Pub Date : 2022-07-01DOI: 10.1016/j.recm.2022.07.002
Heng Zhao, Chunyang Zeng, N. Tsubaki
{"title":"A mini review on recent advances in thermocatalytic hydrogenation of carbon dioxide to value-added chemicals and fuels","authors":"Heng Zhao, Chunyang Zeng, N. Tsubaki","doi":"10.1016/j.recm.2022.07.002","DOIUrl":"https://doi.org/10.1016/j.recm.2022.07.002","url":null,"abstract":"","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"230 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78795674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-07-01DOI: 10.1016/j.recm.2022.06.005
Xiaoguang San, Yue Zhang, Lei Zhang, Guosheng Wang, Jiaqi Kang, Dan Meng, Yanbai Shen
{"title":"Ultrasensitive and selective sensing material of ultrafine WO3 nanoparticles for the detection of ppb-level NO2","authors":"Xiaoguang San, Yue Zhang, Lei Zhang, Guosheng Wang, Jiaqi Kang, Dan Meng, Yanbai Shen","doi":"10.1016/j.recm.2022.06.005","DOIUrl":"https://doi.org/10.1016/j.recm.2022.06.005","url":null,"abstract":"","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85142326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Crystal structure and catalytic performance for direct oxidation of propylene to acrylic acid of MoVTeNbOx prepared by high-pressure hydrothermal synthesis","authors":"Yiwen Wang, Yaoxin Fan, Shuangming Li, Yujiao Wang, Yanan Chen, Dongqi Liu, W. Wei, Sansan Yu","doi":"10.1016/j.recm.2022.07.004","DOIUrl":"https://doi.org/10.1016/j.recm.2022.07.004","url":null,"abstract":"","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82904153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01DOI: 10.1016/j.recm.2022.04.001
Zhennan Han , Junrong Yue , Chao Wang , Xi Zeng , Jian Yu , Fang Wang , Yu Guan , Xuejing Liu , Fu Ding , Liangliang Fu , Xin Jia , Xingfei Song , Dingrong Bai , Guangwen Xu
Micro reactors are the essential part of thermal analysis techniques for characterizing gas-solid thermochemical reactions. The dynamic and diversified needs for investigating various complex materials and gas-solid reactions have led to the development of a variety of different microreactors over the years. Solid particles in microreactors are normally heated by furnaces from outside, resistive elements from inside, direct contact with bed particles, or other non-resistively methods. Solid particles can be fixed or fluidized in reactors where gas-solid contacts vary from diffusion-dominated to nearly diffusion-free conditions. Based on these characteristics, in this article we presented a broad classification for microreactors used for thermal analysis of gas-solid reactions. For each of the most popularly used microreactors, their features and limitations are briefly reviewed. By addressing the diversity of the microreactors used in the field of thermal analysis, the review aims at providing general guidance for the selection and operation of the microreactor to satisfy one's practical specific needs.
{"title":"Micro reactors for measurement and analysis of thermochemical gas-solid reactions","authors":"Zhennan Han , Junrong Yue , Chao Wang , Xi Zeng , Jian Yu , Fang Wang , Yu Guan , Xuejing Liu , Fu Ding , Liangliang Fu , Xin Jia , Xingfei Song , Dingrong Bai , Guangwen Xu","doi":"10.1016/j.recm.2022.04.001","DOIUrl":"10.1016/j.recm.2022.04.001","url":null,"abstract":"<div><p>Micro reactors are the essential part of thermal analysis techniques for characterizing gas-solid thermochemical reactions. The dynamic and diversified needs for investigating various complex materials and gas-solid reactions have led to the development of a variety of different microreactors over the years. Solid particles in microreactors are normally heated by furnaces from outside, resistive elements from inside, direct contact with bed particles, or other non-resistively methods. Solid particles can be fixed or fluidized in reactors where gas-solid contacts vary from diffusion-dominated to nearly diffusion-free conditions. Based on these characteristics, in this article we presented a broad classification for microreactors used for thermal analysis of gas-solid reactions. For each of the most popularly used microreactors, their features and limitations are briefly reviewed. By addressing the diversity of the microreactors used in the field of thermal analysis, the review aims at providing general guidance for the selection and operation of the microreactor to satisfy one's practical specific needs.</p></div>","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"1 2","pages":"Pages 152-166"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772443322000204/pdfft?md5=cac8edcf4e280e6632e0d8639e9f7e2a&pid=1-s2.0-S2772443322000204-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"85649836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01DOI: 10.1016/j.recm.2022.03.003
Haibo Wang , Zhiwei Zhen , Shuhua Yao , Shifeng Li
The massive stacking of the coal gangue (CG) in the coal mining process, discarded industrial zeolite waste (IZW) and agricultural corn straw (CS) has caused serious environmental pollution and resource waste. To achieve the recycling of solid waste, an economical method for synthesizing ultramarine blue pigment using a two-step calcination process of the CG/IZW/Na2CO3/S/CS with the mass rates of 1.50: 0.50: 2.50: 3.50: 1.00 (the first stage at 400°C for 0.50 h and the second stage at 900°C for 2.00 h) is proposed in this paper. The structure and composition of the synthesis ultramarine blue pigment were characterized by XRD, FT-IR, Raman, as well as SEM technologies, and results showed it had a sodalite structure containing S3− and S2− radicals. Furthermore, SiO2 (1.20 mL of tetraethyl orthosilicate (TEOS) as the precursor and 4.50 mL of NH3•H2O as the catalyst) coated the synthesis ultramarine blue pigment (1.00 g) was successfully synthesized by sol-gel technique to improve the acid resistance of the pigment (pH=2.50-3.00). This new method of preparing ultramarine blue pigments not only achieves resource reuse at a low cost but also improves the acid rain resistance of the pigments.
煤炭开采过程中大量堆积的煤矸石(CG)、废弃的工业沸石废料(IZW)和农业玉米秸秆(CS)造成了严重的环境污染和资源浪费。为了实现固体废物的资源化利用,本文提出了一种采用质量比为1.50:0.50:2.50:3.50:1.00的CG/IZW/Na2CO3/S/CS两步焙烧工艺(第一步400℃焙烧0.50 h,第二阶段900℃焙烧2.00 h)合成深蓝颜料的经济方法。采用XRD、FT-IR、Raman和SEM等技术对合成的深蓝色颜料的结构和组成进行了表征,结果表明,合成的深蓝色颜料具有含有S3−和S2−自由基的钠盐结构。采用溶胶-凝胶法制备了以1.20 mL正硅酸四乙酯(TEOS)为前驱体,4.50 mL NH3•H2O为催化剂的SiO2包覆在1.00 g合成的青蓝色颜料上,提高了颜料(pH=2.50-3.00)的耐酸性能。这种制备深蓝色颜料的新方法不仅实现了资源的低成本再利用,而且提高了颜料的抗酸雨性能。
{"title":"Synthesis of high acid-resistant ultramarine blue pigment through coal gangue, industrial zeolite waste and corn straw waste recycling","authors":"Haibo Wang , Zhiwei Zhen , Shuhua Yao , Shifeng Li","doi":"10.1016/j.recm.2022.03.003","DOIUrl":"10.1016/j.recm.2022.03.003","url":null,"abstract":"<div><p>The massive stacking of the coal gangue (CG) in the coal mining process, discarded industrial zeolite waste (IZW) and agricultural corn straw (CS) has caused serious environmental pollution and resource waste. To achieve the recycling of solid waste, an economical method for synthesizing ultramarine blue pigment using a two-step calcination process of the CG/IZW/Na<sub>2</sub>CO<sub>3</sub>/S/CS with the mass rates of 1.50: 0.50: 2.50: 3.50: 1.00 (the first stage at 400°C for 0.50 h and the second stage at 900°C for 2.00 h) is proposed in this paper. The structure and composition of the synthesis ultramarine blue pigment were characterized by XRD, FT-IR, Raman, as well as SEM technologies, and results showed it had a sodalite structure containing S<sub>3</sub><sup>−</sup> and S<sub>2</sub><sup>−</sup> radicals. Furthermore, SiO<sub>2</sub> (1.20 mL of tetraethyl orthosilicate (TEOS) as the precursor and 4.50 mL of NH<sub>3</sub>•H<sub>2</sub>O as the catalyst) coated the synthesis ultramarine blue pigment (1.00 g) was successfully synthesized by sol-gel technique to improve the acid resistance of the pigment (pH=2.50-3.00). This new method of preparing ultramarine blue pigments not only achieves resource reuse at a low cost but also improves the acid rain resistance of the pigments.</p></div>","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"1 2","pages":"Pages 137-145"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772443322000198/pdfft?md5=51177520703bde0227d15396f7faf014&pid=1-s2.0-S2772443322000198-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74716167","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01DOI: 10.1016/j.recm.2022.06.001
Ji Zhang , Jiaqiang Liu , Xianliang Li , Yan Xu
Controllable synthesis of luminescent metal-organic frameworks (MOFs) having the merits of ease preparation, outstanding sensitivity and stability is of great significance for exploring their efficient sensing applications. Herein, we report a hierarchical terbium-doped yttrium-benzene-1,3,5-tricarboxylate MOF nanosheet via solvent-free synthetic strategy with a topological structure of MIL-78. The fluorescence property of the hierarchical Tb3+-doped Y-based MOF nanosheets can be tuned by adjusting the molar ratio of Tb3+ to Y3+ ions, and the Tb0.5Y0.5-MOF nanosheet-like morphology with the optimum characteristic Tb3+ ion green emission exhibited great potential acting as fluorescence probe for highly sensitive Fe3+ and Cr2O72− detection. The Tb3+-doped Y-MOF nanosheets show a fast response time of less than 1 s for Fe3+ ions. They also have low detection limits of 0.40 and 0.26 µM toward Fe3+ and Cr2O72− ions, respectively, as well as excellent stability. This work paves the way to explore intriguing hierarchical MOF-based luminescent materials for efficient fluorescence sensing applications.
{"title":"Solvent-free synthesis of hierarchical Tb3+-doped Yttrium benzene-1,3,5-tricarboxylate metal organic framework nanosheets for fast and highly sensitive fluorescence detection of Fe3+ and Cr2O72− ions","authors":"Ji Zhang , Jiaqiang Liu , Xianliang Li , Yan Xu","doi":"10.1016/j.recm.2022.06.001","DOIUrl":"https://doi.org/10.1016/j.recm.2022.06.001","url":null,"abstract":"<div><p>Controllable synthesis of luminescent metal-organic frameworks (MOFs) having the merits of ease preparation, outstanding sensitivity and stability is of great significance for exploring their efficient sensing applications. Herein, we report a hierarchical terbium-doped yttrium-benzene-1,3,5-tricarboxylate MOF nanosheet <em>via</em> solvent-free synthetic strategy with a topological structure of MIL-78. The fluorescence property of the hierarchical Tb<sup>3+</sup>-doped Y-based MOF nanosheets can be tuned by adjusting the molar ratio of Tb<sup>3+</sup> to Y<sup>3+</sup> ions, and the Tb<sub>0.5</sub>Y<sub>0.5</sub>-MOF nanosheet-like morphology with the optimum characteristic Tb<sup>3+</sup> ion green emission exhibited great potential acting as fluorescence probe for highly sensitive Fe<sup>3+</sup> and Cr<sub>2</sub>O<sub>7</sub><sup>2−</sup> detection. The Tb<sup>3+</sup>-doped Y-MOF nanosheets show a fast response time of less than 1 s for Fe<sup>3+</sup> ions. They also have low detection limits of 0.40 and 0.26 µM toward Fe<sup>3+</sup> and Cr<sub>2</sub>O<sub>7</sub><sup>2−</sup> ions, respectively, as well as excellent stability. This work paves the way to explore intriguing hierarchical MOF-based luminescent materials for efficient fluorescence sensing applications.</p></div>","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"1 2","pages":"Pages 146-151"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772443322000216/pdfft?md5=80eb9bbfe1da0c46392042d65afbf33d&pid=1-s2.0-S2772443322000216-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137090459","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01DOI: 10.1016/j.recm.2022.06.004
Hongrui Yao , Lijuan Li , Wanshen Li , Duo Qi , Wanlu Fu , Na Wang
Combining nanomaterials and waterborne resins is an effective way to obtain high-performance waterborne coatings. This paper provides a comprehensive overview on waterborne nanocomposite coatings based on the latest research progress at home and abroad. Specifically, the characteristics of zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D) and binary hybrid (0D/1D, 0D/2D, 1D/2D, 2D/2D) nanomaterials and their applications in waterborne coatings are coherently reviewed. Subsequently, various modification methods of nanomaterials, especially noncovalent modification and covalent modification, are analyzed in detail. Additionally, the enhancement mechanisms of nanomaterials enhancing the corrosion resistance of waterborne nanocomposite coatings are also discussed, including physical barrier mechanism and electrochemical mechanism. Finally, based on the above discussion, the outlooks for the future design of waterborne nanocomposite coating are presented.
{"title":"Application of nanomaterials in waterborne coatings: A review","authors":"Hongrui Yao , Lijuan Li , Wanshen Li , Duo Qi , Wanlu Fu , Na Wang","doi":"10.1016/j.recm.2022.06.004","DOIUrl":"10.1016/j.recm.2022.06.004","url":null,"abstract":"<div><p>Combining nanomaterials and waterborne resins is an effective way to obtain high-performance waterborne coatings. This paper provides a comprehensive overview on waterborne nanocomposite coatings based on the latest research progress at home and abroad. Specifically, the characteristics of zero-dimensional (0D), one-dimensional (1D), two-dimensional (2D) and binary hybrid (0D/1D, 0D/2D, 1D/2D, 2D/2D) nanomaterials and their applications in waterborne coatings are coherently reviewed. Subsequently, various modification methods of nanomaterials, especially noncovalent modification and covalent modification, are analyzed in detail. Additionally, the enhancement mechanisms of nanomaterials enhancing the corrosion resistance of waterborne nanocomposite coatings are also discussed, including physical barrier mechanism and electrochemical mechanism. Finally, based on the above discussion, the outlooks for the future design of waterborne nanocomposite coating are presented.</p></div>","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"1 2","pages":"Pages 184-200"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772443322000241/pdfft?md5=378db70a535c29ebc43bdc4344287869&pid=1-s2.0-S2772443322000241-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77410023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fast pyrolysis of biomass is an attractive way to produce bio-oil since it can convert most of biomass components directly into liquid fuel. However, the bio-oils obtained from such a fast pyrolysis process always have highly complex oxygenated compounds with high viscosity, serious corrosivity, and rather instability. Thus, before the raw bio-oils are used as fuel or chemical feedstock, they must be upgraded, especially deoxygenated. Cracking of bio-oils over porous solid catalysts such as zeolite-based catalysts at ambient pressure is considered one of effective ways for the bio-oil upgrading, especially in which hydrogen gas is not necessary. Herein, zeolite-based catalysts (mainly HZSM-5 based catalysts) for the upgrading of pyrolysis bio-oils are critically reviewed. The effects of porous structure, acidity and other parameters including biomass type, biomass/catalyst ratio and operation temperature on cracking activity, selectivity, stability and deactivation are summarized. While, the proposed mechanisms on the bio-oil upgrading over the zeolite-based catalysts and the possibility for the application of the developed catalysts in the industrial process are discussed. Furthermore, the main strategies including metal modification, construction of zeolites with a hierarchical structure and synthesis of special morphologies with hollow structure or core/shell structure and nanosheet structures for the improvement of deoxygenation property performance are introduced. It is expected to provide a guidance for the design and fabricate more excellent zeolite-based catalysts and their application for high-quality bio-oil production from fast biomass pyrolysis.
{"title":"Zeolite-based cracking catalysts for bio-oil upgrading: A critical review","authors":"Nichaboon Chaihad , Surachai Karnjanakom , Abuliti Abudula , Guoqing Guan","doi":"10.1016/j.recm.2022.03.002","DOIUrl":"10.1016/j.recm.2022.03.002","url":null,"abstract":"<div><p>Fast pyrolysis of biomass is an attractive way to produce bio-oil since it can convert most of biomass components directly into liquid fuel. However, the bio-oils obtained from such a fast pyrolysis process always have highly complex oxygenated compounds with high viscosity, serious corrosivity, and rather instability. Thus, before the raw bio-oils are used as fuel or chemical feedstock, they must be upgraded, especially deoxygenated. Cracking of bio-oils over porous solid catalysts such as zeolite-based catalysts at ambient pressure is considered one of effective ways for the bio-oil upgrading, especially in which hydrogen gas is not necessary. Herein, zeolite-based catalysts (mainly HZSM-5 based catalysts) for the upgrading of pyrolysis bio-oils are critically reviewed. The effects of porous structure, acidity and other parameters including biomass type, biomass/catalyst ratio and operation temperature on cracking activity, selectivity, stability and deactivation are summarized. While, the proposed mechanisms on the bio-oil upgrading over the zeolite-based catalysts and the possibility for the application of the developed catalysts in the industrial process are discussed. Furthermore, the main strategies including metal modification, construction of zeolites with a hierarchical structure and synthesis of special morphologies with hollow structure or core/shell structure and nanosheet structures for the improvement of deoxygenation property performance are introduced. It is expected to provide a guidance for the design and fabricate more excellent zeolite-based catalysts and their application for high-quality bio-oil production from fast biomass pyrolysis.</p></div>","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"1 2","pages":"Pages 167-183"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772443322000186/pdfft?md5=e51486427e37ec243e7cc2636004414b&pid=1-s2.0-S2772443322000186-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87521109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-06-01DOI: 10.1016/S2772-4433(22)00035-6
{"title":"Outside Back Cover","authors":"","doi":"10.1016/S2772-4433(22)00035-6","DOIUrl":"https://doi.org/10.1016/S2772-4433(22)00035-6","url":null,"abstract":"","PeriodicalId":101081,"journal":{"name":"Resources Chemicals and Materials","volume":"1 2","pages":"Page CO4"},"PeriodicalIF":0.0,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772443322000356/pdfft?md5=668630c892268cd16314c95783ddcd95&pid=1-s2.0-S2772443322000356-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"137090458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}