Ziyi Gu, Yang Yang, Tingting Peng, Hui Zhang, Xin Wei, Yingna Liu
Slope aspect is a significant terrain attribute influencing soil physical and chemical processes. Yet its impact on soil quality and erosion has rarely been studied on gently sloping farmlands. The objective was to evaluate the effects of slope aspect on soil quality and its response to soil erosion in the black soil region of northeast China, a temperate environment featuring gently sloping farmlands. Over a nearly north-south symmetric sloping farmland spanning ∼3500 m, fifteen soil physical and chemical properties were investigated at every 40 m, and an integrated soil quality index (SQI) was calculated combining principal component analysis and scoring functions. The mean annual erosion rate (ER) was estimated using the cesium-137 tracing technique. Compared to the south-facing slope, the north-facing slope possessed significantly lower pH and higher saturated hydraulic conductivity, sand content, and almost all the essential nutrient contents, therefore overall better soil quality (p < 0.05). No statistical difference was spotted in ER between the two slopes (p > 0.05); however, erosion was found to deteriorate soil quality via distinct pathways. On the north-facing slope, erosion affected SQI predominantly through its negative impact on soil organic carbon content and wet-aggregate stability, and conservation tillage practices were suggested. However, on the south-facing slope, the detrimental influence was primarily driven through the depletion of soil nutrient contents, particularly available phosphorus and total nitrogen, and contour tillage and hedgerows were strongly recommended. These findings hold important practical implications for agricultural management in temperate environments.
坡向是影响土壤理化过程的重要地形属性。然而,其对土壤质量和侵蚀的影响很少在缓坡农田上进行研究。以东北黑土区为研究对象,研究了不同坡向对土壤质量的影响及其对土壤侵蚀的响应。在跨度约3500 m的近南北对称坡耕地上,研究了每40 m 15个土壤理化性质,并结合主成分分析和评分函数计算了综合土壤质量指数(SQI)。利用铯-137示踪技术估算了平均年侵蚀速率(ER)。与南坡相比,北坡的pH值显著降低,饱和导水率、含砂量和几乎所有必需养分含量均较高,整体土壤质量较好(p < 0.05)。两组间ER差异无统计学意义(p > 0.05);然而,发现侵蚀通过不同的途径使土壤质量恶化。北坡侵蚀主要通过对土壤有机碳含量和湿团聚体稳定性的负面影响来影响土壤质量指数,建议采取保护性耕作措施。然而,在朝南的斜坡上,有害影响主要是由于土壤养分含量的消耗,特别是有效磷和全氮的消耗,因此强烈建议采用等高线耕作和树篱。这些发现对温带环境下的农业管理具有重要的实际意义。
{"title":"Slope aspect affects soil quality and its response to soil erosion on temperate gently sloping farmlands","authors":"Ziyi Gu, Yang Yang, Tingting Peng, Hui Zhang, Xin Wei, Yingna Liu","doi":"10.1002/saj2.70130","DOIUrl":"10.1002/saj2.70130","url":null,"abstract":"<p>Slope aspect is a significant terrain attribute influencing soil physical and chemical processes. Yet its impact on soil quality and erosion has rarely been studied on gently sloping farmlands. The objective was to evaluate the effects of slope aspect on soil quality and its response to soil erosion in the black soil region of northeast China, a temperate environment featuring gently sloping farmlands. Over a nearly north-south symmetric sloping farmland spanning ∼3500 m, fifteen soil physical and chemical properties were investigated at every 40 m, and an integrated soil quality index (SQI) was calculated combining principal component analysis and scoring functions. The mean annual erosion rate (ER) was estimated using the cesium-137 tracing technique. Compared to the south-facing slope, the north-facing slope possessed significantly lower pH and higher saturated hydraulic conductivity, sand content, and almost all the essential nutrient contents, therefore overall better soil quality (<i>p</i> < 0.05). No statistical difference was spotted in ER between the two slopes (<i>p</i> > 0.05); however, erosion was found to deteriorate soil quality via distinct pathways. On the north-facing slope, erosion affected SQI predominantly through its negative impact on soil organic carbon content and wet-aggregate stability, and conservation tillage practices were suggested. However, on the south-facing slope, the detrimental influence was primarily driven through the depletion of soil nutrient contents, particularly available phosphorus and total nitrogen, and contour tillage and hedgerows were strongly recommended. These findings hold important practical implications for agricultural management in temperate environments.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"89 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145111322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elahe Daraei, Hossein Bayat, Jiří Šimůnek, Andrew S. Gregory
Clay nanoparticles (NPs) are recognized as natural soil amendments. However, the effects of different types of clay NPs and their application rates on the physical, chemical, and biological characteristics of soils, solute transport, and plant photosynthesis parameters have not been thoroughly investigated. This study focused on amending two soil textures—sandy loam and loam—by adding 3% nano clay. The original and amended soils were packed into soil columns to conduct cultivation experiments with quinoa (Chenopodium quinoa Willd) plants and displacement solute transport experiments. The goal of column experiments was to explore the impact of the nano clay amendment on the photosynthetic properties of quinoa plants and solute transport in soils. The results indicated that adding NPs to loam soil improved photosynthesis and stomatal conductance. Additionally, the introduction of nano clays reduced sub-stomatal CO2 levels in the amended soils compared to the control soils. In sandy loam soil, both with and without cultivation, the addition of nano clay enhanced saturated hydraulic conductivity, dispersivity, and maximum chloride concentration when compared to the control. However, it also resulted in a decrease in immobile water content and a reduction in peak travel time. In loam soil, the application of nano clay—regardless of cultivation method—increased dispersivity and immobile water contents while reducing maximum chloride concentration. It simultaneously decreased hydraulic conductivity compared to control conditions and also increased it in some instances. This research demonstrates that the nano clay amendment significantly alters soil's physical and chemical properties, affecting solute transport and the photosynthetic parameters of the quinoa cultivar.
{"title":"Evaluating the effects of montmorillonite amendments on quinoa growth, water flow, and solute transport in sandy loam and loam soils","authors":"Elahe Daraei, Hossein Bayat, Jiří Šimůnek, Andrew S. Gregory","doi":"10.1002/saj2.70117","DOIUrl":"10.1002/saj2.70117","url":null,"abstract":"<p>Clay nanoparticles (NPs) are recognized as natural soil amendments. However, the effects of different types of clay NPs and their application rates on the physical, chemical, and biological characteristics of soils, solute transport, and plant photosynthesis parameters have not been thoroughly investigated. This study focused on amending two soil textures—sandy loam and loam—by adding 3% nano clay. The original and amended soils were packed into soil columns to conduct cultivation experiments with quinoa (Chenopodium quinoa Willd) plants and displacement solute transport experiments. The goal of column experiments was to explore the impact of the nano clay amendment on the photosynthetic properties of quinoa plants and solute transport in soils. The results indicated that adding NPs to loam soil improved photosynthesis and stomatal conductance. Additionally, the introduction of nano clays reduced sub-stomatal CO<sub>2</sub> levels in the amended soils compared to the control soils. In sandy loam soil, both with and without cultivation, the addition of nano clay enhanced saturated hydraulic conductivity, dispersivity, and maximum chloride concentration when compared to the control. However, it also resulted in a decrease in immobile water content and a reduction in peak travel time. In loam soil, the application of nano clay—regardless of cultivation method—increased dispersivity and immobile water contents while reducing maximum chloride concentration. It simultaneously decreased hydraulic conductivity compared to control conditions and also increased it in some instances. This research demonstrates that the nano clay amendment significantly alters soil's physical and chemical properties, affecting solute transport and the photosynthetic parameters of the quinoa cultivar.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"89 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145101566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Extracellular enzymes play a key role in microbe-mediated organic matter decomposition in soils, and the efficiency of these enzymes in substrate decomposition depends on their mobility and specific activity in soils. In this work, we explored the influence of biochar adsorption on extracellular enzyme activity across a spectrum of environmental conditions, from simple to complex. Batch adsorption results showed that biochar adsorption of two hydrolytic enzymes—α-amylase and amyloglucosidase (AMG)—similarly decreases with pH and follows the Langmuir isotherm, suggesting electrostatic interaction between them. Activity of AMG and alkaline phosphatase (ALP), which belong to carbon and phosphorus cycling enzymes, was measured using a novel calorimetric method. The technique demonstrated advantages over conventional enzyme assays, such as in situ real-time measurement of reaction rate and the ability to identify potential interferences. The technique enabled the measurement of specific activity of biochar-adsorbed AMG, which ranged from 10% to 90% of that of free AMG. The effect of substrate adsorption on activity measurement was demonstrated through the examination of two substrates for ALP, which suggested the use of effective substrate concentration (instead of nominal concentration) in calculating enzyme activity kinetics. Soil column experiments showed that biochar amendment can affect the activity of AMG in starch hydrolysis through changing the mobility of AMG (and accessibility to substrate) and its specific activity. Results from this work improve our understanding of the effects of biochar adsorption on enzyme activity and suggest the need to appropriately interpret enzyme activity data and account for confounding processes.
{"title":"Effects of biochar adsorption on extracellular enzymes activity: measurement and interpretation","authors":"Lingqun Zeng, Jeremy Feldblyum, Rixiang Huang","doi":"10.1002/saj2.70123","DOIUrl":"10.1002/saj2.70123","url":null,"abstract":"<p>Extracellular enzymes play a key role in microbe-mediated organic matter decomposition in soils, and the efficiency of these enzymes in substrate decomposition depends on their mobility and specific activity in soils. In this work, we explored the influence of biochar adsorption on extracellular enzyme activity across a spectrum of environmental conditions, from simple to complex. Batch adsorption results showed that biochar adsorption of two hydrolytic enzymes—α-amylase and amyloglucosidase (AMG)—similarly decreases with pH and follows the Langmuir isotherm, suggesting electrostatic interaction between them. Activity of AMG and alkaline phosphatase (ALP), which belong to carbon and phosphorus cycling enzymes, was measured using a novel calorimetric method. The technique demonstrated advantages over conventional enzyme assays, such as in situ real-time measurement of reaction rate and the ability to identify potential interferences. The technique enabled the measurement of specific activity of biochar-adsorbed AMG, which ranged from 10% to 90% of that of free AMG. The effect of substrate adsorption on activity measurement was demonstrated through the examination of two substrates for ALP, which suggested the use of effective substrate concentration (instead of nominal concentration) in calculating enzyme activity kinetics. Soil column experiments showed that biochar amendment can affect the activity of AMG in starch hydrolysis through changing the mobility of AMG (and accessibility to substrate) and its specific activity. Results from this work improve our understanding of the effects of biochar adsorption on enzyme activity and suggest the need to appropriately interpret enzyme activity data and account for confounding processes.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"89 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145101549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hydroxyapatite is an important phosphorus (P) sink in calcareous soils. The activity of carbonate in soil pore water, however, is often underestimated because soil respiration and solution-calcite equilibria could elevate CO2(g) concentration much greater than 415 ppmv (i.e., pCO2: ∼0.3 mm Hg). Thus far, the role of CO2(g) or pCO2 in the hydroxyapatite formation in calcareous soils has not been extensively investigated. Accordingly, the effects of CO2 concentration (415, 8000, and 20,000 ppmv) on hydroxyapatite formation were investigated at pH 8 using experimental geochemistry and X-ray diffraction (XRD) analysis. XRD analyses showed the formation of hydroxyapatite under all CO2 concentrations, but the extent of calcite formation increased with increasing CO2 concentration. The formation of calcium (Ca) carbonate phosphate was also observed after 30 days under [CO2(g)] up to 8000 ppmv. This is attributed to an increase in calcium carbonate formation. Scanning electron microscopy showed rounded hydroxyapatite particles. The variability of [CO2(g)] in subsoils should be considered in the P cycle in calcareous soils.
羟基磷灰石是钙质土壤中重要的磷汇。然而,土壤孔隙水中碳酸盐的活性常常被低估,因为土壤呼吸和溶液-方解石平衡可以使CO2(g)浓度大大高于415 ppmv(即pCO2: ~ 0.3 mm Hg)。迄今为止,CO2(g)或pCO2在钙质土壤中羟基磷灰石形成中的作用尚未得到广泛的研究。因此,采用实验地球化学和x射线衍射(XRD)分析,研究了pH为8时CO2浓度(415、8000和20000 ppmv)对羟基磷灰石形成的影响。XRD分析表明,在所有CO2浓度下均可形成羟基磷灰石,但方解石的形成程度随CO2浓度的增加而增加。在高达8000 ppmv的[CO2(g)]下30天后,还观察到碳酸钙(Ca)磷酸盐的形成。这是由于碳酸钙地层的增加。扫描电镜显示圆形羟基磷灰石颗粒。在钙质土壤的磷循环中,应考虑底土[CO2(g)]的变异性。
{"title":"Effects of pCO2 on hydroxyapatite formation: X-ray diffraction study","authors":"Shravani Kalita, Ai Chen, Yuji Arai","doi":"10.1002/saj2.70126","DOIUrl":"10.1002/saj2.70126","url":null,"abstract":"<p>Hydroxyapatite is an important phosphorus (P) sink in calcareous soils. The activity of carbonate in soil pore water, however, is often underestimated because soil respiration and solution-calcite equilibria could elevate CO<sub>2</sub>(g) concentration much greater than 415 ppmv (i.e., pCO<sub>2</sub>: ∼0.3 mm Hg). Thus far, the role of CO<sub>2</sub>(g) or pCO<sub>2</sub> in the hydroxyapatite formation in calcareous soils has not been extensively investigated. Accordingly, the effects of CO<sub>2</sub> concentration (415, 8000, and 20,000 ppmv) on hydroxyapatite formation were investigated at pH 8 using experimental geochemistry and X-ray diffraction (XRD) analysis. XRD analyses showed the formation of hydroxyapatite under all CO<sub>2</sub> concentrations, but the extent of calcite formation increased with increasing CO<sub>2</sub> concentration. The formation of calcium (Ca) carbonate phosphate was also observed after 30 days under [CO<sub>2</sub>(g)] up to 8000 ppmv. This is attributed to an increase in calcium carbonate formation. Scanning electron microscopy showed rounded hydroxyapatite particles. The variability of [CO<sub>2</sub>(g)] in subsoils should be considered in the P cycle in calcareous soils.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"89 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145101101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michel Aldrighi, Juliana Domingues Lima, Paulo Ivan Fernandes-Júnior, Enderson Petrônio de Brito Ferreira
Soybeans (Glycine max (L.) Merr.) are mainly grown in Brazil during the rainy season. However, there are typically periods of rainfall deficiency, which causes water-deficit stress to the crop. Plant growth-promoting rhizobacteria (PGPR) can help alleviate these stresses by inducing water deficit tolerance. The objective of this study was to evaluate the role of PGPR in enhancing soybean tolerance to water-deficit stress. Six PGPR isolates, two for induction of water-deficit tolerance (ESA 441, BRM 034008), two AIA-producing (Ab-V5, BRM 063574), and two phosphate solubilizing (BRM 063573, BRM 67205), and their combination were evaluated, for a total of 16 treatments. The experiment was conducted in a greenhouse using a randomized block design with three replicates. Effects were measured on gas exchange parameters (stomatal conductance, transpiration, internal CO2 concentration, and photosynthetic rate), growth parameters (shoot dry weight, root dry weight, root length, root surface area, root diameter, and root volume), and yield components (pod weight, number of pods, number of grains, and grain weight). Co-inoculation significantly reduces the effects of water stress on gas exchange, plant growth, and productivity compared to single inoculation. Notable combinations, such as BRM 063574 + BRM 67205 + BRM 034008 and BRM 063574 + BRM 063573 + ESA 441, improved root and shoot growth under stress conditions. Yield components also improved with co-inoculations, with combinations such as BRM 063574 + BRM 67205 + ESA 441 showing the highest efficacy. These results suggest that specific PGPR co-inoculations can improve soybean resilience to water deficit stress and promote better growth and yield.
{"title":"Performance of soybeans inoculated with multifunctional microorganisms under water-deficit stress","authors":"Michel Aldrighi, Juliana Domingues Lima, Paulo Ivan Fernandes-Júnior, Enderson Petrônio de Brito Ferreira","doi":"10.1002/saj2.70131","DOIUrl":"10.1002/saj2.70131","url":null,"abstract":"<p>Soybeans (<i>Glycine max</i> (L.) Merr.) are mainly grown in Brazil during the rainy season. However, there are typically periods of rainfall deficiency, which causes water-deficit stress to the crop. Plant growth-promoting rhizobacteria (PGPR) can help alleviate these stresses by inducing water deficit tolerance. The objective of this study was to evaluate the role of PGPR in enhancing soybean tolerance to water-deficit stress. Six PGPR isolates, two for induction of water-deficit tolerance (ESA 441, BRM 034008), two AIA-producing (Ab-V5, BRM 063574), and two phosphate solubilizing (BRM 063573, BRM 67205), and their combination were evaluated, for a total of 16 treatments. The experiment was conducted in a greenhouse using a randomized block design with three replicates. Effects were measured on gas exchange parameters (stomatal conductance, transpiration, internal CO<sub>2</sub> concentration, and photosynthetic rate), growth parameters (shoot dry weight, root dry weight, root length, root surface area, root diameter, and root volume), and yield components (pod weight, number of pods, number of grains, and grain weight). Co-inoculation significantly reduces the effects of water stress on gas exchange, plant growth, and productivity compared to single inoculation. Notable combinations, such as BRM 063574 + BRM 67205 + BRM 034008 and BRM 063574 + BRM 063573 + ESA 441, improved root and shoot growth under stress conditions. Yield components also improved with co-inoculations, with combinations such as BRM 063574 + BRM 67205 + ESA 441 showing the highest efficacy. These results suggest that specific PGPR co-inoculations can improve soybean resilience to water deficit stress and promote better growth and yield.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"89 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://acsess.onlinelibrary.wiley.com/doi/epdf/10.1002/saj2.70131","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145022055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mathematical models are used extensively to estimate soil pesticide leaching in regulatory risk assessments and are often solved numerically, which can obscure simple insights. We developed an analytical solution that highlights the role of the ratio of sorption to degradation in compound leaching, denoted as the sorption-extinction (Se) coefficient. We extend the classic analytical work of Jury to derive a steady-state solution for pesticide concentrations as a function of soil depth considering nonlinear sorption. We consider degradation in the soil water and solid phases and transport driven by advection, diffusion, and dispersion. Nonlinear sorption was handled using the mathematical technique of asymptotic expansions. We compared the steady-state analytic solution with extended duration simulations of the European regulatory numerical model PEARL for all FOCUS scenarios (i.e., nine European regions). The analytic solution was consistent with the long-term PEARL results across most FOCUS scenarios, and the results show that for a fixed Se coefficient, similar mean pesticide concentrations at the regulatory leaching depth (1 m) are obtained despite varying the sorption and degradation by an order of magnitude. This indicates that the Se coefficient is a dominant component of mean leaching behavior rather than degradation or sorption alone. However, as the absolute value of degradation and sorption decreases, variability of the pesticide concentration increases. While we demonstrate the approach using the FOCUS scenarios weather and soil data, this method can be applied as a rapid and time-efficient predictive tool for any region with either highly or more scarcely parameterized soil/weather data.
{"title":"Analytical equation for rapid estimation of pesticide leaching risk accounting for nonlinear sorption with bulk soil biodegradation","authors":"S. Ruiz, S. Payvandi, P. Sweeney, T. Roose","doi":"10.1002/saj2.70120","DOIUrl":"10.1002/saj2.70120","url":null,"abstract":"<p>Mathematical models are used extensively to estimate soil pesticide leaching in regulatory risk assessments and are often solved numerically, which can obscure simple insights. We developed an analytical solution that highlights the role of the ratio of sorption to degradation in compound leaching, denoted as the sorption-extinction (<i>S<sub>e</sub></i>) coefficient. We extend the classic analytical work of Jury to derive a steady-state solution for pesticide concentrations as a function of soil depth considering nonlinear sorption. We consider degradation in the soil water and solid phases and transport driven by advection, diffusion, and dispersion. Nonlinear sorption was handled using the mathematical technique of asymptotic expansions. We compared the steady-state analytic solution with extended duration simulations of the European regulatory numerical model PEARL for all FOCUS scenarios (i.e., nine European regions). The analytic solution was consistent with the long-term PEARL results across most FOCUS scenarios, and the results show that for a fixed <i>S<sub>e</sub></i> coefficient, similar mean pesticide concentrations at the regulatory leaching depth (1 m) are obtained despite varying the sorption and degradation by an order of magnitude. This indicates that the <i>S<sub>e</sub></i> coefficient is a dominant component of mean leaching behavior rather than degradation or sorption alone. However, as the absolute value of degradation and sorption decreases, variability of the pesticide concentration increases. While we demonstrate the approach using the FOCUS scenarios weather and soil data, this method can be applied as a rapid and time-efficient predictive tool for any region with either highly or more scarcely parameterized soil/weather data.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"89 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://acsess.onlinelibrary.wiley.com/doi/epdf/10.1002/saj2.70120","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144998690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Soil thermal conductivity (λ) is essential for understanding coupled matter and energy flux in porous systems. However, its prediction has remained unsettled due to its intricate relationship with soil properties such as soil moisture content (θ) and texture. This study investigates λ–θ relationship in 15 tropical soils from Ghana. The results show that soil λ–θ relationship is strongly nonlinear and depends on texture with fine-textured soil exhibiting a flat tail in λ the dry range. Four distinct domains, namely, hydration, pendular, funicular, and capillary, ranging from dry to wet condition, were identified. Two modeling approaches, percolation-based effective medium approximation (P-EMA) and an empirical sigmoidal model (SM), were evaluated on the λ(θ) dataset. An explicit λ(θ) P-EMA variant outperformed a θ(λ) variant, achieving performance on par with the SM. However, the explicit λ(θ) P-EMA performs well in the hydration regime, whereas the SM performs well in the capillary regime. The explicit λ(θ) P-EMA and SM had difficulty fitting the nonlinear behaviour at intermediate θ beyond the pendular domain, possibly due to the structural complexity, which is also linked to phase distribution. This study advances our knowledge on λ–θ relationships in Ghanaian soils.
{"title":"Evaluating the performance of percolation-based effective medium approximation and sigmoidal model for modeling thermal conductivity of tropical soils","authors":"S. K. Kumahor, B. Nyarko-Ackom","doi":"10.1002/saj2.70118","DOIUrl":"10.1002/saj2.70118","url":null,"abstract":"<p>Soil thermal conductivity (<i>λ</i>) is essential for understanding coupled matter and energy flux in porous systems. However, its prediction has remained unsettled due to its intricate relationship with soil properties such as soil moisture content (<i>θ</i>) and texture. This study investigates <i>λ–θ</i> relationship in 15 tropical soils from Ghana. The results show that soil <i>λ</i>–<i>θ</i> relationship is strongly nonlinear and depends on texture with fine-textured soil exhibiting a flat tail in <i>λ</i> the dry range. Four distinct domains, namely, hydration, pendular, funicular, and capillary, ranging from dry to wet condition, were identified. Two modeling approaches, percolation-based effective medium approximation (P-EMA) and an empirical sigmoidal model (SM), were evaluated on the <i>λ</i>(<i>θ</i>) dataset. An explicit <i>λ</i>(<i>θ</i>) P-EMA variant outperformed a <i>θ</i>(<i>λ</i>) variant, achieving performance on par with the SM. However, the explicit <i>λ</i>(<i>θ</i>) P-EMA performs well in the hydration regime, whereas the SM performs well in the capillary regime. The explicit <i>λ</i>(<i>θ</i>) P-EMA and SM had difficulty fitting the nonlinear behaviour at intermediate <i>θ</i> beyond the pendular domain, possibly due to the structural complexity, which is also linked to phase distribution. This study advances our knowledge on <i>λ</i>–<i>θ</i> relationships in Ghanaian soils.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"89 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144998688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ryan C. Hodges, Janis L. Boettinger, Jonathan L. Deenik
The western slope of Haleakalā, Maui, demonstrates a wide range in soil development (eight mapped soil orders), thus providing a unique opportunity to investigate how climate and volcanic ash deposition influence soil development on basalt. The objective of this study was to examine soil chemical and physical properties across climatic gradients and elevation to address how climate and relatively recent volcanic ash deposition affect pedogenesis across western Haleakalā. Sixteen pedons were sampled: five in a coastal climosequence uninfluenced by volcanic ash (15–224 m elevation; 461–2768 mm mean annual precipitation [MAP]; 22°C–23°C mean annual temperature [MAT]; 3357–5577 mm potential evapotranspiration [PET]), and eleven in an elevational transect variably influenced by volcanic ash (73–1362 m elevation; 283–2267 mm MAP; 13°C–24°C MAT; 1555–2704 mm PET). Pedogenic thresholds for dynamic soil properties (base saturation [BS], pH, organic C, and Al/Si extracted by ammonium oxalate) occurred at about 0.4 MAP/PET (1500 mm MAP) along the coastal climosequence and at about 0.8 MAP/PET (1600 mm MAP) along the elevational transect due to an increase in soil moisture availability and leaching potential. Greater clay/Fe (extracted by citrate dithionite [CD]) and crystalline Fe (CD minus hydroxylamine hydrochloride-hydrochloric acid [HH]) in drier lowland soils more distant from the summit indicate they are likely older and occur on older landforms. The ratio MAP/PET is an effective climatic index for understanding trends in pedogenesis and indicating pedogenic thresholds in climosequences and elevational transects in Hawaiian ecosystems.
毛伊岛Haleakalā的西部斜坡显示了广泛的土壤发育(8个已绘制的土壤阶),因此提供了一个独特的机会来研究气候和火山灰沉积如何影响玄武岩上的土壤发育。本研究的目的是研究不同气候梯度和海拔的土壤化学和物理性质,以解决气候和相对较新的火山灰沉积如何影响哈雷阿卡拉西部的土壤形成。16个样地:5个位于不受火山灰影响的沿海气候序列(海拔15-224 m,年平均降水量461-2768 mm [MAP],年平均气温22°C - 23°C [MAT],潜在蒸散量3357-5577 mm [PET]), 11个位于受火山灰影响较大的海拔样带(海拔73-1362 m, MAP 283-2267 mm, MAT 13°C - 24°C, PET 1555-2704 mm)。动态土壤特性的成土阈值(碱基饱和度[BS]、pH、有机C和草酸铵提取的Al/Si)沿沿海气候序列约为0.4 MAP/PET (1500 mm MAP),沿高程样带约为0.8 MAP/PET (1600 mm MAP),这是由于土壤水分有效性和淋滤潜力的增加。在离山顶较远的干燥低地土壤中,粘土/铁(由柠檬酸二亚硝酸盐[CD]提取)和结晶铁(CD -盐酸羟胺[HH])含量较高,表明它们可能更古老,出现在更古老的地貌上。MAP/PET比值是了解夏威夷生态系统气候序列和海拔样带的成土趋势和指示成土阈值的有效气候指标。
{"title":"Pedogenesis of a coastal climosequence and a volcanic ash-influenced elevational transect of western Haleakalā, Maui","authors":"Ryan C. Hodges, Janis L. Boettinger, Jonathan L. Deenik","doi":"10.1002/saj2.70119","DOIUrl":"10.1002/saj2.70119","url":null,"abstract":"<p>The western slope of Haleakalā, Maui, demonstrates a wide range in soil development (eight mapped soil orders), thus providing a unique opportunity to investigate how climate and volcanic ash deposition influence soil development on basalt. The objective of this study was to examine soil chemical and physical properties across climatic gradients and elevation to address how climate and relatively recent volcanic ash deposition affect pedogenesis across western Haleakalā. Sixteen pedons were sampled: five in a coastal climosequence uninfluenced by volcanic ash (15–224 m elevation; 461–2768 mm mean annual precipitation [MAP]; 22°C–23°C mean annual temperature [MAT]; 3357–5577 mm potential evapotranspiration [PET]), and eleven in an elevational transect variably influenced by volcanic ash (73–1362 m elevation; 283–2267 mm MAP; 13°C–24°C MAT; 1555–2704 mm PET). Pedogenic thresholds for dynamic soil properties (base saturation [BS], pH, organic C, and Al/Si extracted by ammonium oxalate) occurred at about 0.4 MAP/PET (1500 mm MAP) along the coastal climosequence and at about 0.8 MAP/PET (1600 mm MAP) along the elevational transect due to an increase in soil moisture availability and leaching potential. Greater clay/Fe (extracted by citrate dithionite [CD]) and crystalline Fe (CD minus hydroxylamine hydrochloride-hydrochloric acid [HH]) in drier lowland soils more distant from the summit indicate they are likely older and occur on older landforms. The ratio MAP/PET is an effective climatic index for understanding trends in pedogenesis and indicating pedogenic thresholds in climosequences and elevational transects in Hawaiian ecosystems.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"89 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://acsess.onlinelibrary.wiley.com/doi/epdf/10.1002/saj2.70119","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144998685","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sara Ghavamifar, Hossein Torabi Golsefidi, Ali Bahrami Samani, Zhaohui Li, Ravi Naidu
The entry of 137Cs into the soil can lead to its presence in food and water. Understanding how 137Cs behaves in soil is important for predicting its environmental fate. Thirteen agricultural and one pasture soil sample were collected from various locations. A comprehensive analysis of the soil's physicochemical properties and climate and geographical factors was conducted. 137Cs activity and clay mineralogy were determined using γ-spectrometer and x-ray diffraction. Correlation analysis between measured factors with 137Cs activity revealed that the presence of carbonate minerals played a significant role in the negative correlation between pH and 137Cs activity (r = −0.43). While a weak negative correlation was observed between clay mineral content and 137Cs activity (r = −0.12), the type of clay minerals presents proved to be more influential on 137Cs adsorption. Smectite minerals exhibited a positive correlation with 137Cs activity (r = 0.46), aligning with the correlation between 137Cs activity and precipitation (r = 0.49). The strong positive correlation between longitude and 137Cs activity (r = 0.66, p < 0.01) was not directly indicative of longitude's influence on nuclear fallout distribution. Instead, this correlation was attributed to the interplay of other factors, including precipitation, smectite, calcium carbonate, and chlorite minerals. The possible effect of soil erosion, land use, and human activity on 137Cs activity was discussed in provinces with similar soil and climate characteristics. This research explored the potential influence of various factors on 137Cs activity, highlighting the complexity of environmental factors in accurately estimating 137Cs levels in soil.
{"title":"The correlation of soil properties, climate factors, and 137Cs activity in soils","authors":"Sara Ghavamifar, Hossein Torabi Golsefidi, Ali Bahrami Samani, Zhaohui Li, Ravi Naidu","doi":"10.1002/saj2.70122","DOIUrl":"10.1002/saj2.70122","url":null,"abstract":"<p>The entry of <sup>137</sup>Cs into the soil can lead to its presence in food and water. Understanding how <sup>137</sup>Cs behaves in soil is important for predicting its environmental fate. Thirteen agricultural and one pasture soil sample were collected from various locations. A comprehensive analysis of the soil's physicochemical properties and climate and geographical factors was conducted. <sup>137</sup>Cs activity and clay mineralogy were determined using γ-spectrometer and x-ray diffraction. Correlation analysis between measured factors with <sup>137</sup>Cs activity revealed that the presence of carbonate minerals played a significant role in the negative correlation between pH and <sup>137</sup>Cs activity (<i>r</i> = −0.43). While a weak negative correlation was observed between clay mineral content and <sup>137</sup>Cs activity (<i>r</i> = −0.12), the type of clay minerals presents proved to be more influential on <sup>137</sup>Cs adsorption. Smectite minerals exhibited a positive correlation with <sup>137</sup>Cs activity (<i>r</i> = 0.46), aligning with the correlation between <sup>137</sup>Cs activity and precipitation (<i>r</i> = 0.49). The strong positive correlation between longitude and <sup>137</sup>Cs activity (<i>r</i> = 0.66, <i>p</i> < 0.01) was not directly indicative of longitude's influence on nuclear fallout distribution. Instead, this correlation was attributed to the interplay of other factors, including precipitation, smectite, calcium carbonate, and chlorite minerals. The possible effect of soil erosion, land use, and human activity on <sup>137</sup>Cs activity was discussed in provinces with similar soil and climate characteristics. This research explored the potential influence of various factors on <sup>137</sup>Cs activity, highlighting the complexity of environmental factors in accurately estimating <sup>137</sup>Cs levels in soil.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"89 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144998687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kohinoor Begum, Zhongqi Cheng, Geraldine N. Vega Pizarro, Milton E. Vega Luna, Braden Fleming, Austin Price, Joxelle Velázquez García, Randy Riddle, Donald C. Parizek, Luis A. Hernandez, Richard K. Shaw, Peter M. Groffman
Urban soils are key components of urban ecosystems and can contribute to the solution for many ecological and environmental problems such as stormwater runoff, pollution mitigation, and urban food production. Urbanization processes often result in highly disturbed and spatially variable urban soils. Besides heterogeneity, one of the unique and intriguing aspects of urban soil is the nature and properties of organic carbon, with a significant percentage being anthropogenic carbon such as black carbon, which is less biologically active than natural organic matter. We sampled 13 soil profiles covering a wide range of soil conditions, including both anthropogenic and native soils, across New York City. At each site from each horizon, soil samples were collected for laboratory determination of total carbon and nitrogen, black carbon, microbial biomass carbon and nitrogen, and pools of readily mineralizable carbon and nitrogen. We hypothesized that the carbon present in urban soil profiles derived from human-altered and human-transported (HAHT) parent materials has a lower capacity to support microbial biomass and a limited nitrogen supplying ability compared to the carbon found in urban soils derived from native parent materials. We found that total carbon and nitrogen were as high, or even higher in soils derived from HAHT parent materials than in native soil profiles, but that labile pools were lower in the HAHT soils. Assessment of the quality of organic carbon, which is strongly affected by HAHT materials, is important for understanding the ability of urban soils to support a wide range of ecological and environmental functions.
{"title":"Total and labile carbon and nitrogen in anthropogenic and native soils of New York City","authors":"Kohinoor Begum, Zhongqi Cheng, Geraldine N. Vega Pizarro, Milton E. Vega Luna, Braden Fleming, Austin Price, Joxelle Velázquez García, Randy Riddle, Donald C. Parizek, Luis A. Hernandez, Richard K. Shaw, Peter M. Groffman","doi":"10.1002/saj2.70121","DOIUrl":"10.1002/saj2.70121","url":null,"abstract":"<p>Urban soils are key components of urban ecosystems and can contribute to the solution for many ecological and environmental problems such as stormwater runoff, pollution mitigation, and urban food production. Urbanization processes often result in highly disturbed and spatially variable urban soils. Besides heterogeneity, one of the unique and intriguing aspects of urban soil is the nature and properties of organic carbon, with a significant percentage being anthropogenic carbon such as black carbon, which is less biologically active than natural organic matter. We sampled 13 soil profiles covering a wide range of soil conditions, including both anthropogenic and native soils, across New York City. At each site from each horizon, soil samples were collected for laboratory determination of total carbon and nitrogen, black carbon, microbial biomass carbon and nitrogen, and pools of readily mineralizable carbon and nitrogen. We hypothesized that the carbon present in urban soil profiles derived from human-altered and human-transported (HAHT) parent materials has a lower capacity to support microbial biomass and a limited nitrogen supplying ability compared to the carbon found in urban soils derived from native parent materials. We found that total carbon and nitrogen were as high, or even higher in soils derived from HAHT parent materials than in native soil profiles, but that labile pools were lower in the HAHT soils. Assessment of the quality of organic carbon, which is strongly affected by HAHT materials, is important for understanding the ability of urban soils to support a wide range of ecological and environmental functions.</p>","PeriodicalId":101043,"journal":{"name":"Proceedings - Soil Science Society of America","volume":"89 5","pages":""},"PeriodicalIF":0.0,"publicationDate":"2025-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144997916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}