首页 > 最新文献

Polymer Chemistry最新文献

英文 中文
Self-driving laboratory platform for many-objective self-optimisation of polymer nanoparticle synthesis with cloud-integrated machine learning and orthogonal online analytics†
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2025-02-13 DOI: 10.1039/d5py00123d
Stephen T. Knox , Kai E. Wu , Nazrul Islam , Roisin O'Connell , Peter M. Pittaway , Kudakwashe E. Chingono , John Oyekan , George Panoutsos , Thomas W. Chamberlain , Richard A. Bourne , Nicholas J. Warren
The application of artificial intelligence and machine learning is revolutionising the chemical industry, with the ability to automate and self-optimise reactions facilitating a step change in capability. Unlike small-molecules, polymer nanoparticles require navigation of a more complex parameter space to access the desired performance. In addition to the chemical reaction, it is desirable to optimise the polymer molecular weight distribution, particle size and polydispersity index. To solve this many-objective optimisation problem, a self-driving laboratory is constructed which synthesises and characterises polymer nanoparticles (incorporating NMR spectroscopy, gel permeation chromatography and dynamic light scattering). This facilitates the autonomous exploration of parameter space with programmable screens or AI driven optimisation campaigns via a cloud-based framework. The RAFT polymerisation of diacetone acrylamide mediated by a poly(dimethylacrylamide) macro-CTA was optimised to maximise monomer conversion, minimise molar mass dispersity, and target 80 nm particles with minimised polydispersity index. A full-factorial screen between 6- and 30-minutes residence time, between 68 and 80 °C and between 100 and 600 for the [monomer] : [CTA] ratio enabled mapping of the reaction space. This facilitated in-silico simulations using a range of algorithms – Thompson sampling efficient multi-objective optimisation (TSEMO), radial basis function neural network/reference vector evolutionary algorithm (RBFNN/RVEA) and multi objective particle swarm optimisation, hybridised with an evolutionary algorithm (EA-MOPSO), which were then applied to in-lab optimisations. This approach accounts for an unprecedented number of objectives for closed-loop optimisation of a synthetic polymerisation; and enabled the use of algorithms operated from different geographical locations to the reactor platform.
{"title":"Self-driving laboratory platform for many-objective self-optimisation of polymer nanoparticle synthesis with cloud-integrated machine learning and orthogonal online analytics†","authors":"Stephen T. Knox ,&nbsp;Kai E. Wu ,&nbsp;Nazrul Islam ,&nbsp;Roisin O'Connell ,&nbsp;Peter M. Pittaway ,&nbsp;Kudakwashe E. Chingono ,&nbsp;John Oyekan ,&nbsp;George Panoutsos ,&nbsp;Thomas W. Chamberlain ,&nbsp;Richard A. Bourne ,&nbsp;Nicholas J. Warren","doi":"10.1039/d5py00123d","DOIUrl":"10.1039/d5py00123d","url":null,"abstract":"<div><div>The application of artificial intelligence and machine learning is revolutionising the chemical industry, with the ability to automate and self-optimise reactions facilitating a step change in capability. Unlike small-molecules, polymer nanoparticles require navigation of a more complex parameter space to access the desired performance. In addition to the chemical reaction, it is desirable to optimise the polymer molecular weight distribution, particle size and polydispersity index. To solve this <em>many-objective</em> optimisation problem, a self-driving laboratory is constructed which synthesises and characterises polymer nanoparticles (incorporating NMR spectroscopy, gel permeation chromatography and dynamic light scattering). This facilitates the autonomous exploration of parameter space with programmable screens or AI driven optimisation campaigns <em>via</em> a cloud-based framework. The RAFT polymerisation of diacetone acrylamide mediated by a poly(dimethylacrylamide) macro-CTA was optimised to maximise monomer conversion, minimise molar mass dispersity, and target 80 nm particles with minimised polydispersity index. A full-factorial screen between 6- and 30-minutes residence time, between 68 and 80 °C and between 100 and 600 for the [monomer] : [CTA] ratio enabled mapping of the reaction space. This facilitated <em>in-silico</em> simulations using a range of algorithms – Thompson sampling efficient multi-objective optimisation (TSEMO), radial basis function neural network/reference vector evolutionary algorithm (RBFNN/RVEA) and multi objective particle swarm optimisation, hybridised with an evolutionary algorithm (EA-MOPSO), which were then applied to in-lab optimisations. This approach accounts for an unprecedented number of objectives for closed-loop optimisation of a synthetic polymerisation; and enabled the use of algorithms operated from different geographical locations to the reactor platform.</div></div>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"16 12","pages":"Pages 1355-1364"},"PeriodicalIF":4.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/py/d5py00123d?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Photoactive methylene blue-functionalized polymer for antimicrobial activation under red light†
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2025-02-13 DOI: 10.1039/d5py00068h
Zeyu Shao , Huanli Sun , Edgar H. H. Wong
This study presents the synthesis of a novel methylene blue acrylamide monomer and its incorporation into a diblock copolymer, , which exhibits potent antimicrobial activity against Gram-negative (Escherichia coli, Pseudomonas aeruginosa) and Gram-positive (Staphylococcus aureus) bacteria when photoirradiated under red light (λ = 630 nm). Mechanistic investigations revealed that singlet oxygen species, and not superoxides, are responsible for the antimicrobial activity, most likely by damaging cellular components such as proteins and DNA. The advantage of using red light as an external trigger because of its ability to penetrate skin and tissue is demonstrated here, where is still active against E. coli when irradiated through a cover of chicken skin. In terms of biocompatibility, is, significantly, 130 times more biocompatible than the original methylene blue dye. Overall, this study demonstrates the efficient modification of a red light-active photosensitiser into an antimicrobial macromolecule with improved biological properties for potential photodynamic applications in healthcare.
本研究介绍了一种新型亚甲基蓝丙烯酰胺单体的合成及其在二嵌段共聚物 PolyMB 中的应用,该单体在红光(λ = 630 纳米)照射下对革兰氏阴性菌(大肠杆菌、绿脓杆菌)和革兰氏阳性菌(金黄色葡萄球菌)具有很强的抗菌活性。机理研究表明,单线态氧而不是超氧化物是抗菌活性的原因,很可能是通过破坏蛋白质和 DNA 等细胞成分。由于红光能够穿透皮肤和组织,因此使用红光作为外部触发器的优势在这里得到了证明,当红光透过鸡皮照射时,PolyMB 对大肠杆菌仍有活性。在生物相容性方面,PolyMB 的生物相容性比原来的亚甲基蓝染料高出 130 倍。总之,这项研究表明,红光活性光敏剂被有效地改性成了一种具有更好生物特性的抗菌大分子,有望应用于医疗保健领域的光动力疗法。
{"title":"Photoactive methylene blue-functionalized polymer for antimicrobial activation under red light†","authors":"Zeyu Shao ,&nbsp;Huanli Sun ,&nbsp;Edgar H. H. Wong","doi":"10.1039/d5py00068h","DOIUrl":"10.1039/d5py00068h","url":null,"abstract":"<div><div>This study presents the synthesis of a novel methylene blue acrylamide monomer and its incorporation into a diblock copolymer, , which exhibits potent antimicrobial activity against Gram-negative (<em>Escherichia coli</em>, <em>Pseudomonas aeruginosa</em>) and Gram-positive (<em>Staphylococcus aureus</em>) bacteria when photoirradiated under red light (<em>λ</em> = 630 nm). Mechanistic investigations revealed that singlet oxygen species, and not superoxides, are responsible for the antimicrobial activity, most likely by damaging cellular components such as proteins and DNA. The advantage of using red light as an external trigger because of its ability to penetrate skin and tissue is demonstrated here, where is still active against <em>E. coli</em> when irradiated through a cover of chicken skin. In terms of biocompatibility, is, significantly, 130 times more biocompatible than the original methylene blue dye. Overall, this study demonstrates the efficient modification of a red light-active photosensitiser into an antimicrobial macromolecule with improved biological properties for potential photodynamic applications in healthcare.</div></div>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"16 12","pages":"Pages 1373-1382"},"PeriodicalIF":4.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/py/d5py00068h?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143418045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chain folding of carbazole-donor containing polymers via a two-point interaction with naphthalene monoimide-based acceptors†
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2025-02-13 DOI: 10.1039/d4py01234h
Arun Kumar Gayen , S. Ramakrishnan
Linear polymers carrying electron-rich dialkoxy-carbazole (DACBZ) units linked by flexible oligooxyethylene segments were induced into a zigzag folded state by an external folding agent, which carries two subunits: an electron-deficient dinitro-naphthalene monoimide (NMI(NO2)2) acceptor and an ammonium perchlorate unit. The ammonium unit of the folding agent interacts with the backbone oxyethylene segment and, in turn, brings two adjacent CBZ moieties on either side of the electron-deficient NMI(NO2)2 unit of the folding agent to induce a charge-transfer (CT) interaction; this two-point interaction was shown to be crucial for the stability of the pleated chain structure. An interesting, and potentially useful, feature of this system is the possibility to incorporate a pendant unit at the carbazole nitrogen (N) site; a variety of segments, such as linear, branched, or chiral alkyl chains, were installed to examine if the folding of the chain is influenced by the nature of the pendant segment. The formation of the pleated structure was studied by 1H-NMR and UV-visible titration experiments; both these clearly revealed the presence of strong charge transfer (CT) interactions between the donor (D) and acceptor (A) units. The length of the spacer segment linking the NMI(NO2)2 acceptor unit and the ammonium group in the folding agent was varied, and it was seen that a 3-carbon spacer yielded the strongest cooperative interaction. To translate the folded conformation into the solid state, a solution of the donor polymer and the most efficient acceptor, taken in a 1 : 1 (D:A) ratio, was cast on a quartz plate. UV-visible studies of the film revealed the retention of the CT band; more importantly, immersing the film into an aqueous NaHCO3 solution neutralized the ammonium group to generate the free amine. This caused an unexpected deepening of the colour, along with a hypsochromic shift of the CT band, suggesting that the free amine acceptor readjusts within the film to improve the CT interaction, exploiting the newly garnered freedom after de-coordination with the oligooxyethylene segment.
{"title":"Chain folding of carbazole-donor containing polymers via a two-point interaction with naphthalene monoimide-based acceptors†","authors":"Arun Kumar Gayen ,&nbsp;S. Ramakrishnan","doi":"10.1039/d4py01234h","DOIUrl":"10.1039/d4py01234h","url":null,"abstract":"<div><div>Linear polymers carrying electron-rich dialkoxy-carbazole (DACBZ) units linked by flexible oligooxyethylene segments were induced into a zigzag folded state by an external folding agent, which carries two subunits: an electron-deficient dinitro-naphthalene monoimide (NMI(NO<sub>2</sub>)<sub>2</sub>) acceptor and an ammonium perchlorate unit. The ammonium unit of the folding agent interacts with the backbone oxyethylene segment and, in turn, brings two adjacent CBZ moieties on either side of the electron-deficient NMI(NO<sub>2</sub>)<sub>2</sub> unit of the folding agent to induce a charge-transfer (CT) interaction; this two-point interaction was shown to be crucial for the stability of the pleated chain structure. An interesting, and potentially useful, feature of this system is the possibility to incorporate a pendant unit at the carbazole nitrogen (N) site; a variety of segments, such as linear, branched, or chiral alkyl chains, were installed to examine if the folding of the chain is influenced by the nature of the pendant segment. The formation of the pleated structure was studied by <sup>1</sup>H-NMR and UV-visible titration experiments; both these clearly revealed the presence of strong charge transfer (CT) interactions between the donor (D) and acceptor (A) units. The length of the spacer segment linking the NMI(NO<sub>2</sub>)<sub>2</sub> acceptor unit and the ammonium group in the folding agent was varied, and it was seen that a 3-carbon spacer yielded the strongest cooperative interaction. To translate the folded conformation into the solid state, a solution of the donor polymer and the most efficient acceptor, taken in a 1 : 1 (D:A) ratio, was cast on a quartz plate. UV-visible studies of the film revealed the retention of the CT band; more importantly, immersing the film into an aqueous NaHCO<sub>3</sub> solution neutralized the ammonium group to generate the free amine. This caused an unexpected deepening of the colour, along with a hypsochromic shift of the CT band, suggesting that the free amine acceptor readjusts within the film to improve the CT interaction, exploiting the newly garnered freedom after de-coordination with the oligooxyethylene segment.</div></div>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"16 12","pages":"Pages 1345-1354"},"PeriodicalIF":4.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preparation of phenyl-substituted open-cage silsesquioxane-pendant polysiloxanes and their thermal and optical properties†
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2025-02-13 DOI: 10.1039/d4py01460j
Miku Kosaka , Kenji Kanaori , Hiroaki Imoto , Kensuke Naka
We prepared phenyl-substituted corner-opened type polyhedral oligomeric silsesquioxanes (CO-POSSs) bearing tris(dimethoxysilyl)-groups with variable linker lengths at the opening vertex; that is, tris(dimethoxysilyl-ethyl-dimethylsiloxy)- and tris(dimethoxysilyl-propylthioethyl-dimethylsiloxy)-heptaphenyl-substituted CO-POSSs ( and ). Optically transparent free-standing films of phenyl-substituted open-cage silsesquioxane-pendant polysiloxanes () were prepared by optimizing the sol–gel reaction conditions for . Polycondensation of afforded an optically transparent and flexible phenyl-substituted CO-POSS-pendant polysiloxane film (). The polycondensations of and were fully completed even at 50 °C for 6 h under vacuum. 29Si cross-polarization magic angle spinning (CP-MAS) NMR analysis suggests that the films included cyclotrisiloxane (D3) and linear siloxane (Dlinear) structures. The effects of the polysiloxane structures on the thermal and mechanical properties were studied. The highest temperature at which the sample lost 5 wt% of the original mass (Td5) under N2 (381 °C) was obtained for , even though it contained a flexible linker unit. The predominant linear siloxane structures may provide increase higher thermal stability. The UV-vis spectra of the resulting transparent films were mostly unchanged even after six days of exposure to UV irradiation in air. The present study shows that phenyl-substituted CO-POSS-pendant polysiloxanes represent alternative UV-resistant, optically transparent materials with higher heat resistance.
{"title":"Preparation of phenyl-substituted open-cage silsesquioxane-pendant polysiloxanes and their thermal and optical properties†","authors":"Miku Kosaka ,&nbsp;Kenji Kanaori ,&nbsp;Hiroaki Imoto ,&nbsp;Kensuke Naka","doi":"10.1039/d4py01460j","DOIUrl":"10.1039/d4py01460j","url":null,"abstract":"<div><div>We prepared phenyl-substituted corner-opened type polyhedral oligomeric silsesquioxanes (CO-POSSs) bearing tris(dimethoxysilyl)-groups with variable linker lengths at the opening vertex; that is, tris(dimethoxysilyl-ethyl-dimethylsiloxy)- and tris(dimethoxysilyl-propylthioethyl-dimethylsiloxy)-heptaphenyl-substituted CO-POSSs ( and ). Optically transparent free-standing films of phenyl-substituted open-cage silsesquioxane-pendant polysiloxanes () were prepared by optimizing the sol–gel reaction conditions for . Polycondensation of afforded an optically transparent and flexible phenyl-substituted CO-POSS-pendant polysiloxane film (). The polycondensations of and were fully completed even at 50 °C for 6 h under vacuum. <sup>29</sup>Si cross-polarization magic angle spinning (CP-MAS) NMR analysis suggests that the films included cyclotrisiloxane (D<sub>3</sub>) and linear siloxane (D<sub>linear</sub>) structures. The effects of the polysiloxane structures on the thermal and mechanical properties were studied. The highest temperature at which the sample lost 5 wt% of the original mass (<em>T</em><sub>d5</sub>) under N<sub>2</sub> (381 °C) was obtained for , even though it contained a flexible linker unit. The predominant linear siloxane structures may provide increase higher thermal stability. The UV-vis spectra of the resulting transparent films were mostly unchanged even after six days of exposure to UV irradiation in air. The present study shows that phenyl-substituted CO-POSS-pendant polysiloxanes represent alternative UV-resistant, optically transparent materials with higher heat resistance.</div></div>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"16 12","pages":"Pages 1365-1372"},"PeriodicalIF":4.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/py/d4py01460j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143385602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis and RAFT polymerisation of hydrophobic acrylamide monomers derived from plant oils† 从植物油中提取的疏水性丙烯酰胺单体的合成和 RAFT 聚合反应
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2025-02-13 DOI: 10.1039/d4py01100g
Oliver J. Harris , Peter Tollington , Calum J. Greenhalgh , Ryan R. Larder , Helen Willcock , Fiona L. Hatton
Polymeric materials based on fatty acids (FAs) have a combination of characteristics (alkene groups, hydrophobicity, tuneable Tg) that give them great potential as renewable, high value materials. Here, we investigate the base catalysed transesterification of four different plant oils (high oleic sunflower, olive, hydrogenated coconut and hydrogenated rapeseed) with N-hydroxyethyl acrylamide. By conducting kinetics experiments, investigating potential side reactions and improving isolation of the target products, we were able to identify reactive impurities (radical inhibitors, unintended co-monomers) that were found to remain in the impure brine washed plant oil-based monomers (POBM). Kinetics experiments were then performed to investigate the RAFT polymerisation of these monomers. It was found that the more sustainable brine washing process was viable for the controlled radical polymerisation of the higher kp app (saturated) monomers, however column purification was necessary for good control of unsaturated monomers. Polymers with values of Mn between 3000 and 12 000 g mol−1 were synthesised and dependent on the FA source exhibited either amorphous or semi-crystalline behaviour (Tg values between −1 and 33 °C, Tm values between 48 and 66 °C). This work demonstrates the first example of RAFT polymerisation of acrylamide monomers derived from plant oils by a one step direct transesterification, opening the door for novel well-defined, functional bio-based polymers.
以脂肪酸 (FA) 为基础的聚合物材料具有多种特性(烯基、疏水性、可调 Tg),因此极有可能成为可再生的高价值材料。在此,我们研究了四种不同植物油(高油酸葵花籽油、橄榄油、氢化椰子油和氢化菜籽油)与 N-羟乙基丙烯酰胺的碱催化酯交换反应。通过进行动力学实验、调查潜在的副反应和改进目标产物的分离,我们能够识别出残留在不纯盐水洗植物油基单体(POBM)中的反应性杂质(自由基抑制剂、非预期的共聚单体)。然后进行了动力学实验,研究这些单体的 RAFT 聚合反应。实验发现,对于 kp app 较高的单体(饱和)的受控自由基聚合而言,更具可持续性的盐水洗涤工艺是可行的,但要对不饱和单体进行良好控制,则必须进行柱净化。合成的聚合物 Mn 值介于 3,000 和 12,000 gmol-1 之间,并根据 FA 源的不同表现出无定形或半结晶特性(Tg 值介于 -1 和 33 °C,Tm 值介于 48 和 66 °C)。这项研究首次展示了通过一步直接酯交换反应对从植物油中提取的丙烯酰胺单体进行 RAFT 聚合的实例,从而为开发定义明确的新型功能性生物基聚合物打开了大门。
{"title":"Synthesis and RAFT polymerisation of hydrophobic acrylamide monomers derived from plant oils†","authors":"Oliver J. Harris ,&nbsp;Peter Tollington ,&nbsp;Calum J. Greenhalgh ,&nbsp;Ryan R. Larder ,&nbsp;Helen Willcock ,&nbsp;Fiona L. Hatton","doi":"10.1039/d4py01100g","DOIUrl":"10.1039/d4py01100g","url":null,"abstract":"<div><div>Polymeric materials based on fatty acids (FAs) have a combination of characteristics (alkene groups, hydrophobicity, tuneable <em>T</em><sub>g</sub>) that give them great potential as renewable, high value materials. Here, we investigate the base catalysed transesterification of four different plant oils (high oleic sunflower, olive, hydrogenated coconut and hydrogenated rapeseed) with <em>N</em>-hydroxyethyl acrylamide. By conducting kinetics experiments, investigating potential side reactions and improving isolation of the target products, we were able to identify reactive impurities (radical inhibitors, unintended co-monomers) that were found to remain in the impure brine washed plant oil-based monomers (POBM). Kinetics experiments were then performed to investigate the RAFT polymerisation of these monomers. It was found that the more sustainable brine washing process was viable for the controlled radical polymerisation of the higher <em>k</em><sub>p app</sub> (saturated) monomers, however column purification was necessary for good control of unsaturated monomers. Polymers with values of <em>M</em><sub>n</sub> between 3000 and 12 000 g mol<sup>−1</sup> were synthesised and dependent on the FA source exhibited either amorphous or semi-crystalline behaviour (<em>T</em><sub>g</sub> values between −1 and 33 °C, <em>T</em><sub>m</sub> values between 48 and 66 °C). This work demonstrates the first example of RAFT polymerisation of acrylamide monomers derived from plant oils by a one step direct transesterification, opening the door for novel well-defined, functional bio-based polymers.</div></div>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"16 12","pages":"Pages 1321-1331"},"PeriodicalIF":4.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/py/d4py01100g?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142678670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acid-cleavable poly(oxazoline) surfactants†
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2025-02-13 DOI: 10.1039/d4py01166j
Joseph A. Garcia , Linglan Zhu , Ashley Vergara Mendez , Ellen M. Sletten
The acidic tumor microenvironment and late endosomes present a promising target for stimuli-responsive nanotherapeutics. Acid-cleavable surfactants, particularly those with hydrazone linkages, offer enhanced stability outside the cell while enabling efficient intracellular payload release. Their acid-triggered cleavage and cationic byproducts facilitate endosomal escape, making them attractive for cancer nanomedicine. Herein, we report the synthesis of a new hydrazone-linked poly(oxazoline)-based diblock copolymer surfactant. This surfactant cleaves in a pH-dependent manner going from pH 7.4 down to pH 5.0, where after 21 h, 80% ± 3% of the hydrazone-linked polymer remained at pH 7.4 compared to 17% ± 2% at pH 5.0. We then demonstrate the ability of nanoemulsion encapsulated payloads to partition into cell membrane mimics only after cleavage of the surfactant. Through this system, we were able to increase the amount of payload release from 26% to 47% over 42 hours through pH changes. In all, this work demonstrates a viable route to create POx-based nanomaterials with controlled release capabilities in biologically relevant conditions and is a promising platform for advancing the endosomal escape and cancer targeting of nanomaterials.
{"title":"Acid-cleavable poly(oxazoline) surfactants†","authors":"Joseph A. Garcia ,&nbsp;Linglan Zhu ,&nbsp;Ashley Vergara Mendez ,&nbsp;Ellen M. Sletten","doi":"10.1039/d4py01166j","DOIUrl":"10.1039/d4py01166j","url":null,"abstract":"<div><div>The acidic tumor microenvironment and late endosomes present a promising target for stimuli-responsive nanotherapeutics. Acid-cleavable surfactants, particularly those with hydrazone linkages, offer enhanced stability outside the cell while enabling efficient intracellular payload release. Their acid-triggered cleavage and cationic byproducts facilitate endosomal escape, making them attractive for cancer nanomedicine. Herein, we report the synthesis of a new hydrazone-linked poly(oxazoline)-based diblock copolymer surfactant. This surfactant cleaves in a pH-dependent manner going from pH 7.4 down to pH 5.0, where after 21 h, 80% ± 3% of the hydrazone-linked polymer remained at pH 7.4 compared to 17% ± 2% at pH 5.0. We then demonstrate the ability of nanoemulsion encapsulated payloads to partition into cell membrane mimics only after cleavage of the surfactant. Through this system, we were able to increase the amount of payload release from 26% to 47% over 42 hours through pH changes. In all, this work demonstrates a viable route to create POx-based nanomaterials with controlled release capabilities in biologically relevant conditions and is a promising platform for advancing the endosomal escape and cancer targeting of nanomaterials.</div></div>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"16 12","pages":"Pages 1393-1399"},"PeriodicalIF":4.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143462448","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalable access to functional nylon 6 via ring-opening copolymerization of biobased δ-valerolactam with ε-caprolactam†
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2025-02-13 DOI: 10.1039/d4py01406e
Yahui Mao , Maosheng Li , Youhua Tao
Copolymerization of ε-caprolactam with functional lactam monomers was an effective strategy to introduce pendent substituents into nylon 6, which might endow these materials with improved processing properties, solubility, elasticity, and adhesion, while not compromising their inherent thermal and mechanical properties. However, the scalable synthesis of functional lactams remained extremely difficult due to their high raw material cost and/or cumbersome synthesis steps, making it difficult to meet the enormous market demand for nylon 6 materials. Herein, we introduced a new biobased δ-valerolactam monomer (3-(dimethylamino)-piperidone, ) derived from ornithine, which could efficiently copolymerize with ε-caprolactam to deliver functional nylon 6 polymers. Both monomer and copolymer synthesis proved straightforward and readily scalable. The resulting nylon 6 polymers exhibited comparable properties relative to their well-known commercial counterpart, including high thermal stability and crystallinity, suggesting that the incorporation of exerted minimal influence on the polymers’ inherent properties. Remarkably, the pendant dimethylamino group at the polyamide backbone could further convert into various functional structures by reacting with electrophiles, thereby providing a simple and versatile platform for the preparation of diverse functional nylon 6 materials towards broader applications.
{"title":"Scalable access to functional nylon 6 via ring-opening copolymerization of biobased δ-valerolactam with ε-caprolactam†","authors":"Yahui Mao ,&nbsp;Maosheng Li ,&nbsp;Youhua Tao","doi":"10.1039/d4py01406e","DOIUrl":"10.1039/d4py01406e","url":null,"abstract":"<div><div>Copolymerization of ε-caprolactam with functional lactam monomers was an effective strategy to introduce pendent substituents into nylon 6, which might endow these materials with improved processing properties, solubility, elasticity, and adhesion, while not compromising their inherent thermal and mechanical properties. However, the scalable synthesis of functional lactams remained extremely difficult due to their high raw material cost and/or cumbersome synthesis steps, making it difficult to meet the enormous market demand for nylon 6 materials. Herein, we introduced a new biobased δ-valerolactam monomer (3-(dimethylamino)-piperidone, ) derived from ornithine, which could efficiently copolymerize with ε-caprolactam to deliver functional nylon 6 polymers. Both monomer and copolymer synthesis proved straightforward and readily scalable. The resulting nylon 6 polymers exhibited comparable properties relative to their well-known commercial counterpart, including high thermal stability and crystallinity, suggesting that the incorporation of exerted minimal influence on the polymers’ inherent properties. Remarkably, the pendant dimethylamino group at the polyamide backbone could further convert into various functional structures by reacting with electrophiles, thereby providing a simple and versatile platform for the preparation of diverse functional nylon 6 materials towards broader applications.</div></div>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"16 12","pages":"Pages 1409-1417"},"PeriodicalIF":4.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143486561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mixed-mode interpenetrating polymer networks from polymerizable eutectics† 来自可聚合共晶的混合模式互穿聚合物网络
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2025-02-13 DOI: 10.1039/d4py01456a
Alexandra L. Mutch , Stuart C. Thickett
The preparation of interpenetrating polymer networks (IPNs) and semi-interpenetrating polymer networks (semi-IPNs) is reported via a solvent-free approach using a binary polymerizable eutectic. N-Isopropylacrylamide (NIPAM) and ε-caprolactone (CL) were mixed in various mole ratios to prepare viscous polymerizable liquids that were stable at room temperature, based on solid–liquid equilibrium phase diagrams from differential scanning calorimetry (DSC) data. The strong degree of association between NIPAM and CL within these mixtures was confirmed via 1D and 2D NMR spectroscopy. Using an appropriate UV photoinitiator and ring opening polymerization catalyst, the orthogonal polymerization (either in a sequential or simultaneous fashion) of each component within the eutectic was achieved, with enhanced reaction kinetics for the ring opening polymerization compared to a traditional solvent (DMSO). Through the incorporation of diacrylate and bis(carbonate) crosslinkers into the resin mixture, IPNs and semi-IPNs were realised in a one-pot two-step approach from polymerizable eutectics for the first time. These networks possessed thermoresponsive swelling behaviour in water, and retained their structural integrity in good solvents for both phases. This binary eutectic was also shown to be suitable as a resin for stereolithography 3D printing on a benchtop printer through the inclusion of a RAFT agent, achieving semi-IPN printed objects in a two-step approach.
报告采用二元可聚合共晶,通过无溶剂方法制备了互穿聚合物网络(IPN)和半互穿聚合物网络(semi-IPN)。根据差示扫描量热法(DSC)数据绘制的固液平衡相图,以不同的摩尔比混合 N-异丙基丙烯酰胺(NIPAM)和ε-己内酯(CL),制备出室温下稳定的粘性可聚合液体。一维和二维核磁共振光谱证实了 NIPAM 和 CL 在这些混合物中的紧密结合程度。通过使用适当的紫外光引发剂和开环聚合催化剂,共晶中的每种成分都实现了正交聚合(顺序聚合或同时聚合),与传统溶剂(DMSO)相比,开环聚合的反应动力学得到了增强。通过在树脂混合物中加入二丙烯酸酯和双(碳酸酯)交联剂,首次以可聚合共晶体为原料,通过一步法和两步法实现了 IPN 和半 IPN。这些网络在水中具有热膨胀性,在两种相的良好溶剂中都能保持结构的完整性。通过加入 RAFT 剂,这种二元共晶体还被证明适用于在台式打印机上进行立体光刻三维打印的树脂,通过两步法实现了半 IPN 打印物体。
{"title":"Mixed-mode interpenetrating polymer networks from polymerizable eutectics†","authors":"Alexandra L. Mutch ,&nbsp;Stuart C. Thickett","doi":"10.1039/d4py01456a","DOIUrl":"10.1039/d4py01456a","url":null,"abstract":"<div><div>The preparation of interpenetrating polymer networks (IPNs) and semi-interpenetrating polymer networks (semi-IPNs) is reported <em>via</em> a solvent-free approach using a binary polymerizable eutectic. <em>N</em>-Isopropylacrylamide (NIPAM) and ε-caprolactone (CL) were mixed in various mole ratios to prepare viscous polymerizable liquids that were stable at room temperature, based on solid–liquid equilibrium phase diagrams from differential scanning calorimetry (DSC) data. The strong degree of association between NIPAM and CL within these mixtures was confirmed <em>via</em> 1D and 2D NMR spectroscopy. Using an appropriate UV photoinitiator and ring opening polymerization catalyst, the orthogonal polymerization (either in a sequential or simultaneous fashion) of each component within the eutectic was achieved, with enhanced reaction kinetics for the ring opening polymerization compared to a traditional solvent (DMSO). Through the incorporation of diacrylate and bis(carbonate) crosslinkers into the resin mixture, IPNs and semi-IPNs were realised in a one-pot two-step approach from polymerizable eutectics for the first time. These networks possessed thermoresponsive swelling behaviour in water, and retained their structural integrity in good solvents for both phases. This binary eutectic was also shown to be suitable as a resin for stereolithography 3D printing on a benchtop printer through the inclusion of a RAFT agent, achieving semi-IPN printed objects in a two-step approach.</div></div>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"16 12","pages":"Pages 1332-1344"},"PeriodicalIF":4.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143393544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Triblock architecture and PEG hydrophilic blocks enable efficient thermogelation of poly(2-phenyl-2-oxazine)-based worm-gels†
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2025-02-13 DOI: 10.1039/d4py01345j
Anna-Lena Ziegler , Andrew Kerr , Florian T. Kaps , Robert Luxenhofer
Previously, the cooling-induced thermogelation of an amphiphilic ABA type triblock copolymer comprising a central poly(2-phenyl-2-oxazine) (pPheOzi) block flanked by hydrophilic poly(2-methyl-2-oxazoline) (pMeOx) blocks was reported. This process is based on an unusual, cooling-induced transition in polymer self-assembly from spherical to worm-like micelles, for which the PheOzi units are decisive. Here, we investigate this phenomenon further by introducing new variants of amphiphilic pPheOzi-based copolymers to explore the variability of the system. Changing the arrangement of the MeOx and PheOzi constitutional repeat units enables investigation of the influence of the polymer architecture on the thermogelation. We found that a triblock architecture is superior to diblock, gradient and star-like polymer architectures in terms of efficient order–order transition-based thermogelation. In addition, a coupling procedure based on copper-catalyzed azide–alkyne cycloaddition is presented that allows for a direct comparison of pMeOx and PEG as hydrophilic blocks in pPheOzi-based triblocks. Interestingly, PEG hydrophilic blocks also enable rapid worm-formation and show faster gelation as well as increased gel strength. Altogether, our findings provide basic design criteria for improved (pPheOzi-based) worm-gels. The introduced small library of pPheOzi-based copolymer variants can be used for further fundamental studies regarding thermo-responsive transitions in polymer self-assembly.
{"title":"Triblock architecture and PEG hydrophilic blocks enable efficient thermogelation of poly(2-phenyl-2-oxazine)-based worm-gels†","authors":"Anna-Lena Ziegler ,&nbsp;Andrew Kerr ,&nbsp;Florian T. Kaps ,&nbsp;Robert Luxenhofer","doi":"10.1039/d4py01345j","DOIUrl":"10.1039/d4py01345j","url":null,"abstract":"<div><div>Previously, the cooling-induced thermogelation of an amphiphilic ABA type triblock copolymer comprising a central poly(2-phenyl-2-oxazine) (pPheOzi) block flanked by hydrophilic poly(2-methyl-2-oxazoline) (pMeOx) blocks was reported. This process is based on an unusual, cooling-induced transition in polymer self-assembly from spherical to worm-like micelles, for which the PheOzi units are decisive. Here, we investigate this phenomenon further by introducing new variants of amphiphilic pPheOzi-based copolymers to explore the variability of the system. Changing the arrangement of the MeOx and PheOzi constitutional repeat units enables investigation of the influence of the polymer architecture on the thermogelation. We found that a triblock architecture is superior to diblock, gradient and star-like polymer architectures in terms of efficient order–order transition-based thermogelation. In addition, a coupling procedure based on copper-catalyzed azide–alkyne cycloaddition is presented that allows for a direct comparison of pMeOx and PEG as hydrophilic blocks in pPheOzi-based triblocks. Interestingly, PEG hydrophilic blocks also enable rapid worm-formation and show faster gelation as well as increased gel strength. Altogether, our findings provide basic design criteria for improved (pPheOzi-based) worm-gels. The introduced small library of pPheOzi-based copolymer variants can be used for further fundamental studies regarding thermo-responsive transitions in polymer self-assembly.</div></div>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"16 12","pages":"Pages 1383-1392"},"PeriodicalIF":4.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/py/d4py01345j?page=search","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143258420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
l-Phenylalanine monomer coacervation leads to well-controlled nanocrystal topochemical photo-RAFT polymerization†
IF 4.1 2区 化学 Q2 POLYMER SCIENCE Pub Date : 2025-02-13 DOI: 10.1039/d4py01203h
Yuting Li , Xiyu Wang , Ying Cao , Wenjing Niu , Qing Zheng , Xinhua Lu , Yuanli Cai
We describe the self-coacervation and nanocrystal topochemical photo-RAFT polymerization of ionic phenylalanine acrylamide. The charged monomer molecules undergo self-coacervation through nanoclustering, liquid–liquid phase separation, and crystallization within dense droplets in water at pH 7.0 and 25 °C, leading to ultrathin lamellar nanocrystal-containing droplets capable of well-controlled topochemical photo-RAFT polymerization. The reaction induces pathway-dependent self-assembly involving the one-dimensional (non)covalent polymerization of monomer nanoclusters into fibril bundles. Furthermore, monomer molecules within the crystal lattice undergo one-dimensional rearrangements guided by growing polymer segments, leading to the nanocrystal transition into perforated lamellar hollow sieves accompanied by decreased crystallinity, and followed by interfacial topochemical polymerization of monomer nanoclusters site-specifically along the newly activated sites of sieve edges, leading to sieve-centred parallel-growing fibrils. Further reaction leads to densely charged ultrathin fibril lamellae physically crosslinked by fibril network knots. Consequently, the well-controlled topochemical photo-RAFT polymerization up to >98% conversion was achieved shortly in 1 h under ecofriendly ambient aqueous conditions. This work provides a robust platform of the solid-state topochemical polymerization with unprecedentedly high molecular weight controllability.
{"title":"l-Phenylalanine monomer coacervation leads to well-controlled nanocrystal topochemical photo-RAFT polymerization†","authors":"Yuting Li ,&nbsp;Xiyu Wang ,&nbsp;Ying Cao ,&nbsp;Wenjing Niu ,&nbsp;Qing Zheng ,&nbsp;Xinhua Lu ,&nbsp;Yuanli Cai","doi":"10.1039/d4py01203h","DOIUrl":"10.1039/d4py01203h","url":null,"abstract":"<div><div>We describe the self-coacervation and nanocrystal topochemical photo-RAFT polymerization of ionic phenylalanine acrylamide. The charged monomer molecules undergo self-coacervation through nanoclustering, liquid–liquid phase separation, and crystallization within dense droplets in water at pH 7.0 and 25 °C, leading to ultrathin lamellar nanocrystal-containing droplets capable of well-controlled topochemical photo-RAFT polymerization. The reaction induces pathway-dependent self-assembly involving the one-dimensional (non)covalent polymerization of monomer nanoclusters into fibril bundles. Furthermore, monomer molecules within the crystal lattice undergo one-dimensional rearrangements guided by growing polymer segments, leading to the nanocrystal transition into perforated lamellar hollow sieves accompanied by decreased crystallinity, and followed by interfacial topochemical polymerization of monomer nanoclusters site-specifically along the newly activated sites of sieve edges, leading to sieve-centred parallel-growing fibrils. Further reaction leads to densely charged ultrathin fibril lamellae physically crosslinked by fibril network knots. Consequently, the well-controlled topochemical photo-RAFT polymerization up to &gt;98% conversion was achieved shortly in 1 h under ecofriendly ambient aqueous conditions. This work provides a robust platform of the solid-state topochemical polymerization with unprecedentedly high molecular weight controllability.</div></div>","PeriodicalId":100,"journal":{"name":"Polymer Chemistry","volume":"16 12","pages":"Pages 1400-1408"},"PeriodicalIF":4.1,"publicationDate":"2025-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143435123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Polymer Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1