Electric vertical takeoff and landing (eVTOL) aircraft manufacturers await numerous pre-orders for eVTOLs and expect demand for such advanced air mobility (AAM) aircraft to rise dramatically soon. However, eVTOL manufacturers (EMs) cannot commence mass production of commercial eVTOLs due to a lack of supply chain planning for eVTOL manufacturing. The eVTOL supply chain differs from traditional ones due to stringent quality standards and limited suppliers for eVTOL parts, shortages in skilled labor and machinery, and contract renegotiations with major aerospace suppliers. The emerging AAM aircraft market introduces uncertainties in supplier pricing and capacities, eVTOL manufacturing costs, and eVTOL demand, further compounding the supply chain planning challenges for EMs. Despite this critical need, no study has been conducted to develop a comprehensive supply chain planning model for EMs. To address this research gap, we propose a stochastic optimization model for integrated supply chain planning of EMs while maximizing their operating profits under the abovementioned uncertainties. We conduct various numerical cases to analyze the impact of 1) endogenous eVTOL demand influenced by the quality of eVTOLs, 2) supply chain disruptions caused by geopolitical conflicts and resource scarcity, and 3) high-volume eVTOL demand similar to that experienced by automotive manufacturers, on EM supply chain planning. The results indicate that our proposed model is adaptable in all cases and outperforms established benchmark stochastic models. The findings suggest that EMs can commence mass eVTOL production with our model, enabling them to make optimal decisions and profits even under potential disruptions.
Precise demand forecasting and agile pricing strategies are crucial in modern business. This study aims to enhance these strategies by evaluating the efficacy of Holt-Winters Exponential Smoothing (HWES) and Autoregressive Integrated Moving Average (ARIMA) models. The study assesses their performance in predicting demand amid unpredictable factors and develops robust forecasting algorithms using real-world data. It evaluates HWES and ARIMA in capturing demand fluctuations, considering seasonality, market trends, and cyclic patterns. A comprehensive comparative analysis is conducted under stable and unstable economic conditions. The study also focuses on a dynamic pricing model for limited sale seasons, examining lost sales patterns over time. In the context of supply chain and inventory management, efficient demand forecasting and dynamic pricing are essential for optimizing inventory levels and minimizing costs. Supply chains must adapt quickly to demand fluctuations to avoid overstocking or stockouts, which lead to revenue losses and inefficiencies. The findings reveal that ARIMA consistently outperforms HWES in minimizing lost sales, demonstrating its efficacy in demand forecasting, mitigating stockouts, and reducing revenue losses, particularly in varying economic conditions. This research significantly contributes to current knowledge by developing tailored forecasting algorithms and a dynamic pricing model, enhancing supply chain resilience and performance in uncertain business environments.
Maintenance strategies are vital for industrial and manufacturing systems. This study considers a proactive maintenance strategy and emphasizes using analytics and data science. We propose an Explainable Artificial Intelligence (XAI) methodology for predictive maintenance. The proposed method utilizes a machine learning project cycle and Python libraries to interpret the results using the Local Interpretable Model-agnostic Explanations (LIME) method. We also introduce an early concept of spare parts management, presenting insights from predictive maintenance outcomes and providing explanations for decision-makers to enhance their understanding of the influential factors behind predictions. This study demonstrates that utilizing machine learning models in predictive maintenance is highly beneficial; however, the binary outcomes of these models can be misunderstood by decision-makers. Detailed explanations provided to decision-makers will directly impact maintenance decisions and improve spare part management.
Disasters are unforeseen occurrences requiring extensive transport deployment to support and relieve victims. Sometimes, this transportation is not feasible directly from some supply points to some destination points. Due to this tragedy, it is unclear precisely what is available at supply points, what is needed at destinations, how much transportation capacity there is, and what the routes are like. In this study, we investigate a two-stage multi-item fixed charge four-dimensional transportation problem using the concept of big data theory under the two-fold uncertainties. Here, the model’s parameters such as unit transportation costs, availabilities of items at the suppliers, fixed charges, capacities of conveyances, and demands of the items at the retailers are considered type-2 zigzag uncertain variables. Using big data theory and based on uncertain programming theory, two novel uncertain models are developed such as chance-constrained programming and expected value programming model. These two uncertain models transformed into the deterministic form via uncertainty inverse distribution theory. A critical value based reduction method with three categories (i.e., expected value, pessimistic value, and optimistic value) is applied to reduce the type-2 zigzag uncertain variable to the type-1 zigzag uncertain variable. The genetic algorithm and particle swarm optimization techniques have been proposed to find the optimal solution for the two deterministic models. The efficiency of our proposed approach is demonstrated with a real-life numerical example.