首页 > 最新文献

Interdisciplinary Materials最新文献

英文 中文
Three-dimensional-printed Ni-based scaffold design accelerates bubble escape for ampere-level alkaline hydrogen evolution reaction 基于镍的三维打印支架设计可加速安培级碱性氢进化反应中的气泡逸出
IF 24.5 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-04-29 DOI: 10.1002/idm2.12169
Jingxuan Chen, Gangwen Fu, Yu Tian, Xingchuan Li, Mengqi Luo, Xiaoyu Wei, Ting Zhang, Tian Gao, Cheng Chen, Somboon Chaemchuen, Xi Xu, Xing Sun, Tongle Bu, Francis Verpoort, John Wang, Zongkui Kou

Alkaline hydrogen evolution reaction (HER) for scalable hydrogen production largely hinges on addressing the sluggish bubble-involved kinetics on the traditional Ni-based electrode, especially for ampere-level current densities and beyond. Herein, 3D-printed Ni-based sulfide (3DPNS) electrodes with varying scaffolds are designed and fabricated. In situ observations at microscopic levels demonstrate that the bubble escape velocity increases with the number of hole sides (HS) in the scaffolds. Subsequently, we conduct multiphysics field simulations to illustrate that as the hole shapes transition from square, pentagon, and hexagon to circle, where a noticeable reduction in the bubble-attached HS length and the pressure balance time around the bubbles results in a decrease in bubble size and an acceleration in the rate of bubble escape. Ultimately, the 3DPNS electrode with circular hole configurations exhibits the most favorable HER performance with an overpotential of 297 mV at the current density of up to 1000 mA cm−2 for 120 h. The present study highlights a scalable and effective electrode scaffold design that promotes low-cost and low-energy green hydrogen production through the ampere-level alkaline HER.

用于可扩展制氢的碱性氢进化反应(HER)在很大程度上取决于能否解决传统镍基电极上迟缓的气泡动力学问题,尤其是在安培级电流密度及以上的情况下。本文设计并制造了具有不同支架的三维打印镍基硫化物(3DPNS)电极。微观层面的现场观察表明,气泡逸出速度随支架中孔边(HS)数量的增加而增加。随后,我们进行了多物理场模拟,以说明当孔的形状从正方形、五边形和六边形过渡到圆形时,气泡附着的 HS 长度和气泡周围的压力平衡时间明显减少,从而导致气泡尺寸减小,气泡逸出速度加快。最终,具有圆形孔构型的 3DPNS 电极表现出了最有利的 HER 性能,在电流密度高达 1000 mA cm-2 的情况下,过电位为 297 mV,持续 120 小时。
{"title":"Three-dimensional-printed Ni-based scaffold design accelerates bubble escape for ampere-level alkaline hydrogen evolution reaction","authors":"Jingxuan Chen,&nbsp;Gangwen Fu,&nbsp;Yu Tian,&nbsp;Xingchuan Li,&nbsp;Mengqi Luo,&nbsp;Xiaoyu Wei,&nbsp;Ting Zhang,&nbsp;Tian Gao,&nbsp;Cheng Chen,&nbsp;Somboon Chaemchuen,&nbsp;Xi Xu,&nbsp;Xing Sun,&nbsp;Tongle Bu,&nbsp;Francis Verpoort,&nbsp;John Wang,&nbsp;Zongkui Kou","doi":"10.1002/idm2.12169","DOIUrl":"https://doi.org/10.1002/idm2.12169","url":null,"abstract":"<p>Alkaline hydrogen evolution reaction (HER) for scalable hydrogen production largely hinges on addressing the sluggish bubble-involved kinetics on the traditional Ni-based electrode, especially for ampere-level current densities and beyond. Herein, 3D-printed Ni-based sulfide (3DPNS) electrodes with varying scaffolds are designed and fabricated. In situ observations at microscopic levels demonstrate that the bubble escape velocity increases with the number of hole sides (HS) in the scaffolds. Subsequently, we conduct multiphysics field simulations to illustrate that as the hole shapes transition from square, pentagon, and hexagon to circle, where a noticeable reduction in the bubble-attached HS length and the pressure balance time around the bubbles results in a decrease in bubble size and an acceleration in the rate of bubble escape. Ultimately, the 3DPNS electrode with circular hole configurations exhibits the most favorable HER performance with an overpotential of 297 mV at the current density of up to 1000 mA cm<sup>−2</sup> for 120 h. The present study highlights a scalable and effective electrode scaffold design that promotes low-cost and low-energy green hydrogen production through the ampere-level alkaline HER.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 4","pages":"595-606"},"PeriodicalIF":24.5,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12169","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Manipulation of metavalent bonding to stabilize metastable phase: A strategy for enhancing zT in GeSe 操纵偏五价键以稳定蜕变相:提高 GeSe 锆钛酸锂热稳定性的策略
IF 24.5 Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-04-24 DOI: 10.1002/idm2.12170
Yilun Huang, Tu Lyu, Manting Zeng, Moran Wang, Yuan Yu, Chaohua Zhang, Fusheng Liu, Min Hong, Lipeng Hu

Exploration of metastable phases holds profound implications for functional materials. Herein, we engineer the metastable phase to enhance the thermoelectric performance of germanium selenide (GeSe) through tailoring the chemical bonding mechanism. Initially, AgInTe2 alloying fosters a transition from stable orthorhombic to metastable rhombohedral phase in GeSe by substantially promoting p-state electron bonding to form metavalent bonding (MVB). Besides, extra Pb is employed to prevent a transition into a stable hexagonal phase at elevated temperatures by moderately enhancing the degree of MVB. The stabilization of the metastable rhombohedral phase generates an optimized bandgap, sharpened valence band edge, and stimulative band convergence compared to stable phases. This leads to decent carrier concentration, improved carrier mobility, and enhanced density-of-state effective mass, culminating in a superior power factor. Moreover, lattice thermal conductivity is suppressed by pronounced lattice anharmonicity, low sound velocity, and strong phonon scattering induced by multiple defects. Consequently, a maximum zT of 1.0 at 773 K is achieved in (Ge0.98Pb0.02Se)0.875(AgInTe2)0.125, resulting in a maximum energy conversion efficiency of 4.90% under the temperature difference of 500 K. This work underscores the significance of regulating MVB to stabilize metastable phases in chalcogenides.

对瞬态相的探索对功能材料有着深远的影响。在这里,我们通过调整化学键机制来设计硒化锗(GeSe)的瞬变相,从而提高其热电性能。最初,AgInTe2 合金通过大幅促进 p 态电子键形成元价键 (MVB),促进 GeSe 从稳定的正方体相过渡到可陨落的斜方体相。此外,额外掺入的铅通过适度提高 MVB 的程度,防止在高温下过渡到稳定的六方相。与稳定相相比,阶跃斜方相的稳定产生了优化的带隙、锐化的价带边缘和刺激性的带收敛。这导致载流子浓度降低,载流子迁移率提高,状态密度有效质量增强,最终实现了卓越的功率因数。此外,晶格的热传导性也因晶格明显的非谐波性、低声速以及多缺陷诱发的强声子散射而受到抑制。因此,(Ge0.98Pb0.02Se)0.875(AgInTe2)0.125 在 773 K 时的最大 zT 值为 1.0,从而在 500 K 的温差下实现了 4.90% 的最大能量转换效率。
{"title":"Manipulation of metavalent bonding to stabilize metastable phase: A strategy for enhancing zT in GeSe","authors":"Yilun Huang,&nbsp;Tu Lyu,&nbsp;Manting Zeng,&nbsp;Moran Wang,&nbsp;Yuan Yu,&nbsp;Chaohua Zhang,&nbsp;Fusheng Liu,&nbsp;Min Hong,&nbsp;Lipeng Hu","doi":"10.1002/idm2.12170","DOIUrl":"10.1002/idm2.12170","url":null,"abstract":"<p>Exploration of metastable phases holds profound implications for functional materials. Herein, we engineer the metastable phase to enhance the thermoelectric performance of germanium selenide (GeSe) through tailoring the chemical bonding mechanism. Initially, AgInTe<sub>2</sub> alloying fosters a transition from stable orthorhombic to metastable rhombohedral phase in GeSe by substantially promoting <i>p</i>-state electron bonding to form metavalent bonding (MVB). Besides, extra Pb is employed to prevent a transition into a stable hexagonal phase at elevated temperatures by moderately enhancing the degree of MVB. The stabilization of the metastable rhombohedral phase generates an optimized bandgap, sharpened valence band edge, and stimulative band convergence compared to stable phases. This leads to decent carrier concentration, improved carrier mobility, and enhanced density-of-state effective mass, culminating in a superior power factor. Moreover, lattice thermal conductivity is suppressed by pronounced lattice anharmonicity, low sound velocity, and strong phonon scattering induced by multiple defects. Consequently, a maximum <i>zT</i> of 1.0 at 773 K is achieved in (Ge<sub>0.98</sub>Pb<sub>0.02</sub>Se)<sub>0.875</sub>(AgInTe<sub>2</sub>)<sub>0.125</sub>, resulting in a maximum energy conversion efficiency of 4.90% under the temperature difference of 500 K. This work underscores the significance of regulating MVB to stabilize metastable phases in chalcogenides.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 4","pages":"607-620"},"PeriodicalIF":24.5,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12170","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140663028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stable sodium metal anode enabled by interfacial room-temperature liquid metal engineering for high-performance sodium–sulfur batteries with carbonate-based electrolyte 通过界面室温液态金属工程实现稳定的金属钠阳极,用于使用碳酸盐基电解质的高性能钠硫电池
Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-04-22 DOI: 10.1002/idm2.12163
Kangdong Tian, Chuanliang Wei, Zhengran Wang, Yuan Li, Baojuan Xi, Shenglin Xiong, Jinkui Feng

Sodium (Na) metal is a competitive anode for next-generation energy storage applications in view of its low cost and high-energy density. However, the uncontrolled side reactions, unstable solid electrolyte interphase (SEI) and dendrite growth at the electrode/electrolyte interfaces impede the practical application of Na metal as anode. Herein, a heterogeneous Na-based alloys interfacial protective layer is constructed in situ on the surface of Na foil by self-diffusion of liquid metal at room temperature, named “HAIP Na.” The interfacial Na-based alloys layer with good electrolyte wettability and strong sodiophilicity, and assisted in the construction of NaF-rich SEI. By means of direct visualization and theoretical simulation, we verify that the interfacial Na-based alloys layer enabling uniform Na+ flux deposition and suppressing the dendrite growth. As a result, in the carbonate-based electrolyte, the HAIP Na||HAIP Na symmetric cells exhibit a remarkably enhanced cycling life for more than 650 h with a capacity of 1 mAh cm−2 at a current density of 1 mA cm−2. When the HAIP Na anode is paired with sulfurized polyacrylonitrile (SPAN) cathode, the SPAN||HAIP Na full cells demonstrate excellent rate performance and cycling stability.

金属钠(Na)成本低、能量密度高,是下一代储能应用中极具竞争力的阳极。然而,不可控的副反应、不稳定的固体电解质相(SEI)以及电极/电解质界面上的枝晶生长阻碍了金属钠作为阳极的实际应用。在此,通过液态金属在室温下的自扩散,在 Na 箔表面原位构建了异质 Na 基合金界面保护层,命名为 "HAIP Na"。该界面Na基合金层具有良好的电解质润湿性和较强的亲钠性,有助于构建富含NaF的SEI。通过直接观察和理论模拟,我们验证了界面 Na 基合金层能使 Na+ 通量均匀沉积并抑制枝晶生长。因此,在碳酸盐基电解质中,HAIP Na||HAIP Na 对称电池的循环寿命显著提高,在电流密度为 1 mA cm-2 时,电池容量为 1 mAh cm-2,循环时间超过 650 小时。当 HAIP Na 阳极与硫化聚丙烯腈(SPAN)阴极配对时,SPAN||HAIP Na 全电池表现出卓越的速率性能和循环稳定性。
{"title":"Stable sodium metal anode enabled by interfacial room-temperature liquid metal engineering for high-performance sodium–sulfur batteries with carbonate-based electrolyte","authors":"Kangdong Tian,&nbsp;Chuanliang Wei,&nbsp;Zhengran Wang,&nbsp;Yuan Li,&nbsp;Baojuan Xi,&nbsp;Shenglin Xiong,&nbsp;Jinkui Feng","doi":"10.1002/idm2.12163","DOIUrl":"10.1002/idm2.12163","url":null,"abstract":"<p>Sodium (Na) metal is a competitive anode for next-generation energy storage applications in view of its low cost and high-energy density. However, the uncontrolled side reactions, unstable solid electrolyte interphase (SEI) and dendrite growth at the electrode/electrolyte interfaces impede the practical application of Na metal as anode. Herein, a heterogeneous Na-based alloys interfacial protective layer is constructed in situ on the surface of Na foil by self-diffusion of liquid metal at room temperature, named “HAIP Na.” The interfacial Na-based alloys layer with good electrolyte wettability and strong sodiophilicity, and assisted in the construction of NaF-rich SEI. By means of direct visualization and theoretical simulation, we verify that the interfacial Na-based alloys layer enabling uniform Na<sup>+</sup> flux deposition and suppressing the dendrite growth. As a result, in the carbonate-based electrolyte, the HAIP Na||HAIP Na symmetric cells exhibit a remarkably enhanced cycling life for more than 650 h with a capacity of 1 mAh cm<sup>−2</sup> at a current density of 1 mA cm<sup>−2</sup>. When the HAIP Na anode is paired with sulfurized polyacrylonitrile (SPAN) cathode, the SPAN||HAIP Na full cells demonstrate excellent rate performance and cycling stability.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 3","pages":"425-436"},"PeriodicalIF":0.0,"publicationDate":"2024-04-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12163","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140677109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acid-etching induced metal cation competitive lattice occupancy of perovskite quantum dots for efficient pure-blue QLEDs 酸蚀诱导过氧化物量子点的金属阳离子竞争性晶格占位,实现高效纯蓝 QLED
Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-04-18 DOI: 10.1002/idm2.12164
Hanwen Zhu, Guoqing Tong, Junchun Li, Xuyong Tao, Yang Shen, Yuanyuan Sheng, Lin Shi, Fengming Xie, Jianxin Tang, Yang Jiang

Low efficiency and spectral instability caused by the surface defects have been considerable issues for the mixed-halogen blue emitting perovskite quantum dots light-emitting diodes (PeQLEDs). Here, an in situ surface passivation to perovskite quantum dots (PeQDs) is realized by introducing the metal cations competitive lattice occupancy assisted with acid-etching, in which the long-chain, insulating and weakly bond surface ligands are removed by addition of octanoic acid (OTAC). Meanwhile, the dissolved A-site cations (Na+) compete with the protonated oleyl amine and are subsequently anchored to the surface vacancies. The preadded lead bromide, acting as inorganic ligands, demonstrates strong bonding to the uncoordinated surface ions. The as-synthesized PeQDs show the boosted photoluminescence quantum yield (PLQY) and superior stability with longer lifetime. As a result, the PeQLEDs (470 nm) based on the OTAC-Na PeQDs exhibit an external quantum efficiency of 8.42% in the mixed halogen PeQDs (CsPb(BrxCl1−x)3). Moreover, the device exhibits superior spectra stability with negligible shift. Our competition mechanism in combination with in situ passivation strategy paves a new way for improving the performance of blue PeQLEDs.

由表面缺陷引起的低效率和光谱不稳定性一直是混合卤素蓝色发光的包晶量子点发光二极管(PeQLEDs)面临的重大问题。在这里,通过引入金属阳离子竞争性晶格占位并辅以酸蚀,实现了对包晶量子点(PeQDs)的原位表面钝化,其中通过添加辛酸(OTAC)去除长链、绝缘和弱键表面配体。同时,溶解的 A 位阳离子(Na+)与质子化的油胺竞争,随后被锚定到表面空位上。预添加的溴化铅作为无机配体,与未配位的表面离子结合力很强。合成的 PeQDs 显示出更高的光致发光量子产率(PLQY)和更长的稳定性。因此,基于 OTAC-Na PeQDs 的 PeQLED(470 nm)在混合卤素 PeQDs(CsPb(BrxCl1-x)3)中表现出 8.42% 的外部量子效率。此外,该器件还表现出卓越的光谱稳定性,其偏移可以忽略不计。我们的竞争机制与原位钝化策略相结合,为提高蓝色 PeQLED 的性能铺平了一条新路。
{"title":"Acid-etching induced metal cation competitive lattice occupancy of perovskite quantum dots for efficient pure-blue QLEDs","authors":"Hanwen Zhu,&nbsp;Guoqing Tong,&nbsp;Junchun Li,&nbsp;Xuyong Tao,&nbsp;Yang Shen,&nbsp;Yuanyuan Sheng,&nbsp;Lin Shi,&nbsp;Fengming Xie,&nbsp;Jianxin Tang,&nbsp;Yang Jiang","doi":"10.1002/idm2.12164","DOIUrl":"10.1002/idm2.12164","url":null,"abstract":"<p>Low efficiency and spectral instability caused by the surface defects have been considerable issues for the mixed-halogen blue emitting perovskite quantum dots light-emitting diodes (PeQLEDs). Here, an in situ surface passivation to perovskite quantum dots (PeQDs) is realized by introducing the metal cations competitive lattice occupancy assisted with acid-etching, in which the long-chain, insulating and weakly bond surface ligands are removed by addition of octanoic acid (OTAC). Meanwhile, the dissolved A-site cations (Na<sup>+</sup>) compete with the protonated oleyl amine and are subsequently anchored to the surface vacancies. The preadded lead bromide, acting as inorganic ligands, demonstrates strong bonding to the uncoordinated surface ions. The as-synthesized PeQDs show the boosted photoluminescence quantum yield (PLQY) and superior stability with longer lifetime. As a result, the PeQLEDs (470 nm) based on the OTAC-Na PeQDs exhibit an external quantum efficiency of 8.42% in the mixed halogen PeQDs (CsPb(Br<sub><i>x</i></sub>Cl<sub>1−<i>x</i></sub>)<sub>3</sub>). Moreover, the device exhibits superior spectra stability with negligible shift. Our competition mechanism in combination with in situ passivation strategy paves a new way for improving the performance of blue PeQLEDs.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 3","pages":"437-447"},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12164","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140689391","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailored wrinkles for tunable sensing performance by stereolithography 通过立体光刻技术定制可调传感性能的皱纹
Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-04-18 DOI: 10.1002/idm2.12161
Ruiyi Jiang, Jie Pu, Yuxuan Wang, Jipeng Chen, Gangwen Fu, Xue Chen, Jiayu Yang, Jianghua Shen, Xing Sun, Jun Ding, Xi Xu

Conducting polymer hydrogel can address the challenges of stricken biocompatibility and durability. Nevertheless, conventional conducting polymer hydrogels are often brittle and weak due to the intrinsic quality of the material, which exhibits viscoelasticity. This property may cause a delay in sensor response time due to hysteresis. To overcome these limitations, we have designed a wrinkle morphology three-dimensional (3D) substrate using digital light processing technology and then followed by in situ polymerization to form interpenetrating polymer network hydrogels. This novel design results in a wrinkle morphology conducting polymer hydrogel elastomer with high precision and geometric freedom, as the size of the wrinkles can be controlled by adjusting the treating time. The wrinkle morphology on the conducting polymer hydrogel effectively reduces its viscoelasticity, leading to samples with quick response time, low hysteresis, stable cyclic performance, and remarkable resistance change. Simultaneously, the 3D gradient structure augmented the sensor's sensitivity under minimal stress while exhibiting consistent sensing performance. These properties indicate the potential of the conducting polymer hydrogel as a flexible sensor.

导电聚合物水凝胶可以解决生物兼容性和耐久性方面的难题。然而,由于材料本身具有粘弹性,传统的导电聚合物水凝胶通常比较脆和脆弱。这种特性可能会由于滞后而导致传感器响应时间延迟。为了克服这些局限性,我们利用数字光处理技术设计了一种皱纹形态的三维(3D)基底,然后通过原位聚合形成互穿聚合物网络水凝胶。这种新颖的设计使皱纹形态导电聚合物水凝胶弹性体具有高精度和几何自由度,因为皱纹的大小可以通过调整处理时间来控制。导电聚合物水凝胶上的褶皱形态有效降低了其粘弹性,使样品具有响应时间快、滞后小、循环性能稳定和电阻变化显著等特点。同时,三维梯度结构提高了传感器在最小应力下的灵敏度,并表现出稳定的传感性能。这些特性显示了导电聚合物水凝胶作为柔性传感器的潜力。
{"title":"Tailored wrinkles for tunable sensing performance by stereolithography","authors":"Ruiyi Jiang,&nbsp;Jie Pu,&nbsp;Yuxuan Wang,&nbsp;Jipeng Chen,&nbsp;Gangwen Fu,&nbsp;Xue Chen,&nbsp;Jiayu Yang,&nbsp;Jianghua Shen,&nbsp;Xing Sun,&nbsp;Jun Ding,&nbsp;Xi Xu","doi":"10.1002/idm2.12161","DOIUrl":"10.1002/idm2.12161","url":null,"abstract":"<p>Conducting polymer hydrogel can address the challenges of stricken biocompatibility and durability. Nevertheless, conventional conducting polymer hydrogels are often brittle and weak due to the intrinsic quality of the material, which exhibits viscoelasticity. This property may cause a delay in sensor response time due to hysteresis. To overcome these limitations, we have designed a wrinkle morphology three-dimensional (3D) substrate using digital light processing technology and then followed by in situ polymerization to form interpenetrating polymer network hydrogels. This novel design results in a wrinkle morphology conducting polymer hydrogel elastomer with high precision and geometric freedom, as the size of the wrinkles can be controlled by adjusting the treating time. The wrinkle morphology on the conducting polymer hydrogel effectively reduces its viscoelasticity, leading to samples with quick response time, low hysteresis, stable cyclic performance, and remarkable resistance change. Simultaneously, the 3D gradient structure augmented the sensor's sensitivity under minimal stress while exhibiting consistent sensing performance. These properties indicate the potential of the conducting polymer hydrogel as a flexible sensor.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 3","pages":"414-424"},"PeriodicalIF":0.0,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12161","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140687292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Moiré superlattice effects on interfacial mechanical behavior: A concise review 界面机械行为的摩尔超晶格效应:简明综述
Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-04-14 DOI: 10.1002/idm2.12162
Weidong Yan, Jiangtao Liu, Wengen Ouyang, Ze Liu

The moiré superlattice, arising from the interface of mismatched single crystals, intricately regulates the physical and mechanical properties of materials, giving rise to phenomena such as superconductivity and superlubricity. This study delves into the profound impact of moiré superlattices on the interfacial mechanical behavior of van der Waals (vdW) layered materials, with a particular focus on tribological properties. A comprehensive review of continuum modeling approaches for vdW layered materials is presented, accentuating the incorporation of moiré superlattice effects in theoretical models to unravel their distinctive interfacial frictional behavior and thermodynamic properties. The exploration of moiré superlattices has significantly advanced our fundamental understanding of interface phenomena in vdW layered materials. This progress provides crucial theoretical insights that can inform the design of multifunctional devices based on the unique properties of twisted layered materials.

摩尔纹超格产生于不匹配单晶体的界面,它错综复杂地调节着材料的物理和机械特性,从而产生了超导和超润滑等现象。本研究深入探讨了摩尔超晶格对范德华(vdW)层状材料界面机械行为的深远影响,尤其关注摩擦学特性。报告全面回顾了范德华层状材料的连续建模方法,强调将摩尔纹超格效应纳入理论模型,以揭示其独特的界面摩擦行为和热力学特性。对摩尔纹超格的探索极大地推动了我们对 vdW 层状材料界面现象的基本理解。这一进展提供了重要的理论见解,可为设计基于扭曲层状材料独特性质的多功能设备提供依据。
{"title":"Moiré superlattice effects on interfacial mechanical behavior: A concise review","authors":"Weidong Yan,&nbsp;Jiangtao Liu,&nbsp;Wengen Ouyang,&nbsp;Ze Liu","doi":"10.1002/idm2.12162","DOIUrl":"10.1002/idm2.12162","url":null,"abstract":"<p>The moiré superlattice, arising from the interface of mismatched single crystals, intricately regulates the physical and mechanical properties of materials, giving rise to phenomena such as superconductivity and superlubricity. This study delves into the profound impact of moiré superlattices on the interfacial mechanical behavior of van der Waals (vdW) layered materials, with a particular focus on tribological properties. A comprehensive review of continuum modeling approaches for vdW layered materials is presented, accentuating the incorporation of moiré superlattice effects in theoretical models to unravel their distinctive interfacial frictional behavior and thermodynamic properties. The exploration of moiré superlattices has significantly advanced our fundamental understanding of interface phenomena in vdW layered materials. This progress provides crucial theoretical insights that can inform the design of multifunctional devices based on the unique properties of twisted layered materials.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 3","pages":"343-357"},"PeriodicalIF":0.0,"publicationDate":"2024-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12162","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140706325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unlocking photocatalytic NO removal potential in an S-type UiO-66-NH2/ZnS(en)0.5 heterostructure 挖掘 S 型 UiO-66-NH2/ZnS(en)0.5 异质结构中光催化去除 NO 的潜力
Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-04-06 DOI: 10.1002/idm2.12160
Wenrui Dai, Chenxiang Wang, Yi Wang, Jieting Sun, Hang Ruan, Yuhua Xue, Shuning Xiao

The contamination of nitric oxide presents a significant environmental challenge, necessitating the development of efficient photocatalysts for remediation. Conventional heterojunctions encounter obstacles such as large contact barriers, sluggish charge transport, and compromised redox capacity. Here, we introduce an innovative S-type heterostructure photocatalyst, UiO-66-NH2/ZnS(en)0.5, designed specifically to overcome these challenges. The synthesis, employing a unique microwave solvothermal method, strategically aligns the lowest unoccupied molecular orbital of UiO-66-NH2 with the highest occupied molecular orbital of ZnS(en)0.5, fostering the formation of a stepped heterojunction. The resulting intimate interface contact generates a built-in electric field, facilitating charge separation and migration, as evidenced by time-resolved photoluminescence spectroscopy and photoelectrochemical tests. The abundant active sites in the porous UiO-66-NH2 counterpart provide adsorption and activation sites for nitrogen monoxide (NO) oxidation. Performance evaluation reveals exceptional photocatalytic NO removal, achieving 70% efficiency and 99% selectivity toward nitrates under simulated solar illumination. Evidence from X-ray photoelectron spectroscopy and trapping experiments supports the effectiveness of the S-type heterostructure, showcasing refined reactive oxygen species, particularly superoxide. Thus, this study introduces a new perspective on advanced NO oxidation and unlocks the potential of S-scheme heterojunctions to refine reactive oxygen species for NO remediation.

一氧化氮污染是一项重大的环境挑战,因此需要开发高效的光催化剂来进行修复。传统的异质结会遇到各种障碍,如接触障碍大、电荷传输迟缓以及氧化还原能力受损。在这里,我们介绍一种创新的 S 型异质结构光催化剂 UiO-66-NH2/ZnS(en)0.5,它是专为克服这些挑战而设计的。这种催化剂采用独特的微波溶热法合成,将 UiO-66-NH2 的最低未占位分子轨道与 ZnS(en)0.5 的最高占位分子轨道进行了策略性排列,促进了阶梯异质结的形成。时间分辨光致发光光谱和光电化学测试证明,由此产生的亲密界面接触会产生内置电场,促进电荷分离和迁移。多孔 UiO-66-NH2 中丰富的活性位点为一氧化氮(NO)氧化提供了吸附和活化位点。性能评估结果表明,在模拟太阳光照射下,光催化去除一氧化氮的效率达到 70%,对硝酸盐的选择性达到 99%。来自 X 射线光电子能谱和捕集实验的证据支持了 S 型异质结构的有效性,展示了精制的活性氧物种,尤其是超氧化物。因此,这项研究为氮氧化物的高级氧化引入了一个新的视角,并释放了 S 型异质结在提纯活性氧物种以修复氮氧化物方面的潜力。
{"title":"Unlocking photocatalytic NO removal potential in an S-type UiO-66-NH2/ZnS(en)0.5 heterostructure","authors":"Wenrui Dai,&nbsp;Chenxiang Wang,&nbsp;Yi Wang,&nbsp;Jieting Sun,&nbsp;Hang Ruan,&nbsp;Yuhua Xue,&nbsp;Shuning Xiao","doi":"10.1002/idm2.12160","DOIUrl":"10.1002/idm2.12160","url":null,"abstract":"<p>The contamination of nitric oxide presents a significant environmental challenge, necessitating the development of efficient photocatalysts for remediation. Conventional heterojunctions encounter obstacles such as large contact barriers, sluggish charge transport, and compromised redox capacity. Here, we introduce an innovative S-type heterostructure photocatalyst, UiO-66-NH<sub>2</sub>/ZnS(en)<sub>0.5</sub>, designed specifically to overcome these challenges. The synthesis, employing a unique microwave solvothermal method, strategically aligns the lowest unoccupied molecular orbital of UiO-66-NH<sub>2</sub> with the highest occupied molecular orbital of ZnS(en)<sub>0.5</sub>, fostering the formation of a stepped heterojunction. The resulting intimate interface contact generates a built-in electric field, facilitating charge separation and migration, as evidenced by time-resolved photoluminescence spectroscopy and photoelectrochemical tests. The abundant active sites in the porous UiO-66-NH<sub>2</sub> counterpart provide adsorption and activation sites for nitrogen monoxide (NO) oxidation. Performance evaluation reveals exceptional photocatalytic NO removal, achieving 70% efficiency and 99% selectivity toward nitrates under simulated solar illumination. Evidence from X-ray photoelectron spectroscopy and trapping experiments supports the effectiveness of the S-type heterostructure, showcasing refined reactive oxygen species, particularly superoxide. Thus, this study introduces a new perspective on advanced NO oxidation and unlocks the potential of S-scheme heterojunctions to refine reactive oxygen species for NO remediation.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 3","pages":"400-413"},"PeriodicalIF":0.0,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12160","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140735100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inside Front Cover: Volume 3 Issue 2 封面内页:第 3 卷第 2 期
Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-03-28 DOI: 10.1002/idm2.12166

Inside Front Cover: In the work of doi:10.1002/idm2.12153, the affinity between Li and hosting substrates is regulated by homogeneously loading indium (In) single atoms on N-doped graphene. It is found that similar to “volcano curves” in heterogeneous catalysis, the affinity of substrates toward Li should be optimized to a moderate value in order to reach balance for Li plating and Li stripping processes.

封面内页:在 doi:10.1002/idm2.12153 的研究中,通过在掺杂 N 的石墨烯上均匀负载铟(In)单原子,调节了锂与寄存基底之间的亲和力。研究发现,与异相催化中的 "火山曲线 "类似,基底对锂的亲和力应优化至适中值,以达到锂电镀和锂剥离过程的平衡。
{"title":"Inside Front Cover: Volume 3 Issue 2","authors":"","doi":"10.1002/idm2.12166","DOIUrl":"https://doi.org/10.1002/idm2.12166","url":null,"abstract":"<p><b>Inside Front Cover</b>: In the work of doi:10.1002/idm2.12153, the affinity between Li and hosting substrates is regulated by homogeneously loading indium (In) single atoms on N-doped graphene. It is found that similar to “volcano curves” in heterogeneous catalysis, the affinity of substrates toward Li should be optimized to a moderate value in order to reach balance for Li plating and Li stripping processes.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 2","pages":"ii"},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12166","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140310352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inside Back Cover: Volume 3 Issue 2 封底内页第 3 卷第 2 期
Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-03-28 DOI: 10.1002/idm2.12167

Inside Back Cover: The transformation of a rock into a snail by the addition of a small crawling insect serves as a compelling metaphor for how the integration of functional materials can endow an organism with new, targeted functionalities. In the cover of doi:10.1002/idm2.12144, the diverse functional materials exemplified by the snail illustrate the profound impact of such enhancements.

封底内页加入一只小爬虫后,一块石头变成了一只蜗牛,这是一个令人信服的比喻,说明了功能材料的整合如何赋予生物体新的、有针对性的功能。在 doi:10.1002/idm2.12144 的封面中,蜗牛所体现的多种功能材料说明了这种增强的深远影响。
{"title":"Inside Back Cover: Volume 3 Issue 2","authors":"","doi":"10.1002/idm2.12167","DOIUrl":"https://doi.org/10.1002/idm2.12167","url":null,"abstract":"<p><b>Inside Back Cover</b>: The transformation of a rock into a snail by the addition of a small crawling insect serves as a compelling metaphor for how the integration of functional materials can endow an organism with new, targeted functionalities. In the cover of doi:10.1002/idm2.12144, the diverse functional materials exemplified by the snail illustrate the profound impact of such enhancements.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 2","pages":"iii"},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12167","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140310353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Outside Back Cover: Volume 3 Issue 2 封底外页:第 3 卷第 2 期
Q1 CHEMISTRY, PHYSICAL Pub Date : 2024-03-28 DOI: 10.1002/idm2.12168

Outside Back Cover: The cycling stability of lithium sulfur batteries is severely affected by the uneven deposition of lithium ions and the shuttle of polysulfides. Due to the different diameters of polysulfides and lithium ions, MOFs with appropriate pore sizes can achieve selective transport of different ions. In the work of doi:10.1002/idm2.12143, Zhou et al. report an ultra-thin and crack-free ZIF-8 film modification layer using ALD technology, achieving homogeneous lithium ion deposition and effective inhibition of polysulfides. Just like the net in the picture, it can catch large fish and release small ones.

封底外页:锂离子的不均匀沉积和多硫化物的穿梭严重影响了锂硫电池的循环稳定性。由于多硫化物和锂离子的直径不同,具有适当孔径的 MOFs 可以实现不同离子的选择性传输。在 doi:10.1002/idm2.12143 一文中,Zhou 等人报道了利用 ALD 技术制备出超薄无裂纹的 ZIF-8 薄膜改性层,实现了锂离子的均匀沉积和对多硫化物的有效抑制。就像图中的网,能捕大鱼,也能放小鱼。
{"title":"Outside Back Cover: Volume 3 Issue 2","authors":"","doi":"10.1002/idm2.12168","DOIUrl":"https://doi.org/10.1002/idm2.12168","url":null,"abstract":"<p><b>Outside Back Cover</b>: The cycling stability of lithium sulfur batteries is severely affected by the uneven deposition of lithium ions and the shuttle of polysulfides. Due to the different diameters of polysulfides and lithium ions, MOFs with appropriate pore sizes can achieve selective transport of different ions. In the work of doi:10.1002/idm2.12143, Zhou et al. report an ultra-thin and crack-free ZIF-8 film modification layer using ALD technology, achieving homogeneous lithium ion deposition and effective inhibition of polysulfides. Just like the net in the picture, it can catch large fish and release small ones.\u0000\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure>\u0000 </p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"3 2","pages":"iv"},"PeriodicalIF":0.0,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12168","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140310270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Interdisciplinary Materials
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1