Xuzhi Duan, Jinran Sun, Liang Shi, Shanmu Dong, Guanglei Cui
Anode-free lithium metal batteries (AFLMBs), also known as lithium metal batteries (LMBs) with zero excess lithium, have garnered significant attention due to their substantially higher energy density compared to conventional lithium metal anodes, improved safety characteristics, and lower production costs. However, the current cycling stability of AFLMBs faces formidable challenges primarily caused by significant lithium loss associated with the deposition of lithium metal. Therefore, this review focuses on the crucial aspects of lithium metal nucleation and growth on the anode side. Respectively, aiming to provide an in-depth understanding of the deposition mechanisms, comprehensively summarize the corresponding scientific influencing factors, and analyze specific strategies for addressing these issues through the integration of relevant exemplary cases. Importantly, this review endeavors to offer a profound explication of the scientific essence and intricate mechanisms that underlie the diverse modification strategies. This review possesses the inherent capacity to greatly facilitate the progress and enlightenment of research in this field, offering a valuable resource for the researchers.
{"title":"Exploring the Active Lithium Loss in Anode-Free Lithium Metal Batteries: Mechanisms, Challenges, and Strategies","authors":"Xuzhi Duan, Jinran Sun, Liang Shi, Shanmu Dong, Guanglei Cui","doi":"10.1002/idm2.12232","DOIUrl":"https://doi.org/10.1002/idm2.12232","url":null,"abstract":"<p>Anode-free lithium metal batteries (AFLMBs), also known as lithium metal batteries (LMBs) with zero excess lithium, have garnered significant attention due to their substantially higher energy density compared to conventional lithium metal anodes, improved safety characteristics, and lower production costs. However, the current cycling stability of AFLMBs faces formidable challenges primarily caused by significant lithium loss associated with the deposition of lithium metal. Therefore, this review focuses on the crucial aspects of lithium metal nucleation and growth on the anode side. Respectively, aiming to provide an in-depth understanding of the deposition mechanisms, comprehensively summarize the corresponding scientific influencing factors, and analyze specific strategies for addressing these issues through the integration of relevant exemplary cases. Importantly, this review endeavors to offer a profound explication of the scientific essence and intricate mechanisms that underlie the diverse modification strategies. This review possesses the inherent capacity to greatly facilitate the progress and enlightenment of research in this field, offering a valuable resource for the researchers.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 2","pages":"217-234"},"PeriodicalIF":24.5,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12232","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143707653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Humanoid robots have garnered substantial attention recently in both academia and industry. These robots are becoming increasingly sophisticated and intelligent, as seen in health care, education, customer service, logistics, security, space exploration, and so forth. Central to these technological advancements is tactile perception, a crucial modality through which humanoid robots exchange information with their external environment, thereby facilitating human-like behaviors such as object recognition and dexterous manipulation. Texture perception is particularly vital for these tasks, as the surface morphology of objects significantly influences recognition and manipulation abilities. This review addresses the recent progress in tactile sensing and machine learning for texture perception in humanoid robots. We first examine the design and working principles of tactile sensors employed in texture perception, differentiating between touch-based and sliding-based approaches. Subsequently, we delve into the machine learning algorithms implemented for texture perception using these tactile sensors. Finally, we discuss the challenges and future opportunities in this evolving field. This review aims to provide insights into the state-of-the-art developments and foster advancements in tactile sensing and machine learning for texture perception in humanoid robotics.
{"title":"Recent Progress in Tactile Sensing and Machine Learning for Texture Perception in Humanoid Robotics","authors":"Longteng Yu, Dabiao Liu","doi":"10.1002/idm2.12233","DOIUrl":"https://doi.org/10.1002/idm2.12233","url":null,"abstract":"<p>Humanoid robots have garnered substantial attention recently in both academia and industry. These robots are becoming increasingly sophisticated and intelligent, as seen in health care, education, customer service, logistics, security, space exploration, and so forth. Central to these technological advancements is tactile perception, a crucial modality through which humanoid robots exchange information with their external environment, thereby facilitating human-like behaviors such as object recognition and dexterous manipulation. Texture perception is particularly vital for these tasks, as the surface morphology of objects significantly influences recognition and manipulation abilities. This review addresses the recent progress in tactile sensing and machine learning for texture perception in humanoid robots. We first examine the design and working principles of tactile sensors employed in texture perception, differentiating between touch-based and sliding-based approaches. Subsequently, we delve into the machine learning algorithms implemented for texture perception using these tactile sensors. Finally, we discuss the challenges and future opportunities in this evolving field. This review aims to provide insights into the state-of-the-art developments and foster advancements in tactile sensing and machine learning for texture perception in humanoid robotics.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 2","pages":"235-248"},"PeriodicalIF":24.5,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12233","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143707654","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Min Zhou, Jinghui Guo, Ruihu Lu, Jiantao Li, Sungsik Lee, Chunhua Han, Xiaobin Liao, Ping Luo, Yan Zhao, Zhaoyang Wang
Efficient and cost-effective catalysts for oxygen reduction reaction (ORR) are crucial for the commercialization of metal-air batteries. In this study, we utilized theoretical calculations to guide the material synthesis strategy for preparing catalysts. Using density functional theory (DFT) calculations, we systematically explored the ORR performance of metal metaphosphates (A-M(PO3)2, B-M(PO3)2, M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) with both amorphous and crystalline structures. Amorphous A-Mn(PO3)2 showed optimal adsorption energy and the lowest ORR overpotential of 0.32 eV. Phytic acid was employed as a phosphorus source, and the chelating structure of phytic acid molecules and metal ions was broken through the “metal ion pre-adsorption and spatial confinement strategy” of carbon materials with electron-rich centers. Following high-temperature calcination, we successfully prepared a series of amorphous metal metaphosphate composite catalysts for the first time. In 0.1 M KOH electrolyte, both amorphous Mn(PO3)2-C/C3N4/CQDs (carbon quantum dots) and Mn(PO3)2-C/C3N4/CNTs (carbon nanotubes) exhibited excellent ORR catalytic activity, with half-wave potentials of 0.85 V and 0.80 V, respectively. A linear correlation between theoretical overpotentials and experimental half-wave potentials was discovered through comparison. This work could open a new avenue to the discovery of highly efficient non-precious metal-based catalysts with amorphous structures.
高效、经济的氧还原反应催化剂对金属-空气电池的商业化至关重要。在本研究中,我们利用理论计算来指导制备催化剂的材料合成策略。利用密度泛函理论(DFT)计算,我们系统地探索了具有非晶和晶体结构的金属偏磷酸盐(A-M(PO3)2, B-M(PO3)2, M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu和Zn)的ORR性能。非晶A-Mn(PO3)2表现出最佳的吸附能,ORR过电位最低为0.32 eV。以植酸为磷源,通过富电子中心碳材料的“金属离子预吸附和空间约束策略”,突破植酸分子与金属离子的螯合结构。通过高温煅烧,首次成功制备了一系列非晶金属偏磷酸盐复合催化剂。在0.1 M KOH电解液中,Mn(PO3)2-C/C3N4/CQDs(碳量子点)和Mn(PO3)2-C/C3N4/CNTs(碳纳米管)均表现出优异的ORR催化活性,半波电位分别为0.85 V和0.80 V。通过比较,发现理论过电位与实验半波电位呈线性相关。这项工作为发现具有非晶结构的高效非贵金属基催化剂开辟了新的途径。
{"title":"Amorphous Metal Metaphosphate for Oxygen Reduction","authors":"Min Zhou, Jinghui Guo, Ruihu Lu, Jiantao Li, Sungsik Lee, Chunhua Han, Xiaobin Liao, Ping Luo, Yan Zhao, Zhaoyang Wang","doi":"10.1002/idm2.12228","DOIUrl":"https://doi.org/10.1002/idm2.12228","url":null,"abstract":"<p>Efficient and cost-effective catalysts for oxygen reduction reaction (ORR) are crucial for the commercialization of metal-air batteries. In this study, we utilized theoretical calculations to guide the material synthesis strategy for preparing catalysts. Using density functional theory (DFT) calculations, we systematically explored the ORR performance of metal metaphosphates (A-M(PO<sub>3</sub>)<sub>2</sub>, B-M(PO<sub>3</sub>)<sub>2</sub>, M = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, and Zn) with both amorphous and crystalline structures. Amorphous A-Mn(PO<sub>3</sub>)<sub>2</sub> showed optimal adsorption energy and the lowest ORR overpotential of 0.32 eV. Phytic acid was employed as a phosphorus source, and the chelating structure of phytic acid molecules and metal ions was broken through the “metal ion pre-adsorption and spatial confinement strategy” of carbon materials with electron-rich centers. Following high-temperature calcination, we successfully prepared a series of amorphous metal metaphosphate composite catalysts for the first time. In 0.1 M KOH electrolyte, both amorphous Mn(PO<sub>3</sub>)<sub>2</sub>-C/C<sub>3</sub>N<sub>4</sub>/CQDs (carbon quantum dots) and Mn(PO<sub>3</sub>)<sub>2</sub>-C/C<sub>3</sub>N<sub>4</sub>/CNTs (carbon nanotubes) exhibited excellent ORR catalytic activity, with half-wave potentials of 0.85 V and 0.80 V, respectively. A linear correlation between theoretical overpotentials and experimental half-wave potentials was discovered through comparison. This work could open a new avenue to the discovery of highly efficient non-precious metal-based catalysts with amorphous structures.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 2","pages":"309-320"},"PeriodicalIF":24.5,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12228","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143707657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bioinspired energy-autonomous interactive electronics are prevalent. However, self-powered artificial skins are often challenging to be combined with excellent mechanical properties, optical transparency, autonomous attachability, and biocompatibility. Herein, a robust ecological polyionic skin (polyionic eco-skin) based on triboelectric mechanism consisting of ethyl cellulose/waterborne polyurethane/Cu nanoparticles (EWC) green electroactive sensitive material and polyethylene oxide/waterborne polyurethane/phytic acid (PWP) polyionic current collector is proposed. The polyionic eco-skin features sufficient stretchability (90%) and low Young's modulus (0.8 MPa) close to that of human soft tissue, high transparency (> 84% of transmission) in the visible light range, and broad static/dynamic adhesiveness, which endows it with strong adaptive implementation capacity in flexible curved electronics. More importantly, the self-powered polyionic eco-skin exhibits enhanced force-electric conversion performance by coordinating the effect of nanoparticle-polymer interfacial polarization and porous structure of sensitive material. Integrating multiple characteristics enables the polyionic eco-skin to effectively convert biomechanical energy into electrical energy, supporting self-powered functionality for itself and related circuits. Moreover, the eco-skin can be utilized to construct an interactive system and realize the remote noncontact manipulation of targets. The polyionic eco-skin holds tremendous application potential in self-powered security systems, human–machine interaction interfaces, and bionic robots, which is expected to inject new vitality into a human–cyber–physical intelligence integration.
{"title":"A Stretchable, Attachable, and Transparent Polyionic Ecological Skin for Robust Self-Powered Interactive Sensing","authors":"Zhiqing Bai, Yunlong Xu, Yuan Fan, Qichong Zhang","doi":"10.1002/idm2.12229","DOIUrl":"https://doi.org/10.1002/idm2.12229","url":null,"abstract":"<p>Bioinspired energy-autonomous interactive electronics are prevalent. However, self-powered artificial skins are often challenging to be combined with excellent mechanical properties, optical transparency, autonomous attachability, and biocompatibility. Herein, a robust ecological polyionic skin (polyionic eco-skin) based on triboelectric mechanism consisting of ethyl cellulose/waterborne polyurethane/Cu nanoparticles (EWC) green electroactive sensitive material and polyethylene oxide/waterborne polyurethane/phytic acid (PWP) polyionic current collector is proposed. The polyionic eco-skin features sufficient stretchability (90%) and low Young's modulus (0.8 MPa) close to that of human soft tissue, high transparency (> 84% of transmission) in the visible light range, and broad static/dynamic adhesiveness, which endows it with strong adaptive implementation capacity in flexible curved electronics. More importantly, the self-powered polyionic eco-skin exhibits enhanced force-electric conversion performance by coordinating the effect of nanoparticle-polymer interfacial polarization and porous structure of sensitive material. Integrating multiple characteristics enables the polyionic eco-skin to effectively convert biomechanical energy into electrical energy, supporting self-powered functionality for itself and related circuits. Moreover, the eco-skin can be utilized to construct an interactive system and realize the remote noncontact manipulation of targets. The polyionic eco-skin holds tremendous application potential in self-powered security systems, human–machine interaction interfaces, and bionic robots, which is expected to inject new vitality into a human–cyber–physical intelligence integration.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 2","pages":"321-332"},"PeriodicalIF":24.5,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12229","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143707649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Direct hydrazine-hydrogen peroxide fuel cells (DHzHPFCs) offer unique advantages for air-independent applications, but their commercialization is impeded by the lack of high-performance and low-cost catalysts. This study reports a novel dual-site Co-Zn catalyst designed to enhance the hydrazine oxidation reaction (HzOR) activity. Density functional theory calculations suggested that incorporating Zn into Co catalysts can weaken the binding strength of the crucial N2H3* intermediate, which limits the rate-determining N2H3* desorption step. The synthesized p-Co9Zn1 catalyst exhibited a remarkably low reaction potential of −0.15 V versus RHE at 10 mA cm−2, outperforming monometallic Co catalysts. Experimental and computational analyses revealed dual active sites at the Co/ZnO interface, which facilitate N2H3* desorption and subsequent N2H2* formation. A liquid N2H4-H2O2 fuel cell with p-Co9Zn1 catalyst achieved a high open circuit voltage of 1.916 V and a maximum power density of 195 mW cm−2, demonstrating the potential application of the dual-site Co-Zn catalyst. This rational design strategy of tuning the N2H3* binding energy through bimetallic interactions provides a pathway for developing efficient and economical non-precious metal electrocatalysts for DHzHPFCs.
直接肼-过氧化氢燃料电池(dhzhpfc)为不依赖空气的应用提供了独特的优势,但由于缺乏高性能和低成本的催化剂,其商业化受到阻碍。本研究报道了一种新型的双位点Co-Zn催化剂,旨在提高肼氧化反应(HzOR)的活性。密度泛函理论计算表明,在Co催化剂中加入Zn会削弱关键的N2H3*中间体的结合强度,从而限制了决定速率的N2H3*解吸步骤。合成的p-Co9Zn1催化剂在10 mA cm−2下的反应电位为- 0.15 V,优于单金属Co催化剂。实验和计算分析表明,Co/ZnO界面存在双活性位点,有利于N2H3*的解吸和N2H2*的生成。采用p-Co9Zn1催化剂制备的n2h2 - h2o2液体燃料电池,获得了1.916 V的高开路电压和195 mW cm−2的最大功率密度,证明了Co-Zn催化剂的潜在应用前景。这种通过双金属相互作用调节N2H3*结合能的合理设计策略,为开发高效、经济的dhzhpfc非贵金属电催化剂提供了途径。
{"title":"Optimizing Hydrazine Activation on Dual-Site Co-Zn Catalysts for Direct Hydrazine-Hydrogen Peroxide Fuel Cells","authors":"Qian Liu, Junwei Han, Yue Yang, Zerui Chen, Hao Bin Wu","doi":"10.1002/idm2.12227","DOIUrl":"https://doi.org/10.1002/idm2.12227","url":null,"abstract":"<p>Direct hydrazine-hydrogen peroxide fuel cells (DHzHPFCs) offer unique advantages for air-independent applications, but their commercialization is impeded by the lack of high-performance and low-cost catalysts. This study reports a novel dual-site Co-Zn catalyst designed to enhance the hydrazine oxidation reaction (HzOR) activity. Density functional theory calculations suggested that incorporating Zn into Co catalysts can weaken the binding strength of the crucial N<sub>2</sub>H<sub>3</sub>* intermediate, which limits the rate-determining N<sub>2</sub>H<sub>3</sub>* desorption step. The synthesized p-Co<sub>9</sub>Zn<sub>1</sub> catalyst exhibited a remarkably low reaction potential of −0.15 V versus RHE at 10 mA cm<sup>−2</sup>, outperforming monometallic Co catalysts. Experimental and computational analyses revealed dual active sites at the Co/ZnO interface, which facilitate N<sub>2</sub>H<sub>3</sub>* desorption and subsequent N<sub>2</sub>H<sub>2</sub>* formation. A liquid N<sub>2</sub>H<sub>4</sub>-H<sub>2</sub>O<sub>2</sub> fuel cell with p-Co<sub>9</sub>Zn<sub>1</sub> catalyst achieved a high open circuit voltage of 1.916 V and a maximum power density of 195 mW cm<sup>−2</sup>, demonstrating the potential application of the dual-site Co-Zn catalyst. This rational design strategy of tuning the N<sub>2</sub>H<sub>3</sub>* binding energy through bimetallic interactions provides a pathway for developing efficient and economical non-precious metal electrocatalysts for DHzHPFCs.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 2","pages":"300-308"},"PeriodicalIF":24.5,"publicationDate":"2024-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.12227","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143707663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Outside Back Cover: The review of doi:10.1002/idm2.12202 summarizes recent advancements in interface engineering for solid-state lithium metal batteries. As illustrated in the image, an interface layer is between lithium metal and solid-states electrolyte, which should not only play as buffer layer to void the intrinsic solid-solid contact but also severe as fast lithium pathway to uniform lithium deposition. Moreover, future viable interfacial layers should demonstrate exceptional chemical and electrochemical stability, high lithium ion conductivity, and soft yet intimate contact with both lithium and the electrolyte.