首页 > 最新文献

Next Sustainability最新文献

英文 中文
Green synthesized TiO2 nanoparticles as a stimulator for aquaculture growth of Oryza sativa L. 绿色合成的 TiO2 纳米粒子作为水产养殖中蚕豆生长的刺激剂
Pub Date : 2024-09-09 DOI: 10.1016/j.nxsust.2024.100073

Depleting agricultural land and water resources with growing human civilization demands an alternative way for faster and more sustainable crop production techniques to meet the current requirements. Recently, nanotechnology-aided hydroponic agriculture (aquaculture) systems have brought remarkable attention. In this context, the present investigation focuses on applying green synthesized TiO2 nanoparticles in soil-free aquaculture systems to stimulate the germination and growth of Oryza sativa L. TiO2 nanoparticles are synthesized using Dillenia indica fruit extract and characterized using various spectroscopic and microscopic techniques. X-ray diffraction pattern (XRD) confirms the anatase phase of the synthesized TiO2 nanoparticles with an average crystallite size of 6.34 nm. Field emission scanning electron microscopy (FESEM) images exhibit spherical morphology, and high-resolution transmission electron microscopy (HRTEM) analysis indicates the most nanoparticles of sizes below 10 nm. The BET surface analysis indicates the mesoporous nature of synthesized nanoparticles, and their pore sizes are distributed between 1 and 10 nm as confirmed by BJH analysis, which is very similar to the result obtained from HRTEM images. Green synthesized TiO2 nanoparticles in Hoagland nutrient solution enhance germination and growth of Oryza sativa L. via soil-free aquaculture relative to previously commercially produced TiO2 nanoparticles and other metal oxide nanoparticles. Among different concentrations of synthesized TiO2 nanoparticles, a particular concentration (10 mg/L) in the nutrient solution efficiently stimulates germination and growth for Oryza sativa L., relative to the control system. TiO2 nanoparticles with a higher specific surface area adsorb nutrients and facilitate nutrient translocation with improved water uptake inside plants, thus stimulating plant growth and increasing fresh and dry biomass.

随着人类文明的不断发展,农业用地和水资源日益枯竭,这就需要另辟蹊径,采用更快、更可持续的作物生产技术来满足当前的需求。最近,纳米技术辅助水耕农业(水产养殖)系统引起了广泛关注。在此背景下,本研究的重点是在无土栽培系统中应用绿色合成的 TiO2 纳米粒子,以刺激 Oryza sativa L 的发芽和生长。X 射线衍射图(XRD)证实合成的 TiO2 纳米粒子为锐钛矿相,平均结晶尺寸为 6.34 nm。场发射扫描电子显微镜(FESEM)图像显示出球形形态,高分辨率透射电子显微镜(HRTEM)分析表明大多数纳米颗粒的尺寸低于 10 纳米。BET 表面分析表明合成纳米粒子具有介孔性质,BJH 分析证实其孔径分布在 1 至 10 nm 之间,这与 HRTEM 图像得到的结果非常相似。在 Hoagland 营养液中绿色合成的 TiO2 纳米粒子与之前商业化生产的 TiO2 纳米粒子和其他金属氧化物纳米粒子相比,可通过无土栽培提高水稻的发芽率和生长率。在不同浓度的合成 TiO2 纳米粒子中,与对照系统相比,营养液中的特定浓度(10 毫克/升)可有效刺激 Oryza sativa L. 的发芽和生长。具有较高比表面积的 TiO2 纳米粒子能吸附养分,促进养分转移,改善植物内部的水分吸收,从而刺激植物生长,增加新鲜生物量和干生物量。
{"title":"Green synthesized TiO2 nanoparticles as a stimulator for aquaculture growth of Oryza sativa L.","authors":"","doi":"10.1016/j.nxsust.2024.100073","DOIUrl":"10.1016/j.nxsust.2024.100073","url":null,"abstract":"<div><p>Depleting agricultural land and water resources with growing human civilization demands an alternative way for faster and more sustainable crop production techniques to meet the current requirements. Recently, nanotechnology-aided hydroponic agriculture (aquaculture) systems have brought remarkable attention. In this context, the present investigation focuses on applying green synthesized TiO<sub>2</sub> nanoparticles in soil-free aquaculture systems to stimulate the germination and growth of <em>Oryza sativa</em> L. TiO<sub>2</sub> nanoparticles are synthesized using <em>Dillenia indica</em> fruit extract and characterized using various spectroscopic and microscopic techniques. X-ray diffraction pattern (XRD) confirms the anatase phase of the synthesized TiO<sub>2</sub> nanoparticles with an average crystallite size of 6.34 nm. Field emission scanning electron microscopy (FESEM) images exhibit spherical morphology, and high-resolution transmission electron microscopy (HRTEM) analysis indicates the most nanoparticles of sizes below 10 nm. The BET surface analysis indicates the mesoporous nature of synthesized nanoparticles, and their pore sizes are distributed between 1 and 10 nm as confirmed by BJH analysis, which is very similar to the result obtained from HRTEM images. Green synthesized TiO<sub>2</sub> nanoparticles in Hoagland nutrient solution enhance germination and growth of <em>Oryza sativa</em> L. via soil-free aquaculture relative to previously commercially produced TiO<sub>2</sub> nanoparticles and other metal oxide nanoparticles. Among different concentrations of synthesized TiO<sub>2</sub> nanoparticles, a particular concentration (10 mg/L) in the nutrient solution efficiently stimulates germination and growth for <em>Oryza sativa</em> L., relative to the control system. TiO<sub>2</sub> nanoparticles with a higher specific surface area adsorb nutrients and facilitate nutrient translocation with improved water uptake inside plants, thus stimulating plant growth and increasing fresh and dry biomass.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823624000503/pdfft?md5=7bab199a9b5763600fd5b07e1f334059&pid=1-s2.0-S2949823624000503-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142164402","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Water disinfection via nature-inspired electrochemical flow cells in resource-limited settings 在资源有限的环境中通过自然启发的电化学流动池进行水消毒
Pub Date : 2024-09-04 DOI: 10.1016/j.nxsust.2024.100072

Access to clean drinking water remains a challenge in many developing countries, emphasizing the critical need for affordable, scalable and sustainable water treatment technologies. This study employs an electrochemical flow cell incorporating a 3D-printed biomimetic flow field for efficient in situ electrochlorination, avoiding water recirculation or external chloride dosing. The impact of varied ionic compositions of groundwater on electrochlorination efficiency is examined using synthetic groundwater samples, reflecting diverse hydrogeological conditions within a region in a developing country. Employing a Multilevel Factorial Design (MFD), the study highlights the significant influence of water ionic composition, flow rate, and applied current on free chlorine production. The results affirm the capability of the reactor to generate free chlorine species in a range of 0.32–6.13 mg·L−1. The specific energy consumptions oscillate between 0.49 and 19.67 Wh·mg−1 for chloride concentration in the samples ranging from 24 to 146 mg·L−1. This confirms the potential of the suggested electrochemical cell design for broad use in the studied region, and possibly in similar settings worldwide.

在许多发展中国家,获取清洁饮用水仍然是一项挑战,这就强调了对可负担、可扩展和可持续水处理技术的迫切需要。这项研究采用了一种电化学流动池,其中包含一个三维打印的仿生物流场,用于高效的原位电氯化,避免了水的再循环或外部氯化物投加。利用合成地下水样本研究了地下水不同离子成分对电除氯效率的影响,这些样本反映了一个发展中国家地区内不同的水文地质条件。研究采用了多级因子设计(MFD),强调了水的离子成分、流速和应用电流对游离氯产生的重要影响。研究结果表明,反应器能够生成 0.32-6.13 mg-L-1 范围内的游离氯。当样品中的氯浓度在 24 至 146 mg-L-1 之间时,比能量消耗在 0.49 至 19.67 Wh-mg-1 之间波动。这证实了所建议的电化学电池设计具有在研究地区广泛使用的潜力,也可能在全球类似环境中广泛使用。
{"title":"Water disinfection via nature-inspired electrochemical flow cells in resource-limited settings","authors":"","doi":"10.1016/j.nxsust.2024.100072","DOIUrl":"10.1016/j.nxsust.2024.100072","url":null,"abstract":"<div><p>Access to clean drinking water remains a challenge in many developing countries, emphasizing the critical need for affordable, scalable and sustainable water treatment technologies. This study employs an electrochemical flow cell incorporating a 3D-printed biomimetic flow field for efficient <em>in situ</em> electrochlorination, avoiding water recirculation or external chloride dosing. The impact of varied ionic compositions of groundwater on electrochlorination efficiency is examined using synthetic groundwater samples, reflecting diverse hydrogeological conditions within a region in a developing country. Employing a Multilevel Factorial Design (MFD), the study highlights the significant influence of water ionic composition, flow rate, and applied current on free chlorine production. The results affirm the capability of the reactor to generate free chlorine species in a range of 0.32–6.13 mg·L<sup>−1</sup>. The specific energy consumptions oscillate between 0.49 and 19.67 Wh·mg<sup>−1</sup> for chloride concentration in the samples ranging from 24 to 146 mg·L<sup>−1</sup>. This confirms the potential of the suggested electrochemical cell design for broad use in the studied region, and possibly in similar settings worldwide.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823624000497/pdfft?md5=05ddb71b8796c7e8719b45701266f56d&pid=1-s2.0-S2949823624000497-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142136399","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessing a hybrid wind-solar irrigation system for kiwi orchards in Northern Iran: Feasibility, environmental impact, and economic viability 评估伊朗北部猕猴桃果园的风能-太阳能混合灌溉系统:可行性、环境影响和经济可行性
Pub Date : 2024-09-03 DOI: 10.1016/j.nxsust.2024.100071

In this research, the viability of hybrid wind and solar energy for irrigating kiwi orchards in Guilan province, located in the northern part of Iran is explored. Analysis of wind speed data reveals that wind energy can be utilized for irrigation purposes for more than six months annually. The wind power density, peaking at 467 W/m², supports the feasibility of wind energy for irrigation over ten months each year. Solar irradiance measurements estimate an energy generation of approximately 5.23 kWh/m² from January to July. The average daily temperature, peaking at 29.7°C, suggests optimal conditions for the efficient operation of solar panels. The net water requirement for the kiwi orchard during the irrigation period was calculated based on garden area and other relevant parameters, ensuring accurate irrigation planning. Using the calculated net water requirements and meteorological data, the necessary pumping power was determined, leading to the design of a hybrid wind-solar irrigation system. An environmental impact assessment estimated a significant reduction in CO2 emissions over a 25-year period. Additionally, a life-cycle cost analysis demonstrated that the hybrid irrigation system would incur only 60 % of the total cost of a conventional system over the same period, highlighting its economic feasibility.

本研究探讨了风能和太阳能混合能源用于灌溉伊朗北部吉兰省猕猴桃果园的可行性。对风速数据的分析表明,风能每年可用于灌溉的时间超过六个月。风能密度的峰值为 467 W/m²,证明风能每年可用于灌溉 10 个月以上。太阳辐照度测量估计,1 月至 7 月的发电量约为 5.23 千瓦时/平方米。日平均气温最高达 29.7°C,这表明太阳能电池板能够在最佳条件下高效运行。灌溉期间猕猴桃园的净需水量是根据园地面积和其他相关参数计算得出的,以确保准确的灌溉规划。利用计算出的净需水量和气象数据,确定了必要的抽水功率,从而设计出风能-太阳能混合灌溉系统。环境影响评估估计,在 25 年的时间里,二氧化碳排放量将大幅减少。此外,生命周期成本分析表明,混合灌溉系统在同一时期的总成本仅为传统系统的 60%,突出了其经济可行性。
{"title":"Assessing a hybrid wind-solar irrigation system for kiwi orchards in Northern Iran: Feasibility, environmental impact, and economic viability","authors":"","doi":"10.1016/j.nxsust.2024.100071","DOIUrl":"10.1016/j.nxsust.2024.100071","url":null,"abstract":"<div><p>In this research, the viability of hybrid wind and solar energy for irrigating kiwi orchards in Guilan province, located in the northern part of Iran is explored. Analysis of wind speed data reveals that wind energy can be utilized for irrigation purposes for more than six months annually. The wind power density, peaking at 467 W/m², supports the feasibility of wind energy for irrigation over ten months each year. Solar irradiance measurements estimate an energy generation of approximately 5.23 kWh/m² from January to July. The average daily temperature, peaking at 29.7°C, suggests optimal conditions for the efficient operation of solar panels. The net water requirement for the kiwi orchard during the irrigation period was calculated based on garden area and other relevant parameters, ensuring accurate irrigation planning. Using the calculated net water requirements and meteorological data, the necessary pumping power was determined, leading to the design of a hybrid wind-solar irrigation system. An environmental impact assessment estimated a significant reduction in CO<sub>2</sub> emissions over a 25-year period. Additionally, a life-cycle cost analysis demonstrated that the hybrid irrigation system would incur only 60 % of the total cost of a conventional system over the same period, highlighting its economic feasibility.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823624000485/pdfft?md5=c8e7e96350d23ce7476fc4cd06f3b7c8&pid=1-s2.0-S2949823624000485-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Waste plastic bottles an alternate material for synthesis of metal organic frameworks (MOFs) with potential applications 废塑料瓶是合成具有潜在应用价值的金属有机框架(MOFs)的替代材料
Pub Date : 2024-09-02 DOI: 10.1016/j.nxsust.2024.100068

Polyethylene terephthalate (PET) waste, especially originating from post-consumer bottles, represents a significant environmental hazard owing to its widespread utilization and inadequate biodegradability. Addressing the growing environmental issues associated with plastic waste, the development of sustainable strategies for recycling and utilization is of paramount importance. This study explores the potential of employing waste plastic bottles, specifically PET, as a precursor in the synthesis of Metal-Organic Frameworks (MOFs). The synthesis procedure encompasses the depolymerization of PET to yield terephthalic acid, serving as an organic linker in the formation of MOFs. An analysis of the potential applications of PET-derived MOFs, including catalysis, adsorption, and gas separation, is conducted. The review also highlights prospects and challenges within the field, underscoring the necessity for further refinement, scalability, and commercialization of PET-sourced MOFs. The overarching aim is to foster the advancement of ecologically responsible methods for waste plastic management and the creation of valuable materials through MOF synthesis.

聚对苯二甲酸乙二醇酯(PET)废物,尤其是源自消费后瓶子的废物,由于其广泛使用和生物降解性不足,对环境造成了严重危害。为了解决与塑料废弃物相关的日益严重的环境问题,制定可持续的回收和利用战略至关重要。本研究探讨了利用废弃塑料瓶(特别是 PET)作为前体合成金属有机框架(MOFs)的潜力。合成过程包括对 PET 进行解聚,生成对苯二甲酸,作为形成 MOF 的有机连接体。对 PET 衍生 MOFs 的潜在应用进行了分析,包括催化、吸附和气体分离。综述还强调了该领域的前景和挑战,强调了进一步完善、扩展和商业化 PET 源 MOFs 的必要性。其总体目标是促进采用对生态负责的方法来管理废塑料,并通过 MOF 合成创造有价值的材料。
{"title":"Waste plastic bottles an alternate material for synthesis of metal organic frameworks (MOFs) with potential applications","authors":"","doi":"10.1016/j.nxsust.2024.100068","DOIUrl":"10.1016/j.nxsust.2024.100068","url":null,"abstract":"<div><p>Polyethylene terephthalate (PET) waste, especially originating from post-consumer bottles, represents a significant environmental hazard owing to its widespread utilization and inadequate biodegradability. Addressing the growing environmental issues associated with plastic waste, the development of sustainable strategies for recycling and utilization is of paramount importance. This study explores the potential of employing waste plastic bottles, specifically PET, as a precursor in the synthesis of Metal-Organic Frameworks (MOFs). The synthesis procedure encompasses the depolymerization of PET to yield terephthalic acid, serving as an organic linker in the formation of MOFs. An analysis of the potential applications of PET-derived MOFs, including catalysis, adsorption, and gas separation, is conducted. The review also highlights prospects and challenges within the field, underscoring the necessity for further refinement, scalability, and commercialization of PET-sourced MOFs. The overarching aim is to foster the advancement of ecologically responsible methods for waste plastic management and the creation of valuable materials through MOF synthesis.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S294982362400045X/pdfft?md5=4a89528188ee7a644d1173c1f861476b&pid=1-s2.0-S294982362400045X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142129793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Core-shell V2O5- Gum ghatti grafted poly (acrylamide-co-methacrylic acid) adsorbent for the removal of methylene blue dye in water: Kinetic, equilibrium and thermodynamic studies 用于去除水中亚甲基蓝染料的核壳 V2O5- Gum ghatti 接枝聚(丙烯酰胺-共甲基丙烯酸)吸附剂:动力学、平衡和热力学研究
Pub Date : 2024-09-02 DOI: 10.1016/j.nxsust.2024.100069

Herein, vanadium pentoxide (V2O5) encapsulated Gum ghatti grafted poly(acrylamide-co- methacrylic acid) adsorbent was synthesized to remove methylene blue dye from water. The materials were characterized by FTIR, TEM, SEM, Raman and XRD analysis. Batch adsorption studies were performed on the materials. Several variables' effects on methylene blue removal, including pH, contact time, initial dye concentration, and adsorbent dosage, were examined. Kinetics and thermodynamic analysis were also carried out for the adsorbent-adsorbate interaction to determine the maximum adsorption and mechanism for adsorption. By using UV-Vis spectrophotometric analysis, the dye concentration was evaluated both before and after adsorption. Langmuir, Freundlich, and Dubini-Radushkevic's isotherm models were used to analyze the adsorption data. Results showed a maximum adsorption efficiency of 92 % at a pH of 9 and 0.2 g as the maximum adsorbent dosage. The study followed the Langmuir isotherm model with a correlation coefficient (R2) of 0.9995. The results from the kinetic studies show a pseudo-second-order mechanism. The negative values of the Gibbs free energy change ΔG° ranging from −10.57 KJmol−1 to −9.64 Kmol−1 within the temperatures of 298 K to 313 K is an indication of a spontaneous process. A negative enthalpy change (ΔH° = −29.05 KJmol−1) shows an exothermic process and a negative entropy change (ΔS° = −0.06 KJmol−1) represents a highly ordered system. ANOVA in Microsoft Excel and other statistical analyses were used to evaluate the effects of time, pH, concentration, dose, temperature, and other factors on the effectiveness of dye adsorption. Importantly, every parameter that was investigated showed statistically significant impacts on the removal of dye (p < 0.05), revealing their important impact on the adsorption process.

本文合成了五氧化二钒(V2O5)包裹的 Gum ghatti 接枝聚(丙烯酰胺-甲基丙烯酸)吸附剂,用于去除水中的亚甲基蓝染料。通过傅立叶变换红外光谱、TEM、SEM、拉曼和 XRD 分析对材料进行了表征。对材料进行了批量吸附研究。研究了几个变量对亚甲基蓝去除率的影响,包括 pH 值、接触时间、初始染料浓度和吸附剂用量。还对吸附剂与吸附剂之间的相互作用进行了动力学和热力学分析,以确定最大吸附量和吸附机理。通过紫外可见分光光度法,对吸附前后的染料浓度进行了评估。朗缪尔、弗里德里希和杜比尼-拉杜什凯维奇等温线模型被用来分析吸附数据。结果表明,在 pH 值为 9 和最大吸附剂用量为 0.2 克时,最大吸附效率为 92%。该研究采用了 Langmuir 等温线模型,相关系数 (R2) 为 0.9995。动力学研究结果显示了一种假二阶机制。在 298 K 至 313 K 的温度范围内,吉布斯自由能变化 ΔG° 为负值,从 -10.57 KJmol-1 到 -9.64 Kmol-1 不等,表明这是一个自发过程。负焓变化(ΔH° = -29.05 KJmol-1)表示放热过程,负熵变化(ΔS° = -0.06 KJmol-1)表示高度有序的系统。使用 Microsoft Excel 中的方差分析和其他统计分析来评估时间、pH 值、浓度、剂量、温度和其他因素对染料吸附效果的影响。重要的是,所研究的每个参数都对染料的去除有显著的统计学影响(p < 0.05),这表明它们对吸附过程有重要影响。
{"title":"Core-shell V2O5- Gum ghatti grafted poly (acrylamide-co-methacrylic acid) adsorbent for the removal of methylene blue dye in water: Kinetic, equilibrium and thermodynamic studies","authors":"","doi":"10.1016/j.nxsust.2024.100069","DOIUrl":"10.1016/j.nxsust.2024.100069","url":null,"abstract":"<div><p>Herein, vanadium pentoxide (V<sub>2</sub>O<sub>5</sub>) encapsulated <em>Gum ghatti</em> grafted poly(acrylamide-co- methacrylic acid) adsorbent was synthesized to remove methylene blue dye from water. The materials were characterized by FTIR, TEM, SEM, Raman and XRD analysis. Batch adsorption studies were performed on the materials. Several variables' effects on methylene blue removal, including pH, contact time, initial dye concentration, and adsorbent dosage, were examined. Kinetics and thermodynamic analysis were also carried out for the adsorbent-adsorbate interaction to determine the maximum adsorption and mechanism for adsorption. By using UV-Vis spectrophotometric analysis, the dye concentration was evaluated both before and after adsorption. Langmuir, Freundlich, and Dubini-Radushkevic's isotherm models were used to analyze the adsorption data. Results showed a maximum adsorption efficiency of 92 % at a pH of 9 and 0.2 g as the maximum adsorbent dosage. The study followed the Langmuir isotherm model with a correlation coefficient (R<sup>2</sup>) of 0.9995. The results from the kinetic studies show a pseudo-second-order mechanism. The negative values of the Gibbs free energy change ΔG° ranging from −10.57 KJmol<sup>−1</sup> to −9.64 Kmol<sup>−1</sup> within the temperatures of 298 K to 313 K is an indication of a spontaneous process. A negative enthalpy change (ΔH° = −29.05 KJmol<sup>−1</sup>) shows an exothermic process and a negative entropy change (ΔS° = −0.06 KJmol<sup>−1</sup>) represents a highly ordered system. ANOVA in Microsoft Excel and other statistical analyses were used to evaluate the effects of time, pH, concentration, dose, temperature, and other factors on the effectiveness of dye adsorption. Importantly, every parameter that was investigated showed statistically significant impacts on the removal of dye (p &lt; 0.05), revealing their important impact on the adsorption process.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823624000461/pdfft?md5=efc5159da171a9db1c72ff431c60766e&pid=1-s2.0-S2949823624000461-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142122339","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ecological mortars produced from sustainable hydrated lime obtained from biomass ash 用从生物质灰烬中提取的可持续熟石灰生产生态灰泥
Pub Date : 2024-08-15 DOI: 10.1016/j.nxsust.2024.100067

Sustainable hydrated lime is produced from biomass ash rich in calcium carbonate, with properties similar to industrial hydrated lime. However, there is a lack of current and relevant research on sustainability related to the use of alternative limestone, derived from waste such as biomass ash. In this sense, the present research aims to study the behavior of cementitious coating mortars with partial and total replacement of industrial hydrated lime by sustainable hydrated lime, through microstructural, macrostructural, physical and chemical tests. Microstructural analyses performed by SEM demonstrated the presence of cement hydration products (CSH and ettringite) in all mortars evaluated. Chemical analyses through XRF and XRD showed similarity in chemical composition and crystallographic phases between the mortar with industrial hydrated lime and the ecological mortars. The FTIR showed chemical bonds characteristic of cement mortars in all ecological mortars, ratified by TG/DTG, which shows the decomposition of products such as CSH, ettringite, portlandite and calcite in all ecological mortars. Through the results found, the viability of replacing sustainable hydrated lime with industrial hydrated lime in the preparation of ecological mortars stands out, at the optimum percentage of 50 %, with possible total replacement (100 %) without significant losses in resistance.

可持续的熟石灰是用富含碳酸钙的生物质灰生产的,其性质与工业熟石灰相似。然而,目前还缺乏与使用生物质灰烬等废弃物制成的替代石灰石相关的可持续性研究。因此,本研究旨在通过微观结构、宏观结构、物理和化学测试,研究用可持续熟石灰部分或全部替代工业熟石灰的水泥基涂料砂浆的行为。通过扫描电子显微镜进行的微观结构分析表明,在所有评估的砂浆中都存在水泥水化产物(CSH 和乙长石)。通过 XRF 和 XRD 进行的化学分析显示,使用工业熟石灰的砂浆与生态砂浆的化学成分和结晶相类似。傅立叶变换红外光谱(FTIR)显示了所有生态砂浆中水泥砂浆特有的化学键,TG/DTG 证实了这一点,它显示了所有生态砂浆中 CSH、乙曲矿、波长石和方解石等产物的分解。结果表明,在制备生态砂浆时,用工业熟石灰替代可持续熟石灰是可行的,最佳比例为 50%,也有可能完全替代(100%),而不会造成明显的抗性损失。
{"title":"Ecological mortars produced from sustainable hydrated lime obtained from biomass ash","authors":"","doi":"10.1016/j.nxsust.2024.100067","DOIUrl":"10.1016/j.nxsust.2024.100067","url":null,"abstract":"<div><p>Sustainable hydrated lime is produced from biomass ash rich in calcium carbonate, with properties similar to industrial hydrated lime. However, there is a lack of current and relevant research on sustainability related to the use of alternative limestone, derived from waste such as biomass ash. In this sense, the present research aims to study the behavior of cementitious coating mortars with partial and total replacement of industrial hydrated lime by sustainable hydrated lime, through microstructural, macrostructural, physical and chemical tests. Microstructural analyses performed by SEM demonstrated the presence of cement hydration products (CSH and ettringite) in all mortars evaluated. Chemical analyses through XRF and XRD showed similarity in chemical composition and crystallographic phases between the mortar with industrial hydrated lime and the ecological mortars. The FTIR showed chemical bonds characteristic of cement mortars in all ecological mortars, ratified by TG/DTG, which shows the decomposition of products such as CSH, ettringite, portlandite and calcite in all ecological mortars. Through the results found, the viability of replacing sustainable hydrated lime with industrial hydrated lime in the preparation of ecological mortars stands out, at the optimum percentage of 50 %, with possible total replacement (100 %) without significant losses in resistance.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823624000448/pdfft?md5=2941d0538707ffd5372aecfa768faedd&pid=1-s2.0-S2949823624000448-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141990886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring tungsten trioxide (WO3): pH-dependent synthesis, structural insights, and exceptional electrochromic performance 定制三氧化钨 (WO3):取决于 pH 值的合成、结构洞察力和卓越的电致变色性能
Pub Date : 2024-08-08 DOI: 10.1016/j.nxsust.2024.100065

In the current investigation, WO3 thin films are prepared via simple hydrothermal method at different pH values (1, 7 and 11). In this study, XRD, SEM, FTIR, UV–visible, and electrochemical techniques were used to study pH effects on the preparation of WO3 and their structural, morphological, and electrochromic variations. The XRD analysis revealed that the pH of the precursor solution significantly influences crystallinity, with acidic conditions favouring high crystallinity and efficient electrochromic (EC) performance, while more alkaline conditions result in reduced crystallinity and amorphous film formation. The SEM analysis demonstrates that pH significantly influences the morphology of WO3 films. FTIR spectroscopy exhibited characteristic peaks associated with WO3, affirming the successful synthesis of WO3 thin films. The electrochemical investigations demonstrated that WO3 films prepared at a pH of 1 exhibited exceptional EC activity, characterized by the highest optical modulation density of 0.3 and a colouration efficiency (CE) of approximately 122.2 cm2/C at 633 nm. These findings underscore the promising potential of pH-controlled hydrothermal method for tailoring the electrochromic behavior of WO3 thin films, with implications in energy efficient smart windows.

在当前的研究中,WO3 薄膜是在不同的 pH 值(1、7 和 11)下通过简单的水热法制备的。本研究采用 XRD、SEM、傅立叶变换红外光谱、紫外可见光和电化学技术来研究 pH 值对 WO3 制备的影响及其结构、形态和电致变色的变化。XRD 分析表明,前驱体溶液的 pH 值对结晶度有显著影响,酸性条件下结晶度高,电致变色(EC)性能高效,而碱性条件下结晶度降低,形成无定形薄膜。SEM 分析表明,pH 值对 WO3 薄膜的形态有显著影响。傅立叶变换红外光谱显示出与 WO3 相关的特征峰,证明成功合成了 WO3 薄膜。电化学研究表明,在 pH 值为 1 的条件下制备的 WO3 薄膜具有优异的电化学活性,其特点是最高光调制密度为 0.3,在 633 纳米波长下的着色效率 (CE) 约为 122.2 cm2/C。这些发现凸显了 pH 值控制水热法在定制 WO3 薄膜电致变色行为方面的巨大潜力,对节能智能窗具有重要意义。
{"title":"Tailoring tungsten trioxide (WO3): pH-dependent synthesis, structural insights, and exceptional electrochromic performance","authors":"","doi":"10.1016/j.nxsust.2024.100065","DOIUrl":"10.1016/j.nxsust.2024.100065","url":null,"abstract":"<div><p>In the current investigation, WO<sub>3</sub> thin films are prepared via simple hydrothermal method at different pH values (1, 7 and 11). In this study, XRD, SEM, FTIR, UV–visible, and electrochemical techniques were used to study pH effects on the preparation of WO<sub>3</sub> and their structural, morphological, and electrochromic variations. The XRD analysis revealed that the pH of the precursor solution significantly influences crystallinity, with acidic conditions favouring high crystallinity and efficient electrochromic (EC) performance, while more alkaline conditions result in reduced crystallinity and amorphous film formation. The SEM analysis demonstrates that pH significantly influences the morphology of WO<sub>3</sub> films. FTIR spectroscopy exhibited characteristic peaks associated with WO<sub>3</sub>, affirming the successful synthesis of WO<sub>3</sub> thin films. The electrochemical investigations demonstrated that WO<sub>3</sub> films prepared at a pH of 1 exhibited exceptional EC activity, characterized by the highest optical modulation density of 0.3 and a colouration efficiency (CE) of approximately 122.2 cm<sup>2</sup>/C at 633 nm. These findings underscore the promising potential of pH-controlled hydrothermal method for tailoring the electrochromic behavior of WO<sub>3</sub> thin films, with implications in energy efficient smart windows.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823624000424/pdfft?md5=29d7d01ba6611fc466dbec3afd6b77c5&pid=1-s2.0-S2949823624000424-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141952213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A la carte dissolution of rare earth elements from lateritic and karstic bauxite residues at mild pH: Toward sustainable extraction processes 红土和喀斯特铝土矿残渣中稀土元素在温和 pH 值条件下的自选溶解:实现可持续萃取工艺
Pub Date : 2024-08-08 DOI: 10.1016/j.nxsust.2024.100066

Recovery of rare earth elements from bauxite residues of lateritic versus karstic origin was explored at a pH ranging between 2.7 and 4.5 using a mixture of citric acid and citrate in water. Dissolution yields of up to 82 % for lanthanum and 62 % for yttrium were achieved with excellent selectivity toward iron (a selectivity factor of up to 4200), the main element of bauxite residues. An experimental Box-Behnken statistical design identified the concentration of citric acid/citrate and temperature as key factors controlling the dissolution yield and selectivity of rare earth elements. Observed differences in dissolution yields and selectivity as a function of origin were attributed to differences in the speciation of rare earth elements in the two bauxite residues. It is therefore possible to draw an “à la carte” graph that identified the optimum citric acid/citrate concentrations and dissolution temperatures for dissolution yields and selectivity for the two BRs. This work provides fundamental knowledge for the future development of sustainable processes for the recovery of rare earth elements from bauxite residues derived from bauxites of different origin.

在 pH 值介于 2.7 和 4.5 之间的条件下,使用柠檬酸和柠檬酸盐水混合物,研究了从红土和岩溶铝土残渣中回收稀土元素的问题。镧和钇的溶解率分别高达 82% 和 62%,对铝土矿残渣的主要元素铁具有极佳的选择性(选择性系数高达 4200)。实验箱-贝肯统计设计确定柠檬酸/柠檬酸盐浓度和温度是控制稀土元素溶解率和选择性的关键因素。观察到的稀土元素溶出率和选择性随产地的不同而不同,这是因为两种铝土矿残渣中稀土元素的种类不同。因此,可以绘制一张 "点菜 "图,确定两种铝土矿残渣溶解产率和选择性的最佳柠檬酸/柠檬酸盐浓度和溶解温度。这项工作为今后从不同来源的铝土矿残渣中回收稀土元素的可持续工艺的开发提供了基础知识。
{"title":"A la carte dissolution of rare earth elements from lateritic and karstic bauxite residues at mild pH: Toward sustainable extraction processes","authors":"","doi":"10.1016/j.nxsust.2024.100066","DOIUrl":"10.1016/j.nxsust.2024.100066","url":null,"abstract":"<div><p>Recovery of rare earth elements from bauxite residues of lateritic versus karstic origin was explored at a pH ranging between 2.7 and 4.5 using a mixture of citric acid and citrate in water. Dissolution yields of up to 82 % for lanthanum and 62 % for yttrium were achieved with excellent selectivity toward iron (a selectivity factor of up to 4200), the main element of bauxite residues. An experimental Box-Behnken statistical design identified the concentration of citric acid/citrate and temperature as key factors controlling the dissolution yield and selectivity of rare earth elements. Observed differences in dissolution yields and selectivity as a function of origin were attributed to differences in the speciation of rare earth elements in the two bauxite residues. It is therefore possible to draw an “à la carte” graph that identified the optimum citric acid/citrate concentrations and dissolution temperatures for dissolution yields and selectivity for the two BRs. This work provides fundamental knowledge for the future development of sustainable processes for the recovery of rare earth elements from bauxite residues derived from bauxites of different origin.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823624000436/pdfft?md5=bdcd44e6a0d8fe9297cbb934c0269d23&pid=1-s2.0-S2949823624000436-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141963552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Carbonization of golden shower pods to high surface area biochar for decontamination of cationic dyes and regeneration study by gamma radiations 通过碳化金色淋浴豆荚制备高比表面积生物炭,用于阳离子染料的净化和伽马射线再生研究
Pub Date : 2024-08-07 DOI: 10.1016/j.nxsust.2024.100064

Detoxification of water resources is the need of the hour and a number of environment friendly materials are proposed by scientist to deal with water pollution issues. The present study deals with preparation and characterization of porous activated carbon from golden shower pods, a waste ligno-cellulosic biomass, for the removal of dye contaminants from aqueous solution. The synthesized material, golden shower biochar (GSBC) was characterized using various analytical techniques to confirm the presence of active sites. The BET analysis of GSBC revealed high surface area of 1120 m2/g with total pore volume of 1.099 cm3/g and average pore radius 19.618 Å. Operational parameters were optimized using batch studies by taking GSBC dose of 50 mg which showed complete removal of target dyes with an initial dye concentration of 200 mg/L with just 60 min interaction time; based on these results, a fixed bed column of GSBC was designed and column studies were performed. Adsorption isotherm studies were carried out using Langmuir and Freundlich models, of which Langmuir model was found to be best-fit with maximum adsorption capacities of 208.86 mg/g, 284.35 mg/g and 327.56 mg/g for Crystal violet, Brilliant green and Methylene blue dyes respectively. Analysis of kinetics and thermodynamics revealed that the best-fit model was pseudo second-order with spontaneous reaction course and exothermic nature. Regeneration was carried out using gamma irradiation of dye loaded GSBC, followed by leaching in alcohol. It was observed that a 30 KGy dose was just sufficient to completely degrade the dye on the adsorbent surface. GSBC has shown immense potential for eradication of dyes from water effluents and it is easily recovered with negligible loss in efficacy.

水资源的解毒是当务之急,科学家们提出了许多环境友好型材料来解决水污染问题。本研究涉及从废弃的木质纤维素生物质--金色沐浴豆荚中制备多孔活性炭并对其进行表征,以去除水溶液中的染料污染物。利用各种分析技术对合成材料--金色雨林生物炭(GSBC)进行了表征,以确认活性位点的存在。GSBC 的 BET 分析显示,其表面积高达 1120 m2/g,总孔隙体积为 1.099 cm3/g,平均孔隙半径为 19.618 Å。在批量研究中对操作参数进行了优化,将 GSBC 的剂量定为 50 毫克,结果表明在初始染料浓度为 200 毫克/升时,只需 60 分钟的作用时间就能完全去除目标染料;基于这些结果,设计了 GSBC 固定床柱,并进行了柱研究。使用 Langmuir 和 Freundlich 模型进行了吸附等温线研究,发现其中 Langmuir 模型最为拟合,对水晶紫、艳绿和亚甲基蓝染料的最大吸附容量分别为 208.86 mg/g、284.35 mg/g 和 327.56 mg/g。动力学和热力学分析表明,最佳拟合模型是自发反应过程和放热性质的伪二阶模型。使用伽马射线辐照负载染料的 GSBC,然后在酒精中浸出,进行再生。结果表明,30KGy 的剂量就足以完全降解吸附剂表面的染料。GSBC 在去除污水中的染料方面显示出巨大的潜力,而且很容易回收,功效损失微乎其微。
{"title":"Carbonization of golden shower pods to high surface area biochar for decontamination of cationic dyes and regeneration study by gamma radiations","authors":"","doi":"10.1016/j.nxsust.2024.100064","DOIUrl":"10.1016/j.nxsust.2024.100064","url":null,"abstract":"<div><p>Detoxification of water resources is the need of the hour and a number of environment friendly materials are proposed by scientist to deal with water pollution issues. The present study deals with preparation and characterization of porous activated carbon from golden shower pods, a waste ligno-cellulosic biomass, for the removal of dye contaminants from aqueous solution. The synthesized material, golden shower biochar (GSBC) was characterized using various analytical techniques to confirm the presence of active sites. The BET analysis of GSBC revealed high surface area of 1120 m<sup>2</sup>/g with total pore volume of 1.099 cm<sup>3</sup>/g and average pore radius 19.618 Å. Operational parameters were optimized using batch studies by taking GSBC dose of 50 mg which showed complete removal of target dyes with an initial dye concentration of 200 mg/L with just 60 min interaction time; based on these results, a fixed bed column of GSBC was designed and column studies were performed. Adsorption isotherm studies were carried out using Langmuir and Freundlich models, of which Langmuir model was found to be best-fit with maximum adsorption capacities of 208.86 mg/g, 284.35 mg/g and 327.56 mg/g for Crystal violet, Brilliant green and Methylene blue dyes respectively. Analysis of kinetics and thermodynamics revealed that the best-fit model was pseudo second-order with spontaneous reaction course and exothermic nature. Regeneration was carried out using gamma irradiation of dye loaded GSBC, followed by leaching in alcohol. It was observed that a 30 KGy dose was just sufficient to completely degrade the dye on the adsorbent surface. GSBC has shown immense potential for eradication of dyes from water effluents and it is easily recovered with negligible loss in efficacy.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823624000412/pdfft?md5=8a9fd733c4d0ddb8a2721c560f2f7b7f&pid=1-s2.0-S2949823624000412-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141950674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of shading heaviness on voltage, current and power of the solar photovoltaic string 遮阳程度对太阳能光伏组串的电压、电流和功率的影响
Pub Date : 2024-08-07 DOI: 10.1016/j.nxsust.2024.100062

The short-term power output variability of solar photovoltaic (PV) systems caused by passing clouds is becoming a major concern for grid operators. As the penetration of utility-scale PV systems boosts, the rapid power fluctuations greatly challenge the grid's transient stability. A photo voltaic system is greatly vulnerable to Partial Shading. The performance analysis of PV systems clearly suggests that the maximum power of partially shaded PV systems is inversely proportional to the heaviness of shading. However, some literatures are not of the same opinion; for them, the maximum power of a partially shaded system is invulnerable to shading heaviness, often at certain critical points. According to research on the P-V characteristic curve under various numbers of shaded modules and shading levels, the irradiance of the shaded modules reaches a certain turning point or critical point. The PV array becomes insensitive to high-level shading, categorically for the series topology. This paper presents an experimental results of performance parameters with varying shading heaviness. The experiment is performed on a Photovoltaics string of series connected modules, a 119KW grid-connected rooftop solar power plant using the Power Quality analyser for continuous recording of various parameters under changing shading heaviness. The degree or heaviness of shading decides the critical point. The critical point can vary based on the number of the shaded modules.

云层经过时引起的太阳能光伏 (PV) 系统的短期功率输出变化正成为电网运营商关注的主要问题。随着公用事业级光伏系统的普及,快速的功率波动对电网的瞬态稳定性提出了极大挑战。光电系统极易受到部分遮挡的影响。光伏系统的性能分析表明,部分遮挡光伏系统的最大功率与遮挡程度成反比。然而,有些文献并不这样认为,他们认为部分遮阳系统的最大功率不受遮阳程度的影响,通常是在某些临界点。根据对不同遮阳组件数量和遮阳水平下 P-V 特性曲线的研究,遮阳组件的辐照度会达到某个转折点或临界点。对于串联拓扑结构而言,光伏阵列对高水平遮光变得不敏感。本文介绍了不同遮阳程度下性能参数的实验结果。实验是在一个由串联模块组成的光伏串上进行的,这是一个 119 千瓦的并网屋顶太阳能发电站,使用电能质量分析仪连续记录遮阳程度变化时的各种参数。遮光的程度或严重程度决定了临界点。临界点可根据遮光模块的数量而变化。
{"title":"Impact of shading heaviness on voltage, current and power of the solar photovoltaic string","authors":"","doi":"10.1016/j.nxsust.2024.100062","DOIUrl":"10.1016/j.nxsust.2024.100062","url":null,"abstract":"<div><p>The short-term power output variability of solar photovoltaic (PV) systems caused by passing clouds is becoming a major concern for grid operators. As the penetration of utility-scale PV systems boosts, the rapid power fluctuations greatly challenge the grid's transient stability. A photo voltaic system is greatly vulnerable to Partial Shading. The performance analysis of PV systems clearly suggests that the maximum power of partially shaded PV systems is inversely proportional to the heaviness of shading. However, some literatures are not of the same opinion; for them, the maximum power of a partially shaded system is invulnerable to shading heaviness, often at certain critical points. According to research on the P-V characteristic curve under various numbers of shaded modules and shading levels, the irradiance of the shaded modules reaches a certain turning point or critical point. The PV array becomes insensitive to high-level shading, categorically for the series topology. This paper presents an experimental results of performance parameters with varying shading heaviness. The experiment is performed on a Photovoltaics string of series connected modules, a 119KW grid-connected rooftop solar power plant using the Power Quality analyser for continuous recording of various parameters under changing shading heaviness. The degree or heaviness of shading decides the critical point. The critical point can vary based on the number of the shaded modules.</p></div>","PeriodicalId":100960,"journal":{"name":"Next Sustainability","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2949823624000394/pdfft?md5=95119dd297c9d89bbb9ce28827a458eb&pid=1-s2.0-S2949823624000394-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141950672","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Next Sustainability
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1