Johnathan D. Holman, Payton S. Mauler, Augustine K. Obour, Kraig L. Roozeboom, Logan M. Simon, Yared Assefa
Grazing annual forages in dryland cropping systems has been used to integrate crop and livestock systems, rejuvenate soils, enhance in-field nutrient cycling and soil organic carbon (SOC), and increase net returns by eliminating harvest expenses and feed delivery. However, cattle (Bos taurus) could potentially degrade soil physical properties by increasing compaction and reducing water infiltration in no-tillage (NT) systems. Minimum tillage (MT) may help correct some of these potential soil quality concerns. The objective of this study was to quantify MT effects on soil properties, forage mass, and weeds compared to NT in a grazed winter triticale [×Triticosecale Wittm. ex A. Camus (Secale × Triticum)] annual forage system from 2020 to 2022 near Jetmore, KS. The experiment had two tillage treatments, NT and MT (sweep plow to a depth of 5–13 cm twice during summer fallow), in a grazed continuous winter triticale cropping system. Bulk density was greater in June, pre-till (1.31 g cm−3), compared to August, post-till (1.23 g cm−3), across tillage treatments. The mean weight diameter of dry aggregates decreased, and wind-erodible fraction increased with MT. Across years, the mean weight diameter of water-stable aggregates was greater with NT compared to MT. The SOC stocks did not differ between tillage practices near the soil surface, but MT increased SOC at the 5- to 15-cm depth. Nitrate (NO3-N) concentration was 28% higher with MT compared to NT across depths at the August sampling time. Soil pH was slightly lower in NT (5.81) compared to MT (5.94). Penetration resistance was high due to frequently dry soil conditions, but there were no differences between tillage systems. Early-season forage biomass was greater in MT compared to NT in one out of two seasons. Our findings suggest that MT could be used to mitigate adverse effects of grazing on soil bulk density in NT systems but could cause short-term decreases in dry and wet aggregate stability and increased wind-erodible fraction.
{"title":"Soil, forage, and weed attributes following tillage in grazed no-tillage triticale pasture","authors":"Johnathan D. Holman, Payton S. Mauler, Augustine K. Obour, Kraig L. Roozeboom, Logan M. Simon, Yared Assefa","doi":"10.1002/saj2.20736","DOIUrl":"10.1002/saj2.20736","url":null,"abstract":"<p>Grazing annual forages in dryland cropping systems has been used to integrate crop and livestock systems, rejuvenate soils, enhance in-field nutrient cycling and soil organic carbon (SOC), and increase net returns by eliminating harvest expenses and feed delivery. However, cattle (<i>Bos taurus</i>) could potentially degrade soil physical properties by increasing compaction and reducing water infiltration in no-tillage (NT) systems. Minimum tillage (MT) may help correct some of these potential soil quality concerns. The objective of this study was to quantify MT effects on soil properties, forage mass, and weeds compared to NT in a grazed winter triticale [×<i>Triticosecale Wittm</i>. ex A. Camus (<i>Secale</i> × <i>Triticum</i>)] annual forage system from 2020 to 2022 near Jetmore, KS. The experiment had two tillage treatments, NT and MT (sweep plow to a depth of 5–13 cm twice during summer fallow), in a grazed continuous winter triticale cropping system. Bulk density was greater in June, pre-till (1.31 g cm<sup>−3</sup>), compared to August, post-till (1.23 g cm<sup>−3</sup>), across tillage treatments. The mean weight diameter of dry aggregates decreased, and wind-erodible fraction increased with MT. Across years, the mean weight diameter of water-stable aggregates was greater with NT compared to MT. The SOC stocks did not differ between tillage practices near the soil surface, but MT increased SOC at the 5- to 15-cm depth. Nitrate (NO<sub>3</sub>-N) concentration was 28% higher with MT compared to NT across depths at the August sampling time. Soil pH was slightly lower in NT (5.81) compared to MT (5.94). Penetration resistance was high due to frequently dry soil conditions, but there were no differences between tillage systems. Early-season forage biomass was greater in MT compared to NT in one out of two seasons. Our findings suggest that MT could be used to mitigate adverse effects of grazing on soil bulk density in NT systems but could cause short-term decreases in dry and wet aggregate stability and increased wind-erodible fraction.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"88 5","pages":"1820-1832"},"PeriodicalIF":0.0,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/saj2.20736","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141886192","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jennifer Fedenko, David D'Amore, Diogo Spinola, Raquel Portes, Ashlee Dere, Rebecca A. Lybrand
A dense concentration of old-growth forest and a wet, cold climate promote mineral weathering and leaching in coastal temperate rainforest soils. Our objective was to assess soil development and soil organic carbon (SOC) distribution across 18 soil profiles in remote, upland terrain of southeast Alaska where pedon data are sparse. We made soil morphological observations, collected samples, and completed laboratory analyses to measure SOC content, pH, and particle size distribution. The survey of upland backslope soils included north- and south-facing hillslopes derived from three lithologies (slate, metavolcanic, and phyllite). The soils across all sites were very gravelly (51.8 ± 20.4% coarse fragments), acidic (mineral soil pH 4.85 ± 0.45), and moderately deep (96.56 ± 37.80 cm); thin, broken E horizons were underlain by thick, carbon-rich spodic horizons. Soil development was relatively consistent as demonstrated by the Profile Development Index with values from 15 to 26 and Podzolization Index values spanning 8 to 14. A mean pedon SOC stock of 198.02 ± 81.42 Mg C ha−1 (n = 18) was calculated using data collected for all upland organic and mineral soils from our work. The accumulation of SOC was similar among soils formed from contrasting lithologies with averages of 182 ± 15.70 Mg C ha−1 for slate, 188 ± 53.80 Mg C ha−1 for metavolcanic, and 218 ± 124 Mg C ha−1 for phyllite. Our work contributes to soil morphological observations, laboratory data, and SOC stock estimates required to better constrain and model pedogenic processes and SOC stock in remote forests where data sets are limited.
{"title":"Spodosol development and soil organic carbon distribution along a lithosequence in perhumid coastal temperate rainforest","authors":"Jennifer Fedenko, David D'Amore, Diogo Spinola, Raquel Portes, Ashlee Dere, Rebecca A. Lybrand","doi":"10.1002/saj2.20695","DOIUrl":"10.1002/saj2.20695","url":null,"abstract":"<p>A dense concentration of old-growth forest and a wet, cold climate promote mineral weathering and leaching in coastal temperate rainforest soils. Our objective was to assess soil development and soil organic carbon (SOC) distribution across 18 soil profiles in remote, upland terrain of southeast Alaska where pedon data are sparse. We made soil morphological observations, collected samples, and completed laboratory analyses to measure SOC content, pH, and particle size distribution. The survey of upland backslope soils included north- and south-facing hillslopes derived from three lithologies (slate, metavolcanic, and phyllite). The soils across all sites were very gravelly (51.8 ± 20.4% coarse fragments), acidic (mineral soil pH 4.85 ± 0.45), and moderately deep (96.56 ± 37.80 cm); thin, broken E horizons were underlain by thick, carbon-rich spodic horizons. Soil development was relatively consistent as demonstrated by the Profile Development Index with values from 15 to 26 and Podzolization Index values spanning 8 to 14. A mean pedon SOC stock of 198.02 ± 81.42 Mg C ha<sup>−1</sup> (<i>n</i> = 18) was calculated using data collected for all upland organic and mineral soils from our work. The accumulation of SOC was similar among soils formed from contrasting lithologies with averages of 182 ± 15.70 Mg C ha<sup>−1</sup> for slate, 188 ± 53.80 Mg C ha<sup>−1</sup> for metavolcanic, and 218 ± 124 Mg C ha<sup>−1</sup> for phyllite. Our work contributes to soil morphological observations, laboratory data, and SOC stock estimates required to better constrain and model pedogenic processes and SOC stock in remote forests where data sets are limited.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"88 5","pages":"1509-1528"},"PeriodicalIF":0.0,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/saj2.20695","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141867588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Billi Jean Petermann, Katie Lewis, Veronica Acosta-Martinez, Haydee E. Laza, Joshua J. Steffan, Lindsey C. Slaughter
Cropping systems in semiarid regions have frequently relied on continuous tillage and irrigation, but declining groundwater resources have prompted a greater focus on conservation practices to improve soil health and water storage. We compared soil health responses from cotton production systems in semiarid, coarse-textured soils with different crop management strategies under high or low irrigation levels. Management systems included continuous cotton with conventional tillage (CCCT) compared to no-till cotton with a rye cover crop (NTCR) and no-till cotton with a wheat-fallow rotation (NTCW), including high or low irrigation zones within each system. Samples were collected annually from two bulk soil depths (0–10 cm and 10–20 cm) and root-associated soils 7 years after systems were established and continued for 2 years. We found that cropping system, but not irrigation level, altered soil microbial communities and other soil health indicators. Despite variation between study years and sampling zones, the conservation systems had greater soil microbial community size via ester-linked fatty acid methyl ester (EL-FAME or FAME) analysis, extracellular enzyme activities, and soil organic matter than the CCCT system. The NTCW system also had greater arbuscular mycorrhizal fungi FAME abundance. Our study suggests that no-till and conservation strategies such as cover cropping and rotation can improve biological soil health indicators in these sandy semiarid soils even with limited irrigation.
{"title":"Soil health influenced more by conservation tillage and cropping practice than irrigation level in a sandy semiarid cotton system","authors":"Billi Jean Petermann, Katie Lewis, Veronica Acosta-Martinez, Haydee E. Laza, Joshua J. Steffan, Lindsey C. Slaughter","doi":"10.1002/saj2.20737","DOIUrl":"10.1002/saj2.20737","url":null,"abstract":"<p>Cropping systems in semiarid regions have frequently relied on continuous tillage and irrigation, but declining groundwater resources have prompted a greater focus on conservation practices to improve soil health and water storage. We compared soil health responses from cotton production systems in semiarid, coarse-textured soils with different crop management strategies under high or low irrigation levels. Management systems included continuous cotton with conventional tillage (CCCT) compared to no-till cotton with a rye cover crop (NTCR) and no-till cotton with a wheat-fallow rotation (NTCW), including high or low irrigation zones within each system. Samples were collected annually from two bulk soil depths (0–10 cm and 10–20 cm) and root-associated soils 7 years after systems were established and continued for 2 years. We found that cropping system, but not irrigation level, altered soil microbial communities and other soil health indicators. Despite variation between study years and sampling zones, the conservation systems had greater soil microbial community size via ester-linked fatty acid methyl ester (EL-FAME or FAME) analysis, extracellular enzyme activities, and soil organic matter than the CCCT system. The NTCW system also had greater arbuscular mycorrhizal fungi FAME abundance. Our study suggests that no-till and conservation strategies such as cover cropping and rotation can improve biological soil health indicators in these sandy semiarid soils even with limited irrigation.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"88 5","pages":"1833-1851"},"PeriodicalIF":0.0,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141772330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Raquel Portes, Diogo Spinola, Michael E. Ketterer, Markus Egli, Rebecca A. Lybrand, Jennifer Fedenko, Frances Biles, Thomas P. Trainor, Ashlee Dere, David V. D'Amore
Quantifying soil redistribution rates, including both erosion and deposition, is critical for understanding erosion processes, landscape evolution, land management strategies, and the carbon cycle. In the Northeast Pacific coastal temperate rainforest, the interaction of perhumid climate and dense coniferous forest tends to form Spodosols which are soils characterized by a subsurface accumulation of organic matter and iron and aluminum oxides, across a range of contrasting lithologies. Deep Spodosols are frequently found on steep backslopes (up to 60%) of colluvial deposits, where shallower soils would typically be expected. We hypothesized that deep Spodosols in Southeast Alaska indicate slope stability, exhibiting negligible soil redistribution rates and stable surfaces regardless of the lithology. Our objective was to quantify soil redistribution rates for Spodosols formed on steep slopes across a range of lithologies in hilly and mountainous areas of Juneau, AK. We used 239+240Pu isotopes to quantify soil erosion and deposition rates in Spodosols formed on colluvial deposits from tonalite, slate, metavolcanic rock, and phyllite. 239+240Pu measurements revealed negligible soil redistribution rates for all studied pedons, ranging from erosion rates of 0.51 t/ha/year to deposition rates up to 0.43 t/ha/year. No difference was detected between the hill and mountain landforms, further supporting the idea that Spodosols could indicate slope stability over decadal timescales across the region. Understanding the resilience of Spodosols to erosion processes in varied lithologies and landforms on steep slopes is paramount for making informed decisions regarding sustainable land use, landslide risk mitigation, and effective carbon sequestration strategies.
{"title":"Assessing decadal soil redistribution rates using 239+240Pu across diverse lithologies in Southeast Alaska","authors":"Raquel Portes, Diogo Spinola, Michael E. Ketterer, Markus Egli, Rebecca A. Lybrand, Jennifer Fedenko, Frances Biles, Thomas P. Trainor, Ashlee Dere, David V. D'Amore","doi":"10.1002/saj2.20732","DOIUrl":"10.1002/saj2.20732","url":null,"abstract":"<p>Quantifying soil redistribution rates, including both erosion and deposition, is critical for understanding erosion processes, landscape evolution, land management strategies, and the carbon cycle. In the Northeast Pacific coastal temperate rainforest, the interaction of perhumid climate and dense coniferous forest tends to form Spodosols which are soils characterized by a subsurface accumulation of organic matter and iron and aluminum oxides, across a range of contrasting lithologies. Deep Spodosols are frequently found on steep backslopes (up to 60%) of colluvial deposits, where shallower soils would typically be expected. We hypothesized that deep Spodosols in Southeast Alaska indicate slope stability, exhibiting negligible soil redistribution rates and stable surfaces regardless of the lithology. Our objective was to quantify soil redistribution rates for Spodosols formed on steep slopes across a range of lithologies in hilly and mountainous areas of Juneau, AK. We used <sup>239+240</sup>Pu isotopes to quantify soil erosion and deposition rates in Spodosols formed on colluvial deposits from tonalite, slate, metavolcanic rock, and phyllite. <sup>239+240</sup>Pu measurements revealed negligible soil redistribution rates for all studied pedons, ranging from erosion rates of 0.51 t/ha/year to deposition rates up to 0.43 t/ha/year. No difference was detected between the hill and mountain landforms, further supporting the idea that Spodosols could indicate slope stability over decadal timescales across the region. Understanding the resilience of Spodosols to erosion processes in varied lithologies and landforms on steep slopes is paramount for making informed decisions regarding sustainable land use, landslide risk mitigation, and effective carbon sequestration strategies.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"88 5","pages":"1659-1677"},"PeriodicalIF":0.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/saj2.20732","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141772332","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Corey Palmer, Arthur Siller, Raina Naylor, Masoud Hashemi, Ashley Keiser
Implementing soil conservation practices can begin to restore degraded soils, improve soil health, and increase overall ecosystem services. Cover cropping is an effective strategy to rebuild soil quality through decreased erosion and increased residue inputs, which can help build soil organic matter. Cover crop seeding rate may have a positive relationship with ecosystem services; however, it is unknown whether this is realized at or below the recommended cover crop seeding rate. The goal of this study was to identify the relationship between cover crop seeding rate and soil health biogeochemical measures across the growing season using five oat (Avena sativa L.)–pea (Pisum sativum L.) cover crop treatments of 0%, 25%, 50%, 75%, and 100% the industry standard seeding rate at the University of Massachusetts Amherst Research Farm. Soils were tested for soil carbon (C), nitrogen (N), and microbial measures at winter kill, spring thaw, post-planting, and succeeding cash crop harvest. Soil measures did not vary among seeding rates, but total ground cover was consistent among treatments due to weed growth. Soil health measures vary seasonally reflecting soil microbial activity. Our study provides initial evidence that soil biogeochemical responses do not respond to increased seeding rate within one growing season when the resulting groundcover—cover crop biomass plus weeds—is consistent across seeding rates, but sampling date can influence the magnitude of soil biological and chemical soil health metrics.
{"title":"Increased winter-killed cover crop seeding rate may not increase soil health outcomes","authors":"Corey Palmer, Arthur Siller, Raina Naylor, Masoud Hashemi, Ashley Keiser","doi":"10.1002/saj2.20735","DOIUrl":"10.1002/saj2.20735","url":null,"abstract":"<p>Implementing soil conservation practices can begin to restore degraded soils, improve soil health, and increase overall ecosystem services. Cover cropping is an effective strategy to rebuild soil quality through decreased erosion and increased residue inputs, which can help build soil organic matter. Cover crop seeding rate may have a positive relationship with ecosystem services; however, it is unknown whether this is realized at or below the recommended cover crop seeding rate. The goal of this study was to identify the relationship between cover crop seeding rate and soil health biogeochemical measures across the growing season using five oat (<i>Avena sativa</i> L.)–pea (<i>Pisum sativum</i> L.) cover crop treatments of 0%, 25%, 50%, 75%, and 100% the industry standard seeding rate at the University of Massachusetts Amherst Research Farm. Soils were tested for soil carbon (C), nitrogen (N), and microbial measures at winter kill, spring thaw, post-planting, and succeeding cash crop harvest. Soil measures did not vary among seeding rates, but total ground cover was consistent among treatments due to weed growth. Soil health measures vary seasonally reflecting soil microbial activity. Our study provides initial evidence that soil biogeochemical responses do not respond to increased seeding rate within one growing season when the resulting groundcover—cover crop biomass plus weeds—is consistent across seeding rates, but sampling date can influence the magnitude of soil biological and chemical soil health metrics.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"88 5","pages":"1808-1819"},"PeriodicalIF":0.0,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141772382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Enhancing fertilizer nitrogen use efficiency (NUE) in corn (Zea mays L.) production is critical for closing yield gaps, increasing producer profitability, and promoting environmental stewardship. In 2014 and 2015, a field experiment was conducted to determine the potential for fertilizer N stabilizer products to improve NUE of granular urea and urea ammonium nitrate (UAN) solution applied to strip-till corn. A urease inhibitor (UI) or nitrification inhibitor (NI) or both were added at labeled rates to urea or UAN solution for a target rate of 180 kg N ha−1. At V3, a single application of broadcast granular urea and subsurface banded UAN solution with and without fertilizer N stabilizers was made. A split application (50% at V3; 50% at V6) of subsurface banded UAN solution served as a control representing a standard grower practice. Fertilizer N stabilizers improved components of NUE, such as grain N recovery efficiency (GNRE) and partial factor productivity (PFP). A single full rate UAN application did not differ in terms of grain yield each year but did result in less PFP and GNRE in 2015 as compared to the grower standard practice. A timely one-time full season N rate subsurface banded application of UAN treated with UI and NI to improve NUE could be a viable substitute for the practice of multiple fertilizations. Untreated broadcast urea was inferior to UAN as a N source for corn, but when treated with both a UI and NI, NUE was improved.
{"title":"Efficacy of fertilizer nitrogen source, stabilizer, and application timing for corn nitrogen nutrition","authors":"Michael Nattrass, Jac J. Varco, Jagman Dhillon","doi":"10.1002/saj2.20727","DOIUrl":"10.1002/saj2.20727","url":null,"abstract":"<p>Enhancing fertilizer nitrogen use efficiency (NUE) in corn (<i>Zea mays</i> L.) production is critical for closing yield gaps, increasing producer profitability, and promoting environmental stewardship. In 2014 and 2015, a field experiment was conducted to determine the potential for fertilizer N stabilizer products to improve NUE of granular urea and urea ammonium nitrate (UAN) solution applied to strip-till corn. A urease inhibitor (UI) or nitrification inhibitor (NI) or both were added at labeled rates to urea or UAN solution for a target rate of 180 kg N ha<sup>−1</sup>. At V3, a single application of broadcast granular urea and subsurface banded UAN solution with and without fertilizer N stabilizers was made. A split application (50% at V3; 50% at V6) of subsurface banded UAN solution served as a control representing a standard grower practice. Fertilizer N stabilizers improved components of NUE, such as grain N recovery efficiency (GNRE) and partial factor productivity (PFP). A single full rate UAN application did not differ in terms of grain yield each year but did result in less PFP and GNRE in 2015 as compared to the grower standard practice. A timely one-time full season N rate subsurface banded application of UAN treated with UI and NI to improve NUE could be a viable substitute for the practice of multiple fertilizations. Untreated broadcast urea was inferior to UAN as a N source for corn, but when treated with both a UI and NI, NUE was improved.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"88 5","pages":"1614-1625"},"PeriodicalIF":0.0,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/saj2.20727","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141740022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Conservation management practices often produced positive but limited desirable outcomes in US Southeast sandy soils, likely due to their intrinsically low clay contents that constrain the soil's capacity to preserve organic carbon (C) and nutrients. In the field, we tested the effectiveness of a novel approach, that is, clay soil amendment, to improve sandy soils. In October 2017, clay-rich soils (25% clay) were spread at 25 metric tons ha−1 and tilled onto a sandy soil (1.9% clay) in the field, which was further mixed by light tillage at 0- to 15-cm depth, followed by planting winter cover crop mixtures (cereal rye, crimson clover, and winter pea). The crop rotation was cotton and corn with cover crop mixtures planted in the winter fallow season. Soils (0–15 cm) were collected in August 2021 and subjected to physio-biochemical analyses. Clay amendment increased soil clay content to 3.4%, which improved nitrogen (N) availability by 51% but inhibited the activities of C (β-d-cellubiosidase [CB]; β-xylosidase [BX]; N-acetyl-β-glucosaminidase [NAG]) and N (leucine aminopeptidase [LAP]) cycling enzymes, resulting in up to 78% reduction in microbial respiration. A follow-up kinetic study on BG and LAP enzymes suggested that clay addition can have different impacts on enzymes with diverse biological origins through distinct mechanisms. Clay addition can potentially improve sandy soils by stabilizing the organic inputs in soils. However, more research is required to understand its long-term impacts making this approach practical.
{"title":"Clay soil amendment suppressed microbial enzymatic activities while increasing nitrogen availability in sandy soils","authors":"Pratima Poudel, Rongzhong Ye, Binaya Parajuli","doi":"10.1002/saj2.20731","DOIUrl":"10.1002/saj2.20731","url":null,"abstract":"<p>Conservation management practices often produced positive but limited desirable outcomes in US Southeast sandy soils, likely due to their intrinsically low clay contents that constrain the soil's capacity to preserve organic carbon (C) and nutrients. In the field, we tested the effectiveness of a novel approach, that is, clay soil amendment, to improve sandy soils. In October 2017, clay-rich soils (25% clay) were spread at 25 metric tons ha<sup>−1</sup> and tilled onto a sandy soil (1.9% clay) in the field, which was further mixed by light tillage at 0- to 15-cm depth, followed by planting winter cover crop mixtures (cereal rye, crimson clover, and winter pea). The crop rotation was cotton and corn with cover crop mixtures planted in the winter fallow season. Soils (0–15 cm) were collected in August 2021 and subjected to physio-biochemical analyses. Clay amendment increased soil clay content to 3.4%, which improved nitrogen (N) availability by 51% but inhibited the activities of C (β-<span>d</span>-cellubiosidase [CB]; β-xylosidase [BX]; <i>N</i>-acetyl-β-glucosaminidase [NAG]) and N (leucine aminopeptidase [LAP]) cycling enzymes, resulting in up to 78% reduction in microbial respiration. A follow-up kinetic study on BG and LAP enzymes suggested that clay addition can have different impacts on enzymes with diverse biological origins through distinct mechanisms. Clay addition can potentially improve sandy soils by stabilizing the organic inputs in soils. However, more research is required to understand its long-term impacts making this approach practical.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"88 5","pages":"1647-1658"},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/saj2.20731","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141641233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pengcheng Luo, Lijun Su, Wanghai Tao, Yuyang Shan, Mingjiang Deng, Quanjiu Wang, Haokui Yan
This study addresses the problem of 2D soil water movement under ponding radii of 1, 2, and 3 cm. The soil water movement characteristics (shape parameters of the water content profile, ratio of horizontal wetting front to vertical wetting front, relationship between infiltration time and horizontal wetting front, and relationship between infiltration time and cumulative infiltration) under the above three kinds of water ponding radius were analyzed. On the basis of the assumption that the soil wetting body is a semi-ellipse and the analytical solution of the 1D soil water movement equation at any angle, the approximate analytical solution of the 2D soil water movement equation under ponding conditions is optimized. The function relationships between infiltration time, wetting front, and cumulative infiltration are established. We applied the numerical data simulated by HYDRUS-3D to validate the parameters in proposed analytical solutions and evaluated the relationships between the wetting front and hydraulic parameters. The results indicate that as the water ponding radius increases, the wetting body and 2D water content distribution becomes larger. When the water ponding radius was 2 cm, the numerical and analytical solution of 1D soil water distribution showed the best comparison results, and the model error was the smallest. The ratio of wetting fronts was linearly increased with the increase of air-entry suction with R2 = 0.9969.
{"title":"Approximate analytical solution of a soil water movement equation under different ponding radii on the basis of numerical simulation","authors":"Pengcheng Luo, Lijun Su, Wanghai Tao, Yuyang Shan, Mingjiang Deng, Quanjiu Wang, Haokui Yan","doi":"10.1002/saj2.20725","DOIUrl":"10.1002/saj2.20725","url":null,"abstract":"<p>This study addresses the problem of 2D soil water movement under ponding radii of 1, 2, and 3 cm. The soil water movement characteristics (shape parameters of the water content profile, ratio of horizontal wetting front to vertical wetting front, relationship between infiltration time and horizontal wetting front, and relationship between infiltration time and cumulative infiltration) under the above three kinds of water ponding radius were analyzed. On the basis of the assumption that the soil wetting body is a semi-ellipse and the analytical solution of the 1D soil water movement equation at any angle, the approximate analytical solution of the 2D soil water movement equation under ponding conditions is optimized. The function relationships between infiltration time, wetting front, and cumulative infiltration are established. We applied the numerical data simulated by HYDRUS-3D to validate the parameters in proposed analytical solutions and evaluated the relationships between the wetting front and hydraulic parameters. The results indicate that as the water ponding radius increases, the wetting body and 2D water content distribution becomes larger. When the water ponding radius was 2 cm, the numerical and analytical solution of 1D soil water distribution showed the best comparison results, and the model error was the smallest. The ratio of wetting fronts was linearly increased with the increase of air-entry suction with <i>R</i><sup>2</sup> = 0.9969.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"88 5","pages":"1583-1598"},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141641539","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Eduardo Osório Senra, Carlos Ernesto Gonçalves Reynaud Schaefer, Fábio Soares de Oliveira, Roberto Michel, James Bockheim, Davi Feital Gjorup, Felipe Nogueira Bello Simas, Márcio Rocha Francelino
Chile's Torres del Paine National Park (TPNP) is one of the most impressive landscapes in southern Patagonia, with unique natural elements on the edge of the southern ice field, where knowledge of soils and ecological relationships is nonexistent. Therefore, the objective of this study was to determine the chemical, physical, mineralogical, and micromorphological characteristics of Holocene soils along a local toposequence representing the main vegetation types of the TPNP. The morphological, chemical, physical, and mineralogical properties of 12 soil profiles were studied and classified according to Soil Taxonomy. Coevolution of vegetation and soil taxa is clearly evident since glaciation, with podsolization under austral Nothofagus pumilio forests leading to the development of spodosols, while paludization in local depressions with Nothofagus forests allowed the formation of histosols. Slopes covered with loess and tephra led to the formation of Andisols with shrub vegetation. Predominant parent materials include till from Late Quaternary advances of southern Andean ice, Pleistocene loess, and volcanic ash from surrounding Chilean volcanoes. The parent materials were strongly influenced by Late Quaternary climatic and landscape changes following the retreat of the Last Glacial Maximum in southern Patagonia, resulting in erosional and depositional conditions (windblown loess, fluvial glacial deposits, and moraines). Stable landforms show the influence of allochthonous volcanic ash shaping Andean features, combined with the accumulation of organic matter in hydromorphic soils. Three main groups of soils have been identified: loess-rich soils, organic-rich soils, and poorly developed soils. The latter show low fertility related to recent landforms on different substrates ranging from till, rocky slopes, talus, or glacial deposits. In high mountain regions under periglacial conditions, cryoturbation features indicate seasonal frost–thaw cycles without current permafrost. The diversity of soil orders in the mountains of southern Patagonia is comparable to similar environmental conditions and latitudes in the Northern Hemisphere. However, the andic properties due to volcanic ejecta inputs, as well as organic-rich soils at low altitudes of bottom valleys, are typical features of the soils at TNTP.
智利的托雷斯德尔帕恩国家公园(Torres del Paine National Park,TPNP)是巴塔哥尼亚南部最令人印象深刻的地貌之一,在南部冰原的边缘拥有独特的自然元素,但这里的土壤和生态关系方面的知识尚不存在。因此,这项研究的目的是确定代表巴塔哥尼亚热带雨林主要植被类型的当地地形序列上全新世土壤的化学、物理、矿物学和微观形态特征。研究了 12 个土壤剖面的形态、化学、物理和矿物学特性,并根据《土壤分类学》进行了分类。自冰川期以来,植被和土壤分类群的共同演化过程非常明显,在澳洲鹅掌楸林下的荚果化过程导致了spodosols的形成,而在有鹅掌楸林的局部洼地的棕榈化过程则形成了histosols。黄土和凝灰岩覆盖的斜坡形成了带有灌木植被的安地斯土壤。主要的母质包括第四纪晚期安第斯山南部冰川融化产生的沉积物、更新世黄土以及智利周边火山产生的火山灰。这些母质受到第四纪晚期巴塔哥尼亚南部末次冰川最盛期消退后的气候和地貌变化的强烈影响,从而形成了侵蚀和沉积条件(风吹黄土、河流冰川沉积物和冰碛)。稳定的地貌显示了形成安第斯地貌的同源火山灰的影响,以及水成土壤中有机物的积累。已确定的土壤主要有三类:富含黄土的土壤、富含有机质的土壤和贫瘠的土壤。后者的肥力较低,这与新近在不同基质上形成的地貌有关,这些基质包括耕层、岩坡、滑石或冰川沉积物。在围冰期条件下的高山地区,低温扰动特征表明目前没有永久冻土的季节性冻融循环。巴塔哥尼亚南部山区土壤种类的多样性与北半球类似的环境条件和纬度相当。然而,火山喷出物造成的岩石特性以及谷底低海拔地区富含有机质的土壤是巴塔哥尼亚热带雨林土壤的典型特征。
{"title":"Soil-vegetation interplay in a Holocene toposequence at Torres del Paine National Park, southern Andes, Chile","authors":"Eduardo Osório Senra, Carlos Ernesto Gonçalves Reynaud Schaefer, Fábio Soares de Oliveira, Roberto Michel, James Bockheim, Davi Feital Gjorup, Felipe Nogueira Bello Simas, Márcio Rocha Francelino","doi":"10.1002/saj2.20726","DOIUrl":"10.1002/saj2.20726","url":null,"abstract":"<p>Chile's Torres del Paine National Park (TPNP) is one of the most impressive landscapes in southern Patagonia, with unique natural elements on the edge of the southern ice field, where knowledge of soils and ecological relationships is nonexistent. Therefore, the objective of this study was to determine the chemical, physical, mineralogical, and micromorphological characteristics of Holocene soils along a local toposequence representing the main vegetation types of the TPNP. The morphological, chemical, physical, and mineralogical properties of 12 soil profiles were studied and classified according to Soil Taxonomy. Coevolution of vegetation and soil taxa is clearly evident since glaciation, with podsolization under austral <i>Nothofagus pumilio</i> forests leading to the development of spodosols, while paludization in local depressions with <i>Nothofagus</i> forests allowed the formation of histosols. Slopes covered with loess and tephra led to the formation of Andisols with shrub vegetation. Predominant parent materials include till from Late Quaternary advances of southern Andean ice, Pleistocene loess, and volcanic ash from surrounding Chilean volcanoes. The parent materials were strongly influenced by Late Quaternary climatic and landscape changes following the retreat of the Last Glacial Maximum in southern Patagonia, resulting in erosional and depositional conditions (windblown loess, fluvial glacial deposits, and moraines). Stable landforms show the influence of allochthonous volcanic ash shaping Andean features, combined with the accumulation of organic matter in hydromorphic soils. Three main groups of soils have been identified: loess-rich soils, organic-rich soils, and poorly developed soils. The latter show low fertility related to recent landforms on different substrates ranging from till, rocky slopes, talus, or glacial deposits. In high mountain regions under periglacial conditions, cryoturbation features indicate seasonal frost–thaw cycles without current permafrost. The diversity of soil orders in the mountains of southern Patagonia is comparable to similar environmental conditions and latitudes in the Northern Hemisphere. However, the andic properties due to volcanic ejecta inputs, as well as organic-rich soils at low altitudes of bottom valleys, are typical features of the soils at TNTP.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"88 5","pages":"1599-1613"},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141650132","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Daniel Geisseler, Kenneth Miller, Suzette Santiago, Majdi Abou Najm
Soil texture can affect soil temperature, soil moisture, the protection of organic material against microbial degradation, and other soil properties. All these factors potentially influence net nitrogen (N) mineralization. The objective of this analysis is to investigate the relationship between soil texture and net N mineralization using different approaches, including a 10-week laboratory incubation of undisturbed soil cores from 47 sites in California, modeling, and a meta-regression analysis of 461 datasets from 20 studies. In the laboratory incubation as well as in the meta-analysis, total soil N increased significantly with increasing clay content. Net N mineralization expressed in mg kg−1 soil did not change significantly with increasing clay content, but significantly decreased when expressed as a proportion of total soil N. These results are most likely explained by physical and chemical protection of organic molecules by clay minerals. Protection in turn led to the observed increase in total soil N over time. Based on the incubation and measured bulk densities, net N mineralization in the top 15 cm of the soil profile was 30% higher in a sandy loam compared to a clay soil. Model simulations indicated that texture-related differences in soil temperature and moisture have only a small effect on net N mineralization in irrigated agricultural fields under Mediterranean conditions.
{"title":"The multi-faceted relationship between nitrogen mineralization and soil texture","authors":"Daniel Geisseler, Kenneth Miller, Suzette Santiago, Majdi Abou Najm","doi":"10.1002/saj2.20728","DOIUrl":"10.1002/saj2.20728","url":null,"abstract":"<p>Soil texture can affect soil temperature, soil moisture, the protection of organic material against microbial degradation, and other soil properties. All these factors potentially influence net nitrogen (N) mineralization. The objective of this analysis is to investigate the relationship between soil texture and net N mineralization using different approaches, including a 10-week laboratory incubation of undisturbed soil cores from 47 sites in California, modeling, and a meta-regression analysis of 461 datasets from 20 studies. In the laboratory incubation as well as in the meta-analysis, total soil N increased significantly with increasing clay content. Net N mineralization expressed in mg kg<sup>−1</sup> soil did not change significantly with increasing clay content, but significantly decreased when expressed as a proportion of total soil N. These results are most likely explained by physical and chemical protection of organic molecules by clay minerals. Protection in turn led to the observed increase in total soil N over time. Based on the incubation and measured bulk densities, net N mineralization in the top 15 cm of the soil profile was 30% higher in a sandy loam compared to a clay soil. Model simulations indicated that texture-related differences in soil temperature and moisture have only a small effect on net N mineralization in irrigated agricultural fields under Mediterranean conditions.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"88 5","pages":"1792-1807"},"PeriodicalIF":0.0,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/saj2.20728","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141612108","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}