang","doi":"10.1002/idm2.12144","DOIUrl":"10.1002/idm2.12144","url":null,"abstract":"<p>Biomineralization is the intricate process by which living organisms orchestrate the formation of organic–inorganic composites by regulating the nucleation, orientation, growth, and assembly of inorganic minerals. As our comprehension of biomineralization principles deepens, novel strategies for fabricating inorganic materials based on these principles have emerged. Researchers can also harness biomineralization strategies to tackle challenges in both materials' science and biomedical fields, demonstrating a thriving research field. This review begins by introducing the concept of biomineralization and subsequently shifts its focus to a recently discovered chemical concept: inorganic ionic oligomers and their cross-linking. As a novel approach for constructing inorganic materials, the inorganic ionic oligomer-based strategy finds applications in biomimetic regeneration and repair of hard tissues, such as teeth and bones. Aside from innovative methods for material fabrication, biomineralization has emerged as an alternative method for tackling biomedical challenges by integrating materials with biological organisms, facilitating advancements in biomedical fields. Emerging material-biological integrators play a critical role in areas like vaccine improvement, cancer therapy, universal blood transfusion, and arthritis treatment. This review highlights the profound impact of biomineralization in the development and design of high-performance materials that go beyond traditional disciplinary boundaries, potentially promoting breakthroughs in materials science, chemical biology, biomedical, and numerous other domains.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 2","pages":"165-188"},"PeriodicalIF":0.0,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12144","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139851602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to their extensive microporous structure, metal-organic frameworks (MOFs) find widespread application in constructing modification layers, functioning as ion sieves. However, the modification layers prepared by existing methods feature gaps between MOFs that are noticeably larger than the inherent MOF pore dimensions. Polysulfides and lithium ions unavoidably permeate through these gaps, hindering the full exploitation of the structural advantages. Herein, an ultrathin (20 nm) and crack-free MOF film is formed on the separator by atomic layer deposition for the first time. Based on the separator, the mechanism of different MOF layers has been verified by phase field simulation and in situ Raman spectroscopy. The results accurately prove that the MOF particle layer can relieve the shuttle of polysulfides, but it does not have the effect of homogenizing lithium ions. Only the ultrathin and crack-free MOF film with proper pore size can act as the ion sieve for both polysulfides and lithium ions. As a result, under the test condition of 2 mA cm−2–2 mAh cm−2, the overpotential of the Li/Li symmetric battery is only 18 mV after 2500 h. The capacity retention rate of the lithium–sulfur battery is 95.6% after 500 cycles and 80% after 1000 cycles at 2 C.
由于具有广泛的微孔结构,金属有机框架(MOF)被广泛应用于构建改性层,起到离子筛的作用。然而,现有方法制备的改性层在 MOF 之间存在明显大于 MOF 固有孔隙尺寸的间隙。多硫化物和锂离子不可避免地会从这些间隙中渗透出来,阻碍了结构优势的充分发挥。在此,我们首次通过原子层沉积技术在分离器上形成了超薄(20 nm)、无裂纹的 MOF 膜。在分离器的基础上,通过相场模拟和原位拉曼光谱验证了不同 MOF 层的机理。结果准确证明,MOF 颗粒层可以缓解多硫化物的穿梭,但不具有均化锂离子的作用。只有孔径合适的超薄无裂纹 MOF 膜才能同时起到筛分多硫化物和锂离子的作用。因此,在 2 mA cm-2-2 mAh cm-2 的测试条件下,锂/锂对称电池在 2500 h 后的过电位仅为 18 mV。
{"title":"An ultrathin and crack-free metal-organic framework film for effective polysulfide inhibition in lithium–sulfur batteries","authors":"Cheng Zhou, Chenxu Dong, Weixiao Wang, Yu Tian, Chunli Shen, Kaijian Yan, Liqiang Mai, Xu Xu","doi":"10.1002/idm2.12143","DOIUrl":"10.1002/idm2.12143","url":null,"abstract":"<p>Due to their extensive microporous structure, metal-organic frameworks (MOFs) find widespread application in constructing modification layers, functioning as ion sieves. However, the modification layers prepared by existing methods feature gaps between MOFs that are noticeably larger than the inherent MOF pore dimensions. Polysulfides and lithium ions unavoidably permeate through these gaps, hindering the full exploitation of the structural advantages. Herein, an ultrathin (20 nm) and crack-free MOF film is formed on the separator by atomic layer deposition for the first time. Based on the separator, the mechanism of different MOF layers has been verified by phase field simulation and in situ Raman spectroscopy. The results accurately prove that the MOF particle layer can relieve the shuttle of polysulfides, but it does not have the effect of homogenizing lithium ions. Only the ultrathin and crack-free MOF film with proper pore size can act as the ion sieve for both polysulfides and lithium ions. As a result, under the test condition of 2 mA cm<sup>−2</sup>–2 mAh cm<sup>−2</sup>, the overpotential of the Li/Li symmetric battery is only 18 mV after 2500 h. The capacity retention rate of the lithium–sulfur battery is 95.6% after 500 cycles and 80% after 1000 cycles at 2 C.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 2","pages":"306-315"},"PeriodicalIF":0.0,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12143","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139864210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}