首页 > 最新文献

Clinical and Translational Medicine最新文献

英文 中文
LRH-1/NR5A2 targets mitochondrial dynamics to reprogram type 1 diabetes macrophages and dendritic cells into an immune tolerance phenotype LRH-1/NR5A2靶向线粒体动力学,将1型糖尿病巨噬细胞和树突状细胞重编程为免疫耐受表型。
IF 7.9 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-12-19 DOI: 10.1002/ctm2.70134
Nadia Cobo-Vuilleumier, Silvia Rodríguez-Fernandez, Livia López-Noriega, Petra I. Lorenzo, Jaime M. Franco, Christian C. Lachaud, Eugenia Martin Vazquez, Raquel Araujo Legido, Akaitz Dorronsoro, Raul López-Férnandez-Sobrino, Beatriz Fernández-Santos, Carmen Espejo Serrano, Daniel Salas-Lloret, Nila van Overbeek, Mireia Ramos-Rodriguez, Carmen Mateo-Rodríguez, Lucia Hidalgo, Sandra Marin-Canas, Rita Nano, Ana I. Arroba, Antonio Campos Caro, Alfred CO Vertegaal, Alejandro Martin Montalvo, Franz Martín, Manuel Aguilar-Diosdado, Lorenzo Piemonti, Lorenzo Pasquali, Roman González Prieto, Maria Isabel García Sánchez, Decio L. Eizirik, Maria Asuncion Martínez-Brocca, Marta Vives-Pi, Benoit R. Gauthier
<div> <section> <h3> Background</h3> <p>The complex aetiology of type 1 diabetes (T1D), characterised by a detrimental cross-talk between the immune system and insulin-producing beta cells, has hindered the development of effective disease-modifying therapies. The discovery that the pharmacological activation of LRH-1/NR5A2 can reverse hyperglycaemia in mouse models of T1D by attenuating the autoimmune attack coupled to beta cell survival/regeneration prompted us to investigate whether immune tolerisation could be translated to individuals with T1D by LRH-1/NR5A2 activation and improve islet survival.</p> </section> <section> <h3> Methods</h3> <p>Peripheral blood mononuclear cells (PBMCs) were isolated from individuals with and without T1D and derived into various immune cells, including macrophages and dendritic cells. Cell subpopulations were then treated or not with BL001, a pharmacological agonist of LRH-1/NR5A2, and processed for: (1) Cell surface marker profiling, (2) cytokine secretome profiling, (3) autologous T-cell proliferation, (4) RNAseq and (5) proteomic analysis. BL001-target gene expression levels were confirmed by quantitative PCR. Mitochondrial function was evaluated through the measurement of oxygen consumption rate using a Seahorse XF analyser. Co-cultures of PBMCs and iPSCs-derived islet organoids were performed to assess the impact of BL001 on beta cell viability.</p> </section> <section> <h3> Results</h3> <p>LRH-1/NR5A2 activation induced a genetic and immunometabolic reprogramming of T1D immune cells, marked by reduced pro-inflammatory markers and cytokine secretion, along with enhanced mitohormesis in pro-inflammatory M1 macrophages and mitochondrial turnover in mature dendritic cells. These changes induced a shift from a pro-inflammatory to an anti-inflammatory/tolerogenic state, resulting in the inhibition of CD4<sup>+</sup> and CD8<sup>+</sup> T-cell proliferation. BL001 treatment also increased CD4<sup>+</sup>/CD25<sup>+</sup>/FoxP3<sup>+</sup> regulatory T-cells and Th2 cells within PBMCs while decreasing CD8+ T-cell proliferation. Additionally, BL001 alleviated PBMC-induced apoptosis and maintained insulin expression in human iPSC-derived islet organoids.</p> </section> <section> <h3> Conclusion</h3> <p>These findings demonstrate the potential of LRH-1/NR5A2 activation to modulate immune responses and support beta cell viability in T1D, suggesting a new therapeutic approach.</p> </section> <section> <h3> Key Points</h3>
背景:1型糖尿病(T1D)病因复杂,其特点是免疫系统和产生胰岛素的β细胞之间存在有害的串扰,这阻碍了有效的疾病改善疗法的发展。LRH-1/NR5A2的药理激活可以通过减轻自身免疫攻击与β细胞存活/再生相结合来逆转T1D小鼠模型中的高血糖,这一发现促使我们研究LRH-1/NR5A2激活是否可以将免疫耐受转化为T1D个体并改善胰岛存活。方法:分离T1D患者和非T1D患者外周血单个核细胞(PBMCs),转化为巨噬细胞和树突状细胞等多种免疫细胞。然后用LRH-1/NR5A2的药理激动剂BL001处理或不处理细胞亚群,并进行以下处理:(1)细胞表面标记分析,(2)细胞因子分泌组分析,(3)自体t细胞增殖,(4)RNAseq和(5)蛋白质组学分析。通过定量PCR检测bl001靶基因表达水平。通过使用Seahorse XF分析仪测量耗氧量来评估线粒体功能。将pbmc和ipscs衍生的胰岛类器官进行共培养,以评估BL001对β细胞活力的影响。结果:LRH-1/NR5A2激活诱导了T1D免疫细胞的遗传和免疫代谢重编程,其特征是促炎标志物和细胞因子分泌减少,促炎M1巨噬细胞的丝裂激反应增强,成熟树突状细胞的线粒体更新增强。这些变化诱导了从促炎状态到抗炎/耐受性状态的转变,导致CD4+和CD8+ t细胞增殖受到抑制。BL001处理还增加了pbmc内CD4+/CD25+/FoxP3+调节性t细胞和Th2细胞,同时降低了CD8+ t细胞的增殖。此外,BL001可减轻pbmc诱导的细胞凋亡,维持人ipsc衍生的胰岛类器官中胰岛素的表达。结论:这些发现表明LRH-1/NR5A2激活可能调节T1D的免疫反应并支持β细胞活力,为T1D的治疗提供了新的途径。重点:LRH-1/NR5A2在1型糖尿病(T1D)患者炎症细胞中的激活可减少促炎细胞表面标志物和细胞因子的释放。LRH-1/NR5A2促进促炎巨噬细胞的有丝分裂诱导免疫抵抗表型。成熟树突状细胞通过LRH-1/ nr5a2刺激的线粒体转换获得耐受性表型。LRH-1/NR5A2激动激活可扩增CD4+/CD25+/FoxP3+ t细胞亚群。LRH-1/NR5A2的药理激活可提高ipsc -胰岛样器官与T1D患者pbmc共培养的存活率。
{"title":"LRH-1/NR5A2 targets mitochondrial dynamics to reprogram type 1 diabetes macrophages and dendritic cells into an immune tolerance phenotype","authors":"Nadia Cobo-Vuilleumier,&nbsp;Silvia Rodríguez-Fernandez,&nbsp;Livia López-Noriega,&nbsp;Petra I. Lorenzo,&nbsp;Jaime M. Franco,&nbsp;Christian C. Lachaud,&nbsp;Eugenia Martin Vazquez,&nbsp;Raquel Araujo Legido,&nbsp;Akaitz Dorronsoro,&nbsp;Raul López-Férnandez-Sobrino,&nbsp;Beatriz Fernández-Santos,&nbsp;Carmen Espejo Serrano,&nbsp;Daniel Salas-Lloret,&nbsp;Nila van Overbeek,&nbsp;Mireia Ramos-Rodriguez,&nbsp;Carmen Mateo-Rodríguez,&nbsp;Lucia Hidalgo,&nbsp;Sandra Marin-Canas,&nbsp;Rita Nano,&nbsp;Ana I. Arroba,&nbsp;Antonio Campos Caro,&nbsp;Alfred CO Vertegaal,&nbsp;Alejandro Martin Montalvo,&nbsp;Franz Martín,&nbsp;Manuel Aguilar-Diosdado,&nbsp;Lorenzo Piemonti,&nbsp;Lorenzo Pasquali,&nbsp;Roman González Prieto,&nbsp;Maria Isabel García Sánchez,&nbsp;Decio L. Eizirik,&nbsp;Maria Asuncion Martínez-Brocca,&nbsp;Marta Vives-Pi,&nbsp;Benoit R. Gauthier","doi":"10.1002/ctm2.70134","DOIUrl":"10.1002/ctm2.70134","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Background&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;The complex aetiology of type 1 diabetes (T1D), characterised by a detrimental cross-talk between the immune system and insulin-producing beta cells, has hindered the development of effective disease-modifying therapies. The discovery that the pharmacological activation of LRH-1/NR5A2 can reverse hyperglycaemia in mouse models of T1D by attenuating the autoimmune attack coupled to beta cell survival/regeneration prompted us to investigate whether immune tolerisation could be translated to individuals with T1D by LRH-1/NR5A2 activation and improve islet survival.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Peripheral blood mononuclear cells (PBMCs) were isolated from individuals with and without T1D and derived into various immune cells, including macrophages and dendritic cells. Cell subpopulations were then treated or not with BL001, a pharmacological agonist of LRH-1/NR5A2, and processed for: (1) Cell surface marker profiling, (2) cytokine secretome profiling, (3) autologous T-cell proliferation, (4) RNAseq and (5) proteomic analysis. BL001-target gene expression levels were confirmed by quantitative PCR. Mitochondrial function was evaluated through the measurement of oxygen consumption rate using a Seahorse XF analyser. Co-cultures of PBMCs and iPSCs-derived islet organoids were performed to assess the impact of BL001 on beta cell viability.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;LRH-1/NR5A2 activation induced a genetic and immunometabolic reprogramming of T1D immune cells, marked by reduced pro-inflammatory markers and cytokine secretion, along with enhanced mitohormesis in pro-inflammatory M1 macrophages and mitochondrial turnover in mature dendritic cells. These changes induced a shift from a pro-inflammatory to an anti-inflammatory/tolerogenic state, resulting in the inhibition of CD4&lt;sup&gt;+&lt;/sup&gt; and CD8&lt;sup&gt;+&lt;/sup&gt; T-cell proliferation. BL001 treatment also increased CD4&lt;sup&gt;+&lt;/sup&gt;/CD25&lt;sup&gt;+&lt;/sup&gt;/FoxP3&lt;sup&gt;+&lt;/sup&gt; regulatory T-cells and Th2 cells within PBMCs while decreasing CD8+ T-cell proliferation. Additionally, BL001 alleviated PBMC-induced apoptosis and maintained insulin expression in human iPSC-derived islet organoids.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Conclusion&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;These findings demonstrate the potential of LRH-1/NR5A2 activation to modulate immune responses and support beta cell viability in T1D, suggesting a new therapeutic approach.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Key Points&lt;/h3&gt;\u0000 \u0000 ","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"14 12","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70134","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142863519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Noninvasive detection of twin zygosity using genome-wide linkage disequilibrium information 利用全基因组连锁不平衡信息无创检测双胞胎合子性。
IF 7.9 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-12-19 DOI: 10.1002/ctm2.70130
Lingrong Kong, Yingjun Yang, Chao Yuan, Xing Wei, Xinyao Zhou, Jia Zhou, Ya Xing, Gang Zou, Qianqian Sun, Luyao Cai, Qiufeng Liang, Yao Zhang, Hongkun Wang, Zesi Liu, Di Wu, Luming Sun

Dear Editor, in this study, we propose a novel linkage disequilibrium information-based noninvasive zygosity (LDNZ) assessment method in twin pregnancies. It combines fetus-specific allele frequency analysis with LD block to reduce the number of required single nucleotide polymorphism markers and experiment costs. LDNZ method offers a noninvasive, accurate, and cost-effective solution for zygosity assessment, addressing the need for precise obstetric care in twin pregnancies.

在这项研究中,我们提出了一种新的基于信息的双胎妊娠连锁不平衡无创合子性(LDNZ)评估方法。它将胎儿特异性等位基因频率分析与LD块相结合,减少了所需的单核苷酸多态性标记数量和实验成本。LDNZ方法为合子性评估提供了一种无创、准确、具有成本效益的解决方案,解决了双胎妊娠中精确产科护理的需要。
{"title":"Noninvasive detection of twin zygosity using genome-wide linkage disequilibrium information","authors":"Lingrong Kong,&nbsp;Yingjun Yang,&nbsp;Chao Yuan,&nbsp;Xing Wei,&nbsp;Xinyao Zhou,&nbsp;Jia Zhou,&nbsp;Ya Xing,&nbsp;Gang Zou,&nbsp;Qianqian Sun,&nbsp;Luyao Cai,&nbsp;Qiufeng Liang,&nbsp;Yao Zhang,&nbsp;Hongkun Wang,&nbsp;Zesi Liu,&nbsp;Di Wu,&nbsp;Luming Sun","doi":"10.1002/ctm2.70130","DOIUrl":"10.1002/ctm2.70130","url":null,"abstract":"<div>\u0000 \u0000 <section>\u0000 \u0000 <p>Dear Editor, in this study, we propose a novel linkage disequilibrium information-based noninvasive zygosity (LDNZ) assessment method in twin pregnancies. It combines fetus-specific allele frequency analysis with LD block to reduce the number of required single nucleotide polymorphism markers and experiment costs. LDNZ method offers a noninvasive, accurate, and cost-effective solution for zygosity assessment, addressing the need for precise obstetric care in twin pregnancies.</p>\u0000 </section>\u0000 </div>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"14 12","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70130","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142863521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multi-omics analysis of pyroptosis-related genes for prognosis and immune landscape in head and neck cancer 头颈癌热释热相关基因对预后和免疫景观的多组学分析。
IF 7.9 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-12-17 DOI: 10.1002/ctm2.70144
Shikang Zheng, Qinghua Liu, Cheng Wang, Rongqi Zhang, Xin Peng, Junda Fan, Haiming Xu, Xiazhi Pan, Nanxiang Chen, Mingbo Liu, Kai Zhao
<p>Dear Editor,</p><p>Despite the demonstrated efficacy of immunotherapy in various cancers, treating head and neck squamous cell carcinoma (HNSCC) continues to pose significant challenges.<span><sup>1, 2</sup></span> Pyroptosis, a distinct form of programmed cell death, is intricately associated with tumour progression and immune response modulation.<span><sup>3, 4</sup></span> This study undertakes a comprehensive multi-omics analysis to elucidate the complex role of pyroptosis-related genes (PRGs) in the context of HNSCC, with the objective of developing a robust prognostic signature that could substantially advance the understanding of the prognosis of HNSCC and its associated immune landscape.</p><p>Figure 1A provides a comprehensive overview of the study's workflow, delineating the principal steps and methodologies employed in our investigation. The study encompasses 528 cancer samples and 44 normal controls from the TCGA database, along with 270 cancer samples from the GEO database. We identified 64 PRGs, of which 51 were differentially expressed in HNSCC tissues (Figure S1A). Survival analysis showed that 33 of these genes were linked to patient outcomes (Figure S2). A prognostic network was developed to elucidate the interrelationships among these genes (Figure 1B). Analysis revealed that 409 of 510 samples had PRG mutations, an 80.2% mutation rate (Figure S1B). Additionally, PRGs often showed copy number variations (CNVs), with gains or losses illustrated in Figure S1C, and their chromosomal distribution was shown in Figure S1D.</p><p>Hierarchical clustering analysis identified two clusters in HNSCC (Figure 1C,D), with cluster B showing a significantly better prognosis than cluster A (Figure 1E). The clinical characteristics and PRGs expression profiles associated with these subtypes are presented in Figure 1F. Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA) analyses demonstrated that cluster B was associated with immune-related pathways, while cluster A was enriched in metabolic pathways (Figure 1G,H). This observation is further corroborated by ssGSEA, which revealed a higher degree of immune cell infiltration within cluster B (Figure 1I).</p><p>We further identified 717 differentially expressed genes (DEGs) related to pyroptosis subtypes (Figure 2A), with 169 DEGs significantly affecting prognosis (Figure S3A). The results of the enrichment analysis for the DEGs were presented in Figure S3B. We further performed a clustering analysis and found that <i>k</i> = 3 was optimal (Figure 2B,C). Notably, patients in group C had a better prognosis than those in other groups (Figure 2D). Moreover, there is a notable overlap in clinical traits and DEG expression between geneCluster group C and PRGCluster cluster B (Figure 2E). To develop a novel prognostic signature for HNSCC, randomly selected patients were assigned to a training cohort for signature development and a validation cohort for evaluation. Through the app
亲爱的编辑,尽管免疫疗法在各种癌症中已被证明有效,但治疗头颈部鳞状细胞癌(HNSCC)仍然面临重大挑战。1,2焦亡是一种独特的程序性细胞死亡形式,与肿瘤进展和免疫反应调节有着复杂的关系。3,4本研究进行了全面的多组学分析,以阐明热腐相关基因(PRGs)在HNSCC中的复杂作用,目的是建立一个强大的预后特征,从而大大提高对HNSCC预后及其相关免疫景观的理解。图1A提供了研究工作流程的全面概述,描述了我们调查中采用的主要步骤和方法。该研究包括来自TCGA数据库的528个癌症样本和44个正常对照,以及来自GEO数据库的270个癌症样本。我们鉴定出64个PRGs,其中51个在HNSCC组织中差异表达(图S1A)。生存分析显示,其中33个基因与患者预后相关(图S2)。我们建立了一个预后网络来阐明这些基因之间的相互关系(图1B)。分析显示,510份样本中有409份存在PRG突变,突变率为80.2%(图S1B)。此外,prg经常表现出拷贝数变异(cnv),其增加或减少如图S1C所示,其染色体分布如图S1D所示。分层聚类分析确定了HNSCC中的两个聚类(图1C,D),其中B类预后明显优于a类(图1E)。与这些亚型相关的临床特征和PRGs表达谱如图1F所示。基因集变异分析(GSVA)和基因集富集分析(GSEA)分析表明,簇B与免疫相关途径相关,而簇A富集于代谢途径(图1G,H)。ssGSEA进一步证实了这一观察结果,显示B簇内免疫细胞浸润程度更高(图1I)。我们进一步鉴定出717个与焦亡亚型相关的差异表达基因(DEGs)(图2A),其中169个差异表达基因显著影响预后(图S3A)。deg富集分析结果如图S3B所示。我们进一步进行聚类分析,发现k = 3是最优的(图2B,C)。值得注意的是,C组患者的预后优于其他组(图2D)。此外,geneCluster group C和PRGCluster cluster cluster B在临床特征和DEG表达上存在显著的重叠(图2E)。为了开发一种新的HNSCC预后特征,随机选择的患者被分配到一个用于特征开发的培训队列和一个用于评估的验证队列。通过应用最小绝对收缩和选择算子(LASSO)回归和多变量Cox回归分析,确定了七个关键deg对于构建预后特征至关重要(图2F、G和表S1)。在训练组(图2H-K)、验证组(图2L-O)和整个队列(图2P-S)中,签名的基因表达、风险评分分化、高、低风险组的预后和预测准确性是一致的。单因素和多因素分析以及一致性指数(c指数)曲线均证实,与其他临床特征相比,预后特征对HNSCC患者的生存提供了更好的预测效果(图2T,U)。利用临床特征和风险评分,开发了一个nomogram来估计不同随访期间的生存率(图2V)。校准曲线显示nomogram预测的生存概率与患者的实际结果非常吻合,表明预测精度很高(图2W)。此外,PRGCluster中的B组和geneccluster中的C组与更好的预后和更低的风险评分相关(图S4A-C),其中PRGs的表达也更高(图S4D,E)。免疫细胞浸润分析发现免疫细胞、风险评分和特征基因之间存在显著关联(图3A-C和S5)。高危组免疫功能降低,免疫检查点基因表达降低,提示免疫逃避更严重,免疫治疗反应较差(图3D,E)。肿瘤微环境(TME)评分、5肿瘤免疫功能障碍和排斥(TIDE)评分6和免疫表型评分(IPS)7共同提示低危组有更好的免疫浸润和应答,而高危组有更大的免疫逃避,可能降低其对免疫检查点封锁(ICB)的应答;图3 f-h)。 除了基因突变频率外,我们还评估了高风险组和低风险组之间的肿瘤突变负担(TMB)。我们的研究结果表明,TP53基因在两组中都表现出较高的突变频率(图3I)。此外,高风险队列TMB水平升高,表明TMB升高与基因组不稳定性升高之间存在潜在联系,这可能与预后较差有关(图3J,K)。在候选基因中,转谷氨酰胺酶(TGM2)被选中进行实验验证,因为它在HNSCC中的作用尚未确定。我们的观察显示,TGM2在HNSCC组织中显著上调,这与不良预后相关(图4A,B)。此外,单细胞RNA测序数据8表明,TGM2主要在HNSCC的肥大细胞和单核/巨噬细胞中表达(图S7)。为了证实这些发现,我们利用TGM2- sirna实现了TGM2的敲低,并验证了sirna的效率(图4C)。抑制TGM2表达可显著降低HNSCC细胞的增殖(图4D-F)、迁移和侵袭能力(图4G-J),同时促进细胞死亡(图4K,L),抑制上皮-间质转化(EMT;图4M),从而阐明TGM2的致癌功能。此外,利用GSCA平台9,我们分析了癌症药物敏感性基因组学(GDSC)药物与TGM2 mRNA水平之间的相关性(图4N)。随后,进行了Venn分析,将这些数据与风险特征(图S6)和TGM(图S8)得出的药物敏感性信息相结合,从而确定了两种潜在的治疗药物:达沙替尼和WH-4-023(图40)。最后,使用AutoDocktools检查TGM2与这两种化合物之间的对接相互作用(图4P)。综上所述,本研究通过开发一种可能改善患者生存预测的预后标记,明确了PRGs在HNSCC预后中的重要性,并确定了TGM2作为潜在的治疗靶点,从而为HNSCC的免疫景观提供了见解。我们相信这些发现对于加强患者管理和为HNSCC的新治疗策略的发展提供了重要的实际意义。郑世康进行生物信息学分析并撰写原稿。刘庆华和王成在实验操作和数据采集方面做出了重要贡献。张荣奇和彭欣负责资源和监督。范俊达和徐海明负责软件和可视化。潘夏志、陈南翔负责数据验证和质量控制检查。刘明波、赵凯负责论文的构思、经费筹措和稿件修改。所有作者都对文章做出了实质性的贡献,并批准了最终版本的出版。作者声明无利益冲突。
{"title":"Multi-omics analysis of pyroptosis-related genes for prognosis and immune landscape in head and neck cancer","authors":"Shikang Zheng,&nbsp;Qinghua Liu,&nbsp;Cheng Wang,&nbsp;Rongqi Zhang,&nbsp;Xin Peng,&nbsp;Junda Fan,&nbsp;Haiming Xu,&nbsp;Xiazhi Pan,&nbsp;Nanxiang Chen,&nbsp;Mingbo Liu,&nbsp;Kai Zhao","doi":"10.1002/ctm2.70144","DOIUrl":"10.1002/ctm2.70144","url":null,"abstract":"&lt;p&gt;Dear Editor,&lt;/p&gt;&lt;p&gt;Despite the demonstrated efficacy of immunotherapy in various cancers, treating head and neck squamous cell carcinoma (HNSCC) continues to pose significant challenges.&lt;span&gt;&lt;sup&gt;1, 2&lt;/sup&gt;&lt;/span&gt; Pyroptosis, a distinct form of programmed cell death, is intricately associated with tumour progression and immune response modulation.&lt;span&gt;&lt;sup&gt;3, 4&lt;/sup&gt;&lt;/span&gt; This study undertakes a comprehensive multi-omics analysis to elucidate the complex role of pyroptosis-related genes (PRGs) in the context of HNSCC, with the objective of developing a robust prognostic signature that could substantially advance the understanding of the prognosis of HNSCC and its associated immune landscape.&lt;/p&gt;&lt;p&gt;Figure 1A provides a comprehensive overview of the study's workflow, delineating the principal steps and methodologies employed in our investigation. The study encompasses 528 cancer samples and 44 normal controls from the TCGA database, along with 270 cancer samples from the GEO database. We identified 64 PRGs, of which 51 were differentially expressed in HNSCC tissues (Figure S1A). Survival analysis showed that 33 of these genes were linked to patient outcomes (Figure S2). A prognostic network was developed to elucidate the interrelationships among these genes (Figure 1B). Analysis revealed that 409 of 510 samples had PRG mutations, an 80.2% mutation rate (Figure S1B). Additionally, PRGs often showed copy number variations (CNVs), with gains or losses illustrated in Figure S1C, and their chromosomal distribution was shown in Figure S1D.&lt;/p&gt;&lt;p&gt;Hierarchical clustering analysis identified two clusters in HNSCC (Figure 1C,D), with cluster B showing a significantly better prognosis than cluster A (Figure 1E). The clinical characteristics and PRGs expression profiles associated with these subtypes are presented in Figure 1F. Gene Set Variation Analysis (GSVA) and Gene Set Enrichment Analysis (GSEA) analyses demonstrated that cluster B was associated with immune-related pathways, while cluster A was enriched in metabolic pathways (Figure 1G,H). This observation is further corroborated by ssGSEA, which revealed a higher degree of immune cell infiltration within cluster B (Figure 1I).&lt;/p&gt;&lt;p&gt;We further identified 717 differentially expressed genes (DEGs) related to pyroptosis subtypes (Figure 2A), with 169 DEGs significantly affecting prognosis (Figure S3A). The results of the enrichment analysis for the DEGs were presented in Figure S3B. We further performed a clustering analysis and found that &lt;i&gt;k&lt;/i&gt; = 3 was optimal (Figure 2B,C). Notably, patients in group C had a better prognosis than those in other groups (Figure 2D). Moreover, there is a notable overlap in clinical traits and DEG expression between geneCluster group C and PRGCluster cluster B (Figure 2E). To develop a novel prognostic signature for HNSCC, randomly selected patients were assigned to a training cohort for signature development and a validation cohort for evaluation. Through the app","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"14 12","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70144","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
PARylation of HMGA1 desensitizes esophageal squamous cell carcinoma to olaparib HMGA1的PARylation使食管鳞状细胞癌对奥拉帕尼脱敏。
IF 7.9 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-12-17 DOI: 10.1002/ctm2.70111
Xin-Yuan Lei, Kai-Yue He, Qiu-Tong Li, Lei Zhang, Dan-Hui Wu, Jing-Yu Yang, Jin-Rong Guo, Meng-Jie Liu, Zi-Long Zhao, Jun-Qi Li, Huai Liu, Yuan Zhao, Yu-Jia Li, Qian-Hui Sun, Chen-Guang Wu, Yun-Fan Wang, Geng-Sheng Cao, Gang Wang, Yong-Ping Jian, Zhi-Xiang Xu

As a chromatin remodelling factor, high mobility group A1 (HMGA1) plays various roles in both physiological and pathological conditions. However, its role in DNA damage response and DNA damage-based chemotherapy remains largely unexplored. In this study, we report the poly ADP-ribosylation (PARylation) of HMGA1 during DNA damage, leading to desensitization of esophageal squamous cell carcinoma (ESCC) cells to the poly(ADP-ribose) polymerase 1 (PARP1) inhibitor, olaparib. We found that HMGA1 accumulates at sites of DNA damage, where it interacts with PARP1 and undergoes PARylation at residues E47 and E50 in its conserved AT-hook domain. This modification enhances the accumulation of Ku70/Ku80 at the site of DNA damage and activates the DNA-dependent protein kinase catalytic subunit, facilitating nonhomologous end-joining repair. In both subcutaneous tumour models and genetically engineered mouse models of in situ esophageal cancer, HMGA1 interference increased tumour sensitivity to olaparib. Moreover, HMGA1 was highly expressed in ESCC tissues and positively correlated with PARP1 levels as well as poor prognosis in ESCC patients. Taken together, these findings reveal a mechanistic link between HMGA1 and PARP1 in regulating cell responses to DNA damage and suggest that targeting HMGA1 could be a promising strategy to increase cancer cell sensitivity to olaparib.

高迁移率组A1 (HMGA1)作为一种染色质重塑因子,在生理和病理条件下都发挥着多种作用。然而,它在DNA损伤反应和基于DNA损伤的化疗中的作用在很大程度上仍未被探索。在这项研究中,我们报道了DNA损伤过程中HMGA1的聚adp核糖基化(PARylation),导致食管鳞状细胞癌(ESCC)细胞对聚adp核糖聚合酶1 (PARP1)抑制剂奥拉帕尼脱敏。我们发现HMGA1在DNA损伤位点积累,在那里它与PARP1相互作用,并在其保守的at -hook结构域的E47和E50残基上进行PARylation。这种修饰增强了DNA损伤位点Ku70/Ku80的积累,激活了DNA依赖性蛋白激酶催化亚基,促进了非同源端连接修复。在皮下肿瘤模型和原位食管癌基因工程小鼠模型中,HMGA1干扰增加了肿瘤对奥拉帕尼的敏感性。HMGA1在ESCC组织中高表达,与PARP1水平及ESCC患者预后不良呈正相关。综上所述,这些发现揭示了HMGA1和PARP1在调节细胞对DNA损伤反应中的机制联系,并表明靶向HMGA1可能是提高癌细胞对奥拉帕尼敏感性的一种有希望的策略。
{"title":"PARylation of HMGA1 desensitizes esophageal squamous cell carcinoma to olaparib","authors":"Xin-Yuan Lei,&nbsp;Kai-Yue He,&nbsp;Qiu-Tong Li,&nbsp;Lei Zhang,&nbsp;Dan-Hui Wu,&nbsp;Jing-Yu Yang,&nbsp;Jin-Rong Guo,&nbsp;Meng-Jie Liu,&nbsp;Zi-Long Zhao,&nbsp;Jun-Qi Li,&nbsp;Huai Liu,&nbsp;Yuan Zhao,&nbsp;Yu-Jia Li,&nbsp;Qian-Hui Sun,&nbsp;Chen-Guang Wu,&nbsp;Yun-Fan Wang,&nbsp;Geng-Sheng Cao,&nbsp;Gang Wang,&nbsp;Yong-Ping Jian,&nbsp;Zhi-Xiang Xu","doi":"10.1002/ctm2.70111","DOIUrl":"10.1002/ctm2.70111","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <p>As a chromatin remodelling factor, high mobility group A1 (HMGA1) plays various roles in both physiological and pathological conditions. However, its role in DNA damage response and DNA damage-based chemotherapy remains largely unexplored. In this study, we report the poly ADP-ribosylation (PARylation) of HMGA1 during DNA damage, leading to desensitization of esophageal squamous cell carcinoma (ESCC) cells to the poly(ADP-ribose) polymerase 1 (PARP1) inhibitor, olaparib. We found that HMGA1 accumulates at sites of DNA damage, where it interacts with PARP1 and undergoes PARylation at residues E47 and E50 in its conserved AT-hook domain. This modification enhances the accumulation of Ku70/Ku80 at the site of DNA damage and activates the DNA-dependent protein kinase catalytic subunit, facilitating nonhomologous end-joining repair. In both subcutaneous tumour models and genetically engineered mouse models of in situ esophageal cancer, HMGA1 interference increased tumour sensitivity to olaparib. Moreover, HMGA1 was highly expressed in ESCC tissues and positively correlated with PARP1 levels as well as poor prognosis in ESCC patients. Taken together, these findings reveal a mechanistic link between HMGA1 and PARP1 in regulating cell responses to DNA damage and suggest that targeting HMGA1 could be a promising strategy to increase cancer cell sensitivity to olaparib.</p>\u0000 </section>\u0000 </div>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"14 12","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70111","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845914","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microenvironmental G protein-coupled estrogen receptor-mediated glutamine metabolic coupling between cancer-associated fibroblasts and triple-negative breast cancer cells governs tumour progression 微环境G蛋白偶联雌激素受体介导的谷氨酰胺代谢偶联在癌症相关成纤维细胞和三阴性乳腺癌细胞之间控制肿瘤进展。
IF 7.9 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-12-17 DOI: 10.1002/ctm2.70131
Chongwu He, Meixi Peng, Xiaoqiang Zeng, Hanzhi Dong, Zhengkui Sun, Jiawei Xu, Manran Liu, Liyan Liu, Yanxiao Huang, Zhiqiang Peng, Yu-An Qiu, Chunling Jiang, Bin Xu, Tenghua Yu
<div> <section> <h3> Background</h3> <p>Triple-negative breast cancer (TNBC) is a particularly aggressive type of breast cancer, known for its lack of effective treatments and unfavorable prognosis. The G protein-coupled estrogen receptor (GPER), a novel estrogen receptor, is linked to increased malignancy in various cancers. However, its involvement in the metabolic regulation of cancer-associated fibroblasts (CAFs), a key component in the tumour microenvironment, remains largely unexplored. This study investigates how GPER influences the metabolic interaction between CAFs and TNBC cells, aiming to identify potential therapeutic targets.</p> </section> <section> <h3> Methods</h3> <p>The co-culture system is performed to examine the interaction between CAFs and TNBC cells, with a focus on GPER-mediated glutamine production and release by CAFs and its subsequent uptake and utilization by TNBC cells. The definite roles of microenvironmental GPER/cAMP/PKA/CREB signalling in regulating the expression of glutamine synthetase (GLUL) and lactate dehydrogenase B (LDHB) are further investigated.</p> </section> <section> <h3> Results</h3> <p>Our findings reveal that estrogen-activated GPER in CAFs significantly upregulates the expression of GLUL and LDHB, leading to increased glutamine production. This glutamine is then secreted into the extracellular matrix and absorbed by TNBC cells, enhancing their viability, motility, and chemoresistance both in vitro and in vivo. TNBC cells further metabolize the glutamine through the glutamine transporter (ASCT2) and glutaminase (GLS1) axes, which, in turn, promote mitochondrial activity and tumour progression.</p> </section> <section> <h3> Conclusions</h3> <p>The study identifies GPER as a critical mediator of metabolic coupling between CAFs and TNBC cells, primarily through glutamine metabolism. Targeting the estrogen/GPER/glutamine signalling axis in CAFs offers a promising therapeutic strategy to inhibit TNBC progression and improve patient outcomes. This novel insight into the tumour microenvironment highlights the potential of metabolic interventions in treating TNBC.</p> </section> <section> <h3> Key points</h3> <div> <ol> <li> <p>Estrogen-activated GPER in CAFs enhances GLUL and LDHB expression via the cAMP/PKA/CREB signalling, facilitating glutamine production and utilization.</p> </li>
背景:三阴性乳腺癌(TNBC)是一种特别具有侵袭性的乳腺癌,因缺乏有效治疗和预后不良而闻名。G蛋白偶联雌激素受体(GPER)是一种新型的雌激素受体,与多种癌症恶性肿瘤的增加有关。然而,其参与癌症相关成纤维细胞(CAFs)的代谢调节,这是肿瘤微环境的关键组成部分,在很大程度上仍未被探索。本研究探讨GPER如何影响CAFs和TNBC细胞之间的代谢相互作用,旨在确定潜在的治疗靶点。方法:通过共培养系统研究谷氨酰胺细胞与TNBC细胞之间的相互作用,重点研究谷氨酰胺细胞通过ger介导产生和释放谷氨酰胺,以及随后被TNBC细胞吸收和利用。进一步研究微环境GPER/cAMP/PKA/CREB信号在调节谷氨酰胺合成酶(GLUL)和乳酸脱氢酶B (LDHB)表达中的明确作用。结果:我们的研究结果表明,雌激素激活的谷氨酰胺酶(GPER)在CAFs中显著上调GLUL和LDHB的表达,导致谷氨酰胺产量增加。然后,这种谷氨酰胺被分泌到细胞外基质中并被TNBC细胞吸收,增强了它们在体外和体内的生存能力、活动性和化疗耐药性。TNBC细胞通过谷氨酰胺转运蛋白(ASCT2)和谷氨酰胺酶(GLS1)轴进一步代谢谷氨酰胺,进而促进线粒体活性和肿瘤进展。结论:该研究确定GPER是CAFs和TNBC细胞之间代谢偶联的关键介质,主要通过谷氨酰胺代谢。靶向cas中的雌激素/GPER/谷氨酰胺信号轴是抑制TNBC进展和改善患者预后的一种有希望的治疗策略。这种对肿瘤微环境的新见解强调了代谢干预治疗TNBC的潜力。重点:雌激素激活的GPER通过cAMP/PKA/CREB信号通路增强GLUL和LDHB的表达,促进谷氨酰胺的产生和利用。微环境gper诱导的谷氨酰胺是CAFs和TNBC细胞之间代谢偶联的关键介质,通过增强线粒体功能促进肿瘤进展。靶向cas中由雌激素/GPER/GLUL信号触发的谷氨酰胺代谢偶联是一种很有前景的TNBC治疗策略。
{"title":"Microenvironmental G protein-coupled estrogen receptor-mediated glutamine metabolic coupling between cancer-associated fibroblasts and triple-negative breast cancer cells governs tumour progression","authors":"Chongwu He,&nbsp;Meixi Peng,&nbsp;Xiaoqiang Zeng,&nbsp;Hanzhi Dong,&nbsp;Zhengkui Sun,&nbsp;Jiawei Xu,&nbsp;Manran Liu,&nbsp;Liyan Liu,&nbsp;Yanxiao Huang,&nbsp;Zhiqiang Peng,&nbsp;Yu-An Qiu,&nbsp;Chunling Jiang,&nbsp;Bin Xu,&nbsp;Tenghua Yu","doi":"10.1002/ctm2.70131","DOIUrl":"10.1002/ctm2.70131","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Background&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Triple-negative breast cancer (TNBC) is a particularly aggressive type of breast cancer, known for its lack of effective treatments and unfavorable prognosis. The G protein-coupled estrogen receptor (GPER), a novel estrogen receptor, is linked to increased malignancy in various cancers. However, its involvement in the metabolic regulation of cancer-associated fibroblasts (CAFs), a key component in the tumour microenvironment, remains largely unexplored. This study investigates how GPER influences the metabolic interaction between CAFs and TNBC cells, aiming to identify potential therapeutic targets.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;The co-culture system is performed to examine the interaction between CAFs and TNBC cells, with a focus on GPER-mediated glutamine production and release by CAFs and its subsequent uptake and utilization by TNBC cells. The definite roles of microenvironmental GPER/cAMP/PKA/CREB signalling in regulating the expression of glutamine synthetase (GLUL) and lactate dehydrogenase B (LDHB) are further investigated.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Our findings reveal that estrogen-activated GPER in CAFs significantly upregulates the expression of GLUL and LDHB, leading to increased glutamine production. This glutamine is then secreted into the extracellular matrix and absorbed by TNBC cells, enhancing their viability, motility, and chemoresistance both in vitro and in vivo. TNBC cells further metabolize the glutamine through the glutamine transporter (ASCT2) and glutaminase (GLS1) axes, which, in turn, promote mitochondrial activity and tumour progression.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Conclusions&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;The study identifies GPER as a critical mediator of metabolic coupling between CAFs and TNBC cells, primarily through glutamine metabolism. Targeting the estrogen/GPER/glutamine signalling axis in CAFs offers a promising therapeutic strategy to inhibit TNBC progression and improve patient outcomes. This novel insight into the tumour microenvironment highlights the potential of metabolic interventions in treating TNBC.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Key points&lt;/h3&gt;\u0000 \u0000 &lt;div&gt;\u0000 &lt;ol&gt;\u0000 \u0000 &lt;li&gt;\u0000 &lt;p&gt;Estrogen-activated GPER in CAFs enhances GLUL and LDHB expression via the cAMP/PKA/CREB signalling, facilitating glutamine production and utilization.&lt;/p&gt;\u0000 &lt;/li&gt;\u0000 ","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"14 12","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70131","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142845878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A subtype of cancer-associated fibroblast expressing syndecan-2 (SDC2) predicts survival and immune checkpoint inhibitor response in gastric cancer 一种表达syndecan-2 (SDC2)的癌症相关成纤维细胞亚型预测胃癌患者的生存和免疫检查点抑制剂反应。
IF 7.9 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-12-13 DOI: 10.1002/ctm2.70079
Ji-Yong Sung, Jae-Ho Cheong, Kihye Shin, Eui Tae Kim
<p>Dear Editor,</p><p>We explored the heterogeneity and clinical implications of cancer-associated fibroblasts (CAFs) within the gastric cancer microenvironment to understand their contributions to tumour progression and therapeutic resistance. CAFs, essential components of the tumour microenvironment, regulate tumour growth, immune responses, and therapeutic outcomes. We classified CAFs into three subtypes: myofibroblastic (myoCAF), immune-regulatory (irCAF), and inflammatory (infCAF), based on gene expression signatures and functional characteristics (Figure 1A–C). Each CAF subtype was characterized by unique marker genes from a literature review (Tables S1 and S2).<span><sup>1</sup></span> Gene ontology (GO) analysis revealed that transcription factors NFKB1, RELA, SP1, JUN, and transcriptional regulator HDAC2 are key in CAF subtype regulation (Figure 1B). Using the MCODE algorithm<span><sup>2</sup></span> for protein–protein interaction, we found myoCAFs were involved in blood vessel development and extracellular matrix modelling, while irCAFs were associated with peptide ligand-binding and chemokine receptors, indicating distinct roles in immune modulation (Figure 1D,E).</p><p>To further investigate CAF stemness, we employed the StemID tool on single-cell cohorts. Clusters 17 and 8 showed notably high entropy and stemness, indicating that these fibroblasts are highly activated and possess stem-like properties, contributing to tumour progression and treatment resistance (Figure 1F,G). These fibroblasts were enriched in pathways related to extracellular matrix organization,<span><sup>3</sup></span> including the NABA core matrisome and elastic fibre formation (Figure 1H).<span><sup>4</sup></span> Our analysis further revealed a strong correlation between irCAF signatures and stem-like signatures in bulk gastric cancer samples, suggesting that irCAFs play a key role in sustaining an aggressive tumour microenvironment (Figure 1I-L).<span><sup>5</sup></span></p><p>We evaluated the impact of these CAF subtypes on patient prognosis using data from the Cancer Genome Atlas (TCGA) stomach adenocarcinoma (STAD) dataset. High expression of infCAF, irCAF, and myoCAF signatures was linked to poor prognosis (Figure 2A). A combined analysis of all three CAF signatures also indicated poor outcomes for the high-expression group (Figure 2B). In the Yonsei Cancer Hospital cohort of 497 gastric cancer patients (Y497 dataset), these CAF subtypes were enriched in the stem-like type (Figure 2C). While the infCAF signature was not significantly linked to adverse outcomes, high expression of both irCAF and myoCAF signatures was consistently linked to worse clinical outcomes (irCAF: <i>p</i> = .0022, myoCAF: <i>p</i> = .0053) (Figure 2D). We classified patients into nine groups based on the CAF subtype signature via gene set enrichment test in the Y497 cohort. (Figure 2E). Furthermore, we confirmed that the CAF subtype signatures found in TCGA pan-cancer datasets act
我们探讨了胃癌微环境中癌症相关成纤维细胞(CAFs)的异质性和临床意义,以了解它们对肿瘤进展和治疗耐药性的贡献。CAFs是肿瘤微环境的重要组成部分,调节肿瘤生长、免疫反应和治疗结果。基于基因表达特征和功能特征,我们将CAFs分为三种亚型:肌成纤维细胞(心肌)、免疫调节性(irCAF)和炎症性(infCAF)(图1A-C)。根据文献综述,每种CAF亚型都具有独特的标记基因(表S1和S2)基因本体(GO)分析显示,转录因子NFKB1、RELA、SP1、JUN和转录调控因子HDAC2是CAF亚型调控的关键(图1B)。使用MCODE算法2进行蛋白-蛋白相互作用,我们发现心肌细胞因子参与血管发育和细胞外基质建模,而irCAFs与肽配体结合和趋化因子受体相关,表明在免疫调节中具有不同的作用(图1D,E)。为了进一步研究CAF的干细胞性,我们在单细胞队列中使用StemID工具。簇17和8显示出明显的高熵和干性,表明这些成纤维细胞高度活化并具有干样特性,有助于肿瘤进展和治疗耐药性(图1F,G)。这些成纤维细胞在细胞外基质组织相关通路中富集,包括NABA核心基质体和弹性纤维形成(图1H)我们的分析进一步揭示了大量胃癌样本中irCAF特征和干细胞样特征之间的强相关性,表明irCAF在维持侵袭性肿瘤微环境中发挥关键作用(图1 -l)。我们利用癌症基因组图谱(TCGA)胃腺癌(STAD)数据集的数据评估了这些CAF亚型对患者预后的影响。infCAF、irCAF和心肌af特征的高表达与不良预后有关(图2A)。对所有三种CAF特征的综合分析也表明高表达组的预后较差(图2B)。在延世肿瘤医院497例胃癌患者队列(Y497数据集)中,这些CAF亚型在茎样型中富集(图2C)。虽然infCAF特征与不良结局没有显著相关,但irCAF和心肌af特征的高表达始终与较差的临床结局相关(irCAF: p = 0.0022,心肌af: p = 0.0053)(图2D)。我们在Y497队列中通过基因集富集试验,根据CAF亚型特征将患者分为9组。(图2 e)。此外,我们证实在TCGA泛癌症数据集中发现的CAF亚型特征在不同癌症类型中表现不同。在BLCA、LGG和STAD癌症类型中,所有三种CAF特征对患者预后都具有重要意义(图2F)。利用Y497转录组分析,我们进行了反卷积分析,以了解不同的CAF亚型如何对免疫肿瘤微环境做出贡献。在干样样品中,infCAF和irCAF表现出相似的趋势,与巨噬细胞M2和调节性T (Treg)细胞呈正相关,而CD8+ T细胞在胃分子亚型中更为普遍(图2G)。为了了解CAFs对免疫反应和治疗耐药的影响,我们对免疫检查点阻断(ICB)治疗无反应的患者进行了单细胞分析。高熵、茎样活化细胞主要分布在第1和第7簇中(图3A,B)。簇1主要是内皮细胞,而簇7包括成纤维细胞、T细胞、巨噬细胞等(图3C)。第8和第10簇的干性和熵最低,主要是与适应性免疫相关的B细胞。内皮细胞内高表达基因的氧化石墨烯分析显示,在血管发育、细胞迁移和VEGFA-VEGFA2信号通路中富集(图3D)。这些基因的预后相关性在TCGA STAD数据集中得到证实,其中高表达与不良预后相关(图3E)。此外,在延世癌症医院队列中,这些基因在茎样型中富集,显示出一致的模式(图3F)。我们进一步利用对ICB治疗无反应组和反应组的大量RNA-seq数据评估了与耐药相关的特征基因的表达。特征基因主要在无应答者中过表达(图3G)。使用来自延世癌症医院的胃癌患者衍生类器官(PDO)数据集验证了干细胞样特征与CAF亚型之间的相关性,表明免疫调节特征与干细胞样表型具有最强的相关性(图3H,I)。 在单细胞水平上,ircas表现出最高的茎样PDO特征基因表达,这表明它们在耐药性中可能发挥作用(图3J)。为了破译肿瘤微环境中CAFs的通信模式,我们使用Cellchat6分析来识别关键的信号通路(图4A)。我们确定了八种细胞类型,它们聚集在三种主要的通信模式中,预测了成纤维细胞衍生的配体如VEGF、PTN和ANGPT的参与(图4B,C)。成纤维细胞作为PTN信号网络的重要组成部分,既是发送者,也是接受者,特别是影响间充质干细胞、增殖细胞、腹膜间皮细胞和肿瘤细胞(图4D)。在CAF亚型中,PTN信号同时由irCAF和infCAF介导(图4E)。对配体-受体对的预测分析发现PTN配体和syndecan-2 (SDC2)受体是信号通路的关键组成部分(图4F)。SDC2是一种参与糖胺聚糖代谢的跨膜蛋白多糖,在心肌细胞和癌症干细胞中高表达,在TCGA STAD数据集和Y497队列中均与不良预后相关(图4H-K)。在三星医疗中心(SMC)和Y497队列的ICB无应答组中,SDC2表达升高尤为明显7(图4L,M)。SDC2与ACTA2基因之间存在很强的相关性(R = 0.8, p = 0), ACTA2基因是与ICB治疗耐药相关的标志物(图4N) 8此外,SDC2的表达在茎样型胃癌中显著富集,可能通过糖胺聚糖生物合成途径如硫酸肝素和硫酸软骨素促进肿瘤发生(图40,P)从抗致瘤性syndecans到致瘤性SDC2的转变可能影响高侵袭性肿瘤细胞的侵袭能力和转移潜力。总之,我们的研究强调了胃癌中CAF亚型的异质性及其在预后和治疗抵抗中的作用。靶向caf可为胃癌的个体化治疗提供新的途径。JYS负责研究的概念化、方法开发、数据分析、手稿起草、撰写、审查、编辑、结果解释和监督。JHC参与了PDO数据的生成和手稿审查,并参与了结果的解释。KS对稿件审查有贡献。ETK提供了资金获取、稿件审查和编辑,并对结果进行了解释。作者声明无利益冲突。该研究已获得延世肿瘤医院机构审查委员会(IRB no. 6)批准。4-2017-0106)。获得了所有参与者的知情同意。
{"title":"A subtype of cancer-associated fibroblast expressing syndecan-2 (SDC2) predicts survival and immune checkpoint inhibitor response in gastric cancer","authors":"Ji-Yong Sung,&nbsp;Jae-Ho Cheong,&nbsp;Kihye Shin,&nbsp;Eui Tae Kim","doi":"10.1002/ctm2.70079","DOIUrl":"10.1002/ctm2.70079","url":null,"abstract":"&lt;p&gt;Dear Editor,&lt;/p&gt;&lt;p&gt;We explored the heterogeneity and clinical implications of cancer-associated fibroblasts (CAFs) within the gastric cancer microenvironment to understand their contributions to tumour progression and therapeutic resistance. CAFs, essential components of the tumour microenvironment, regulate tumour growth, immune responses, and therapeutic outcomes. We classified CAFs into three subtypes: myofibroblastic (myoCAF), immune-regulatory (irCAF), and inflammatory (infCAF), based on gene expression signatures and functional characteristics (Figure 1A–C). Each CAF subtype was characterized by unique marker genes from a literature review (Tables S1 and S2).&lt;span&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;/span&gt; Gene ontology (GO) analysis revealed that transcription factors NFKB1, RELA, SP1, JUN, and transcriptional regulator HDAC2 are key in CAF subtype regulation (Figure 1B). Using the MCODE algorithm&lt;span&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/span&gt; for protein–protein interaction, we found myoCAFs were involved in blood vessel development and extracellular matrix modelling, while irCAFs were associated with peptide ligand-binding and chemokine receptors, indicating distinct roles in immune modulation (Figure 1D,E).&lt;/p&gt;&lt;p&gt;To further investigate CAF stemness, we employed the StemID tool on single-cell cohorts. Clusters 17 and 8 showed notably high entropy and stemness, indicating that these fibroblasts are highly activated and possess stem-like properties, contributing to tumour progression and treatment resistance (Figure 1F,G). These fibroblasts were enriched in pathways related to extracellular matrix organization,&lt;span&gt;&lt;sup&gt;3&lt;/sup&gt;&lt;/span&gt; including the NABA core matrisome and elastic fibre formation (Figure 1H).&lt;span&gt;&lt;sup&gt;4&lt;/sup&gt;&lt;/span&gt; Our analysis further revealed a strong correlation between irCAF signatures and stem-like signatures in bulk gastric cancer samples, suggesting that irCAFs play a key role in sustaining an aggressive tumour microenvironment (Figure 1I-L).&lt;span&gt;&lt;sup&gt;5&lt;/sup&gt;&lt;/span&gt;&lt;/p&gt;&lt;p&gt;We evaluated the impact of these CAF subtypes on patient prognosis using data from the Cancer Genome Atlas (TCGA) stomach adenocarcinoma (STAD) dataset. High expression of infCAF, irCAF, and myoCAF signatures was linked to poor prognosis (Figure 2A). A combined analysis of all three CAF signatures also indicated poor outcomes for the high-expression group (Figure 2B). In the Yonsei Cancer Hospital cohort of 497 gastric cancer patients (Y497 dataset), these CAF subtypes were enriched in the stem-like type (Figure 2C). While the infCAF signature was not significantly linked to adverse outcomes, high expression of both irCAF and myoCAF signatures was consistently linked to worse clinical outcomes (irCAF: &lt;i&gt;p&lt;/i&gt; = .0022, myoCAF: &lt;i&gt;p&lt;/i&gt; = .0053) (Figure 2D). We classified patients into nine groups based on the CAF subtype signature via gene set enrichment test in the Y497 cohort. (Figure 2E). Furthermore, we confirmed that the CAF subtype signatures found in TCGA pan-cancer datasets act ","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"14 12","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645442/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From data to decision: Scaling artificial intelligence with informatics for epilepsy management 从数据到决策:扩展人工智能与癫痫管理的信息学。
IF 7.9 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-12-13 DOI: 10.1002/ctm2.70108
Nishant Sinha, Alfredo Lucas, Kathryn Adamiak Davis
<p>The integration of artificial intelligence (AI) into epilepsy research presents a critical opportunity to revolutionize the management of this complex neurological disorder.<span><sup>1</sup></span> Despite significant advancements in developing AI algorithms to diagnose and manage epilepsy, their translation into clinical practice remains limited. This gap underscores the urgent need for scalable AI and neuroinformatics approaches that can bridge the divide between research and real-world application.<span><sup>2</sup></span> The ability to generalize AI models from controlled research environments to diverse clinical settings is crucial. Current efforts have made substantial progress, but they also reveal common pitfalls, such as overestimation of model performance due to data leakage and the challenges of small sample sizes, which hinder the generalization of these models.</p><p>To address these challenges and fully realize the potential of AI in epilepsy care, a robust framework for data sharing and collaboration across research centres is essential. Cloud-based informatics platforms offer a promising solution by enabling the aggregation and harmonization of large, multisite datasets. These platforms can facilitate the development of AI models that are not only powerful but also scalable and generalizable across different patient populations and clinical scenarios. In this commentary, we will explore the common methodological errors that lead to overly optimistic AI models in epilepsy research and propose strategies to overcome these issues. We will also discuss the importance of collaborative data sharing in building robust, clinically relevant AI tools and highlight the role of advanced neuroinformatics infrastructures in supporting the translational pathway from research to clinical practice (Figure 1).</p><p>The promise of AI in epilepsy research is often hampered by methodological errors that lead to overly optimistic performance metrics. One of the most significant issues is <i>data leakage</i>, which occurs when information from outside the training dataset influences the model, resulting in an overestimation of its predictive power. This can happen when features are derived from the entire dataset rather than just the training subset.<span><sup>3</sup></span> To mitigate this, strict separation between training and test datasets is essential and feature selection must be performed within each fold of the cross-validation process independently. Nested cross-validation, where model selection and performance estimation are conducted separately, further reduces the risk of data leakage.</p><p>Another common error is the <i>improper application of cross-validation</i> techniques. Often, researchers perform feature selection or hyperparameter tuning on the entire dataset before cross-validation, leading to inflated performance metrics. The correct approach is to embed these steps within each fold of the cross-validation process to ensure
将人工智能(AI)整合到癫痫研究中,为彻底改变这一复杂神经系统疾病的管理提供了一个关键机会尽管在开发诊断和管理癫痫的人工智能算法方面取得了重大进展,但将其转化为临床实践仍然有限。这一差距强调了对可扩展的人工智能和神经信息学方法的迫切需要,这些方法可以弥合研究和现实应用之间的鸿沟将人工智能模型从受控研究环境推广到不同临床环境的能力至关重要。目前的努力已经取得了实质性的进展,但它们也揭示了常见的陷阱,例如由于数据泄漏而对模型性能的高估以及小样本量的挑战,这阻碍了这些模型的推广。为了应对这些挑战并充分发挥人工智能在癫痫治疗中的潜力,必须建立一个强有力的跨研究中心数据共享和协作框架。基于云的信息学平台通过聚合和协调大型多站点数据集提供了一个很有前途的解决方案。这些平台可以促进人工智能模型的开发,这些模型不仅功能强大,而且可以在不同的患者群体和临床场景中扩展和推广。在这篇评论中,我们将探讨导致癫痫研究中过度乐观的人工智能模型的常见方法错误,并提出克服这些问题的策略。我们还将讨论协作数据共享在构建强大的、临床相关的人工智能工具中的重要性,并强调先进的神经信息学基础设施在支持从研究到临床实践的转化途径中的作用(图1)。人工智能在癫痫研究中的前景经常受到方法学错误的阻碍,这些错误导致了过于乐观的绩效指标。最重要的问题之一是数据泄漏,当来自训练数据集外部的信息影响模型时,会导致对其预测能力的高估。当特征来自整个数据集而不仅仅是训练子集时,就会发生这种情况为了减轻这种情况,训练和测试数据集之间的严格分离是必不可少的,并且必须在交叉验证过程的每个折叠中独立执行特征选择。嵌套交叉验证,其中模型选择和性能估计是分开进行的,进一步降低了数据泄漏的风险。另一个常见错误是交叉验证技术的不当应用。通常,研究人员在交叉验证之前对整个数据集进行特征选择或超参数调优,从而导致夸大的性能指标。正确的方法是将这些步骤嵌入到交叉验证过程的每个步骤中,以确保测试数据在最终评估之前完全不可见。这种做法有助于防止过拟合,并对模型在新数据上的表现提供更准确的估计。小样本量提出了第三个挑战,特别是在癫痫研究中,数据集通常是中等规模和异质性的。小数据集可能导致过拟合,即模型学习特定于训练数据的模式,但无法推广到新数据。解决这个问题需要严谨的方法和协作的努力,以便跨多个站点汇集数据,从而创建更大、更多样化的数据集。数据增强技术,例如生成合成数据,也可以帮助增加训练集的有效大小。协作数据共享进一步加强了稳健的癫痫人工智能模型的开发,这使研究人员能够汇集来自多个来源的数据集,从而增加了可用于培训的数据的规模和多样性。癫痫是一种高度异质性的疾病,个别研究中心通常只能获得小规模的队列。通过汇总不同地点的数据,研究人员可以开发更能代表广泛临床现实的人工智能工具,以提高不同临床环境的普遍性和可靠性。协作数据共享还可以实现研究的复制,这对于跨不同队列验证人工智能模型至关重要,以确保模型既准确又可复制。这种合作促进了专业知识和资源的共享,使研究人员能够应对复杂的挑战,例如将多模式数据(神经成像、电生理学和临床记录)集成到更复杂的人工智能模型中。为了支持跨多个站点的有效数据共享和利用,先进的神经信息学基础设施是必不可少的。EBRAINS、Pennsieve (https://app.pennsieve)等平台。 io/)和OpenNeuro等提供了安全聚合、管理和分析大规模癫痫数据集所需的技术基础。4,5这些平台使研究人员能够在不同的数据集上应用标准化的方法和工具,以确保人工智能模型的严谨性、稳健性和可重复性。神经信息学平台还坚持数据可查找、可访问、可互操作和可重复使用的原则,这对有效的数据共享至关重要通过促进数据协调和集成,这些平台确保来自多个来源的数据可以被一致地组合和分析此外,神经信息学基础设施不仅允许研究人员共享数据,还允许从数据中开发的算法和模型,从而支持协作分析。例如,研究人员可以共享由标准化管道生成的电极定位输出,8以及他们的颅内脑电图记录,以及为癫痫发作检测训练的深度学习模型。或者,研究人员可能只共享他们的数据,预处理和模型构建都可以在这些基础设施中进行这营造了一个开放的科学环境,人工智能模型可以在不同的数据集上进行测试和改进,以加速临床应用工具的开发。总之,人工智能在癫痫研究中的进展取决于方法的严谨性和合作努力。通过解决人工智能模型开发中的常见错误并利用协作数据共享的力量,我们可以构建强大的临床相关工具。神经信息学基础设施为这些努力提供了必要的支持,以确保人工智能模型不仅强大,而且适用于现实世界的临床环境。这些综合策略对于将人工智能研究转化为癫痫治疗的切实改善,最终改善患者的治疗效果至关重要。概念化:Nishant Sinha, Alfredo Lucas, Kathryn Adamiak Davis。写作-知识内容的原始草稿准备和修订:Nishant Sinha, Alfredo Lucas, Kathryn Adamiak Davis。作者声明无利益冲突。
{"title":"From data to decision: Scaling artificial intelligence with informatics for epilepsy management","authors":"Nishant Sinha,&nbsp;Alfredo Lucas,&nbsp;Kathryn Adamiak Davis","doi":"10.1002/ctm2.70108","DOIUrl":"10.1002/ctm2.70108","url":null,"abstract":"&lt;p&gt;The integration of artificial intelligence (AI) into epilepsy research presents a critical opportunity to revolutionize the management of this complex neurological disorder.&lt;span&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;/span&gt; Despite significant advancements in developing AI algorithms to diagnose and manage epilepsy, their translation into clinical practice remains limited. This gap underscores the urgent need for scalable AI and neuroinformatics approaches that can bridge the divide between research and real-world application.&lt;span&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/span&gt; The ability to generalize AI models from controlled research environments to diverse clinical settings is crucial. Current efforts have made substantial progress, but they also reveal common pitfalls, such as overestimation of model performance due to data leakage and the challenges of small sample sizes, which hinder the generalization of these models.&lt;/p&gt;&lt;p&gt;To address these challenges and fully realize the potential of AI in epilepsy care, a robust framework for data sharing and collaboration across research centres is essential. Cloud-based informatics platforms offer a promising solution by enabling the aggregation and harmonization of large, multisite datasets. These platforms can facilitate the development of AI models that are not only powerful but also scalable and generalizable across different patient populations and clinical scenarios. In this commentary, we will explore the common methodological errors that lead to overly optimistic AI models in epilepsy research and propose strategies to overcome these issues. We will also discuss the importance of collaborative data sharing in building robust, clinically relevant AI tools and highlight the role of advanced neuroinformatics infrastructures in supporting the translational pathway from research to clinical practice (Figure 1).&lt;/p&gt;&lt;p&gt;The promise of AI in epilepsy research is often hampered by methodological errors that lead to overly optimistic performance metrics. One of the most significant issues is &lt;i&gt;data leakage&lt;/i&gt;, which occurs when information from outside the training dataset influences the model, resulting in an overestimation of its predictive power. This can happen when features are derived from the entire dataset rather than just the training subset.&lt;span&gt;&lt;sup&gt;3&lt;/sup&gt;&lt;/span&gt; To mitigate this, strict separation between training and test datasets is essential and feature selection must be performed within each fold of the cross-validation process independently. Nested cross-validation, where model selection and performance estimation are conducted separately, further reduces the risk of data leakage.&lt;/p&gt;&lt;p&gt;Another common error is the &lt;i&gt;improper application of cross-validation&lt;/i&gt; techniques. Often, researchers perform feature selection or hyperparameter tuning on the entire dataset before cross-validation, leading to inflated performance metrics. The correct approach is to embed these steps within each fold of the cross-validation process to ensure","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"14 12","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645443/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824026","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic conditioning of porcine kidney grafts with extracellular vesicles derived from urine progenitor cells: A proof-of-concept study 基于尿祖细胞的细胞外囊泡的猪肾移植物的动态调节:一项概念验证研究。
IF 7.9 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-12-13 DOI: 10.1002/ctm2.70095
Perrine Burdeyron, Sébastien Giraud, Maryne Lepoittevin, Nina Jordan, Sonia Brishoual, Maïté Jacquard, Virginie Ameteau, Nadège Boildieu, Estelle Lemarie, Jonathan Daniel, Frédéric Martins, Nicolas Mélis, Marine Coué, Raphaël Thuillier, Henri Leuvenink, Luc Pellerin, Thierry Hauet, Clara Steichen
<div> <section> <h3>  </h3> <p>Among strategies to limit ischemia/reperfusion (IR) injuries in transplantation, cell therapy using stem cells to condition/repair transplanted organs appears promising. We hypothesized that using a cell therapy based on extracellular vesicles (EVs) derived from urine progenitor cells (UPCs) during hypothermic and normothermic machine perfusion can prevent IR-related kidney damage.</p> <p>We isolated and characterized porcine UPCs and their extracellular vesicles (EVs). Then these were used in an <i>ex vivo</i> porcine kidney preservation model. Kidneys were subjected to warm ischemia (32 min) and then preserved by hypothermic machine perfusion (HMP) for 24 h before 5 h of normothermic machine perfusion (NMP). Three groups were performed (<i>n</i> = 5–6): Group 1 (G1): HMP/vehicle + NMP/vehicle, Group 2 (G2): HMP/EVs + NMP/vehicle, Group 3 (G3): HMP/EVs + NMP/EVs.</p> <p>Porcine UPCs were successfully isolated from urine and fully characterized as well as their EVs which were found of expected size/phenotype. EVs injection during HMP alone, NMP alone, or both was feasible and safe and did not impact perfusion parameters. However, cell damage markers (LDH, ASAT) were decreased in G3 compared with G1, and G3 kidneys displayed a preserved tissue integrity with reduced tubular dilatation and inflammation notably. However, renal function indicators such as creatinine clearance measured for 5 h of normothermic perfusion or NGAL perfusate's level were not modified by EVs injection. Regarding perfusate analysis, metabolomic analyses and cytokine quantification showed an immunomodulation signature in G3 compared with G1 and highlighted potential metabolic targets. In vitro, EVs as well as perfusates from G3 partially recovered endothelial cell metabolic activity after hypoxia. Finally, RNA-seq performed on kidney biopsies showed different profiles between G1 and G3 with regulation of potential IR targets of EVs therapy.</p> <p>We showed the feasibility/efficacy of UPC-EVs for hypothermic/normothermic kidney conditioning before transplantation, paving the way for combining machine perfusion with EVs-based cell therapy for organ conditioning.</p> </section> <section> <h3> Highlights</h3> <div> <ul> <li><span>· </span>UPCs from porcine urine can be used to generate a cell therapy product based on extracellular vesicles (pUPC-EVs).</li> <li><span>· </span>pUPC-EVs injection during HMP and NMP decreases cell damage markers and has an immunomodulatory effect.</li> <li><span>· </span>pUPC-EVs-treat
在限制移植中缺血/再灌注(IR)损伤的策略中,使用干细胞调节/修复移植器官的细胞治疗看起来很有希望。我们假设,在低温和常温机器灌注期间,使用基于源自尿祖细胞(UPCs)的细胞外囊泡(ev)的细胞疗法可以预防ir相关的肾脏损伤。我们分离并鉴定了猪UPCs及其细胞外囊泡(EVs)。然后将其用于离体猪肾保存模型。取肾脏进行热缺血(32 min)后,低温机器灌注(HMP)保存24 h,再进行恒温机器灌注(NMP) 5 h。分为3组(n = 5-6):第1组(G1): HMP/vehicle + NMP/vehicle,第2组(G2): HMP/ ev + NMP/vehicle,第3组(G3): HMP/ ev + NMP/ ev。成功地从猪尿液中分离出UPCs,并对其进行了充分的表征,并发现其ev符合预期的大小/表型。单独HMP、单独NMP或两者同时注射EVs是可行和安全的,且不影响灌注参数。然而,与G1相比,G3的细胞损伤标志物(LDH, ASAT)降低,G3的肾脏显示出组织完整性,肾小管扩张和炎症明显减少。然而,正常灌注5h时的肾功能指标,如肌酐清除率或灌注NGAL水平均未被EVs改变。在灌注分析方面,代谢组学分析和细胞因子定量显示G3与G1相比具有免疫调节特征,并突出了潜在的代谢靶点。体外缺氧后,内皮细胞和G3灌注液部分恢复内皮细胞代谢活性。最后,在肾活检中进行的RNA-seq显示G1和G3之间的不同特征与ev治疗的潜在IR靶点的调节。我们证明了upc - ev用于移植前低温/常温肾脏调节的可行性/有效性,为机器灌注与ev细胞治疗相结合进行器官调节铺平了道路。·猪尿中的UPCs可用于生产基于细胞外囊泡(pupc - ev)的细胞治疗产品。·在HMP和NMP期间注射pupc - ev可降低细胞损伤标志物,具有免疫调节作用。·pupc - ev处理的肾脏具有不同的生化、代谢和转录组谱,突出了感兴趣的靶点。·我们的研究结果为将机器灌注与基于ev的细胞治疗相结合用于肾脏调节铺平了道路。
{"title":"Dynamic conditioning of porcine kidney grafts with extracellular vesicles derived from urine progenitor cells: A proof-of-concept study","authors":"Perrine Burdeyron,&nbsp;Sébastien Giraud,&nbsp;Maryne Lepoittevin,&nbsp;Nina Jordan,&nbsp;Sonia Brishoual,&nbsp;Maïté Jacquard,&nbsp;Virginie Ameteau,&nbsp;Nadège Boildieu,&nbsp;Estelle Lemarie,&nbsp;Jonathan Daniel,&nbsp;Frédéric Martins,&nbsp;Nicolas Mélis,&nbsp;Marine Coué,&nbsp;Raphaël Thuillier,&nbsp;Henri Leuvenink,&nbsp;Luc Pellerin,&nbsp;Thierry Hauet,&nbsp;Clara Steichen","doi":"10.1002/ctm2.70095","DOIUrl":"10.1002/ctm2.70095","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt;  &lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Among strategies to limit ischemia/reperfusion (IR) injuries in transplantation, cell therapy using stem cells to condition/repair transplanted organs appears promising. We hypothesized that using a cell therapy based on extracellular vesicles (EVs) derived from urine progenitor cells (UPCs) during hypothermic and normothermic machine perfusion can prevent IR-related kidney damage.&lt;/p&gt;\u0000 \u0000 &lt;p&gt;We isolated and characterized porcine UPCs and their extracellular vesicles (EVs). Then these were used in an &lt;i&gt;ex vivo&lt;/i&gt; porcine kidney preservation model. Kidneys were subjected to warm ischemia (32 min) and then preserved by hypothermic machine perfusion (HMP) for 24 h before 5 h of normothermic machine perfusion (NMP). Three groups were performed (&lt;i&gt;n&lt;/i&gt; = 5–6): Group 1 (G1): HMP/vehicle + NMP/vehicle, Group 2 (G2): HMP/EVs + NMP/vehicle, Group 3 (G3): HMP/EVs + NMP/EVs.&lt;/p&gt;\u0000 \u0000 &lt;p&gt;Porcine UPCs were successfully isolated from urine and fully characterized as well as their EVs which were found of expected size/phenotype. EVs injection during HMP alone, NMP alone, or both was feasible and safe and did not impact perfusion parameters. However, cell damage markers (LDH, ASAT) were decreased in G3 compared with G1, and G3 kidneys displayed a preserved tissue integrity with reduced tubular dilatation and inflammation notably. However, renal function indicators such as creatinine clearance measured for 5 h of normothermic perfusion or NGAL perfusate's level were not modified by EVs injection. Regarding perfusate analysis, metabolomic analyses and cytokine quantification showed an immunomodulation signature in G3 compared with G1 and highlighted potential metabolic targets. In vitro, EVs as well as perfusates from G3 partially recovered endothelial cell metabolic activity after hypoxia. Finally, RNA-seq performed on kidney biopsies showed different profiles between G1 and G3 with regulation of potential IR targets of EVs therapy.&lt;/p&gt;\u0000 \u0000 &lt;p&gt;We showed the feasibility/efficacy of UPC-EVs for hypothermic/normothermic kidney conditioning before transplantation, paving the way for combining machine perfusion with EVs-based cell therapy for organ conditioning.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Highlights&lt;/h3&gt;\u0000 \u0000 &lt;div&gt;\u0000 &lt;ul&gt;\u0000 \u0000 &lt;li&gt;&lt;span&gt;· &lt;/span&gt;UPCs from porcine urine can be used to generate a cell therapy product based on extracellular vesicles (pUPC-EVs).&lt;/li&gt;\u0000 \u0000 &lt;li&gt;&lt;span&gt;· &lt;/span&gt;pUPC-EVs injection during HMP and NMP decreases cell damage markers and has an immunomodulatory effect.&lt;/li&gt;\u0000 \u0000 &lt;li&gt;&lt;span&gt;· &lt;/span&gt;pUPC-EVs-treat","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"14 12","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645449/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142824025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chitinase 3-like 1 is neurotoxic in multiple sclerosis patient-derived cortical neurons 几丁质酶3样1对多发性硬化症患者来源的皮质神经元具有神经毒性。
IF 7.9 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-12-10 DOI: 10.1002/ctm2.70125
Rucsanda Pinteac, Jordi Soriano, Clara Matute-Blanch, José M Lizcano, Anna Duarri, Sunny Malhotra, Herena Eixarch, Gloria López Comellas, Xavier Montalban, Manuel Comabella
<p>Dear Editor,</p><p>We are pleased to present our latest findings regarding the neurotoxic role of Chitinase 3-like 1 (CHI3L1) in multiple sclerosis (MS). CHI3L1, a 40 kD glycoprotein, is primarily produced by activated astrocytes and microglia in the central nervous system (CNS), and it has garnered considerable attention due to its implications in inflammation and tissue remodelling.<span><sup>1</sup></span> It is notably increased in several conditions, including MS, and accumulating evidence supports CHI3L1 as a biomarker in early MS, with elevated cerebrospinal fluid (CSF) levels associated with increased disability risk.<span><sup>2, 3</sup></span> This association led us to investigate whether CHI3L1 simply reflects glial activation or if it exerts direct neurotoxicity. Our prior work in murine neurons demonstrated CHI3L1's neurotoxic effects,<span><sup>4</sup></span> prompting us to explore its impact on MS patient-derived human induced pluripotent stem cells (hiPSC). Here, we aim to characterize these effects at both molecular and functional levels, further exploring CHI3L1's potential as a biomarker and therapeutic target for MS.</p><p>The first step in our investigation involved refining a human neuronal model using two MS-derived hiPSC lines (Table S1), MS-10 and MS-6, matured for 28 and 40 days (Figure S1A). To ensure the model's suitability, we meticulously characterized the neuronal cultures through immunofluorescence and calcium imaging, evaluating neuronal and astrocytic proportions (Figure S1B–E,J,L), cortical fate (Figure S1F–I,K,M), dendrite growth (Figure S2A), synaptic (Figure S2B) and neurotransmitter markers (Figure S3) and the onset of sporadic and synchronous neuronal activity (Figure S4). The neuronal cultures exhibited varying percentages of astrocytes, which increased over time for both cell lines (Figure S1J,L). Cortical fate was delineated by robust Tbr1 immunoreactivity alongside limited CTIP2 expression (Figure S1K,M). Notably, dendritic growth persisted until day 28 (Figure S2A), coinciding with the expression of synaptic markers like synapsin and PSD-95 (Figure S2B). By day 28, most neurons from each line co-expressed glutamatergic and GABAergic markers, but by day 40, the loss of vGAT immunoreactivity suggested a predominant population of glutamatergic cells (Figure S3). Additionally, fluorescence calcium imaging revealed a progressive increase in spontaneous and synchronous neuronal activity over time, culminating in a sporadic and synchronous pattern by day 40 (Figure S4).</p><p>Our investigation progressed to examine the impact of CHI3L1 on neuronal morphology and synaptic plasticity by treating MS-10 and MS-6 neuronal cultures at day 28 with CHI3L1 (300 ng/mL) or vehicle (PBS) for 24 and 72 h (Figure 1A). The analysis revealed a 17.5% reduction in dendritic arborization by 24 h and a 19% reduction by 72 h, along with a 16.5% decrease in dendrite length at 72 h (Figure 1B–D). Additionally, synaptic plastic
亲爱的编辑,我们很高兴地展示我们关于几丁质酶3-样1 (CHI3L1)在多发性硬化症(MS)中神经毒性作用的最新发现。CHI3L1是一种40 kD的糖蛋白,主要由中枢神经系统(CNS)中活化的星形胶质细胞和小胶质细胞产生,由于其在炎症和组织重塑中的作用而引起了相当大的关注在包括多发性硬化症在内的几种情况下,CHI3L1明显增加,越来越多的证据支持CHI3L1作为早期多发性硬化症的生物标志物,脑脊液(CSF)水平升高与残疾风险增加相关。这种关联促使我们研究CHI3L1是否仅仅反映了神经胶质的激活,或者它是否具有直接的神经毒性。我们之前在小鼠神经元上的研究证实了CHI3L1的神经毒性作用,4促使我们探索其对MS患者来源的人诱导多能干细胞(hiPSC)的影响。在这里,我们的目标是在分子和功能水平上表征这些效应,进一步探索CHI3L1作为ms的生物标志物和治疗靶点的潜力。我们研究的第一步是使用两种ms衍生的hiPSC系(表S1), MS-10和MS-6,成熟28天和40天(图S1A)来完善人类神经元模型。为了确保模型的适用性,我们通过免疫荧光和钙成像对神经元培养物进行了细致的表征,评估了神经元和星形细胞的比例(图S1B-E,J,L),皮层的形态(图S1F-I,K,M),树突生长(图S2A),突触(图S2B)和神经递质标志物(图S3),以及零星和同步神经元活动的开始(图S4)。神经元培养显示出不同百分比的星形胶质细胞,随着时间的推移,这两种细胞系都增加了(图S1J,L)。通过强大的Tbr1免疫反应性和有限的CTIP2表达来描绘皮质命运(图S1K,M)。值得注意的是,树突生长持续到第28天(图S2A),与突触素和PSD-95等突触标记物的表达一致(图S2B)。到第28天,每个系的大多数神经元共表达谷氨酸能和gaba能标记物,但到第40天,vGAT免疫反应性的丧失表明谷氨酸能细胞占主导地位(图S3)。此外,荧光钙成像显示自发性和同步神经元活动随着时间的推移逐渐增加,到第40天达到散发性和同步模式(图S4)。我们进一步研究了CHI3L1对神经元形态和突触可塑性的影响,通过在第28天用CHI3L1 (300 ng/mL)或载体(PBS)处理MS-10和MS-6神经元培养24和72小时(图1A)。分析显示,24 h时树突树枝化减少17.5%,72 h时树突树枝化减少19%,72 h时树突长度减少16.5%(图1B-D)。此外,突触可塑性评估显示chi3l1诱导的72 h突触面积(23.3%)和活跃突触(47.9%)减少,PSD-95水平下降(图1E-H),表明结构完整性和突触功能受损。CHI3L1诱导的树突树突和突触连通性的减少与神经退行性疾病(包括ms)的标志性特征一致。我们随后研究了CHI3L1对神经元和群体活动的影响。第40天的MS-10和MS-6神经元培养用CHI3L1 (300 ng/mL)或培养液(PBS)处理4、24和72小时(图2A)。我们利用荧光钙成像技术监测神经元活动,并应用先进的计算技术进行分析。我们的结果显示,在chi3l1处理的培养物中,荧光振幅显著增加,仅在4小时标记时显著(图2B),表明兴奋性增强。虽然在活动神经元的百分比(图2C)、平均神经元活动(图2D)或爆发间间隔(IBI;图2E),我们的网络行为分析揭示了随时间的动态变化。最初,集体事件(SCE)的强度增加,随后在24和72 h逐渐下降(图2F)。尽管我们对有效连接的评估并没有揭示出显著的差异,但观察到的趋势表明,随着时间的推移,网络整合动态发生了变化(图2G-I),反映了集体行为中所注意到的变化。在描述了chi3l1诱导的神经毒性作用后,我们研究了其潜在的分子机制。MS-10细胞28天培养的神经元用CHI3L1 (300 ng/mL)或PBS处理12和24小时,然后用微阵列分析基因表达。该分析确定了许多与神经退行性疾病和突触活动相关的差异表达基因(DEGs)(表S2-5)。 7个DEGs (RIOK2、DENND2C、CFAP61、RASA2、LRRC66、UHMK1和GNMT)通过实时定量聚合酶链反应进行验证(图3A)。值得注意的是,一些已证实的deg,如riok2,6,据报道与神经退行性疾病有关,而其他如UHMK17和GNMT8则在神经突生长和神经发生中发挥作用。功能分析显示,在12小时时,与受体配体活性、信号受体激活剂活性和促炎过程相关的类别富集(图3B),在24小时时过渡到突触活动相关的过程(图3C),基因集富集分析(GSEA)证实了这一点(图3D)。这些发现强调了CHI3L1对神经元功能和神经变性至关重要的基因和通路的影响,特别是在24小时标记。同时,我们进行了蛋白质磷酸化阵列分析,以探索CHI3L1神经毒性的信号通路。在第28天暴露于CHI3L1 (300 ng/mL)或载体(PBS)中,分析ms -10衍生的神经元培养物在早期时间点的关键蛋白磷酸化水平。我们观察到STAT1的磷酸化水平持续增加,特别是在Y701(图4A)。免疫印迹分析证实STAT1-Y701在暴露后2小时磷酸化(图4B)。trust富集分析发现IRF1和STAT1是调控CHI3L1处理24 h时基因表达反应的潜在转录因子,暗示了干扰素反应途径(图4C)。与转录因子靶基因数据库的比较支持IRF1和STAT1参与介导CHI3L1对hipsc源性神经元的影响(图4D)。阐明多发性硬化症的神经退行性过程对有针对性的治疗策略至关重要。在这项研究中,我们观察到神经毒性对树突形态、突触功能和神经元兴奋性的影响,表明其有可能作为MS预后的生物标志物。转录组学分析揭示了一个复杂的特征,涉及炎症和突触功能相关的途径和基因,以及chi3l1治疗后STAT1的激活。了解其复杂的分子机制可能会揭示抑制chi3l1介导的神经元信号传导的新治疗靶点,为MS的靶向干预提供有希望的途径。
{"title":"Chitinase 3-like 1 is neurotoxic in multiple sclerosis patient-derived cortical neurons","authors":"Rucsanda Pinteac,&nbsp;Jordi Soriano,&nbsp;Clara Matute-Blanch,&nbsp;José M Lizcano,&nbsp;Anna Duarri,&nbsp;Sunny Malhotra,&nbsp;Herena Eixarch,&nbsp;Gloria López Comellas,&nbsp;Xavier Montalban,&nbsp;Manuel Comabella","doi":"10.1002/ctm2.70125","DOIUrl":"10.1002/ctm2.70125","url":null,"abstract":"&lt;p&gt;Dear Editor,&lt;/p&gt;&lt;p&gt;We are pleased to present our latest findings regarding the neurotoxic role of Chitinase 3-like 1 (CHI3L1) in multiple sclerosis (MS). CHI3L1, a 40 kD glycoprotein, is primarily produced by activated astrocytes and microglia in the central nervous system (CNS), and it has garnered considerable attention due to its implications in inflammation and tissue remodelling.&lt;span&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;/span&gt; It is notably increased in several conditions, including MS, and accumulating evidence supports CHI3L1 as a biomarker in early MS, with elevated cerebrospinal fluid (CSF) levels associated with increased disability risk.&lt;span&gt;&lt;sup&gt;2, 3&lt;/sup&gt;&lt;/span&gt; This association led us to investigate whether CHI3L1 simply reflects glial activation or if it exerts direct neurotoxicity. Our prior work in murine neurons demonstrated CHI3L1's neurotoxic effects,&lt;span&gt;&lt;sup&gt;4&lt;/sup&gt;&lt;/span&gt; prompting us to explore its impact on MS patient-derived human induced pluripotent stem cells (hiPSC). Here, we aim to characterize these effects at both molecular and functional levels, further exploring CHI3L1's potential as a biomarker and therapeutic target for MS.&lt;/p&gt;&lt;p&gt;The first step in our investigation involved refining a human neuronal model using two MS-derived hiPSC lines (Table S1), MS-10 and MS-6, matured for 28 and 40 days (Figure S1A). To ensure the model's suitability, we meticulously characterized the neuronal cultures through immunofluorescence and calcium imaging, evaluating neuronal and astrocytic proportions (Figure S1B–E,J,L), cortical fate (Figure S1F–I,K,M), dendrite growth (Figure S2A), synaptic (Figure S2B) and neurotransmitter markers (Figure S3) and the onset of sporadic and synchronous neuronal activity (Figure S4). The neuronal cultures exhibited varying percentages of astrocytes, which increased over time for both cell lines (Figure S1J,L). Cortical fate was delineated by robust Tbr1 immunoreactivity alongside limited CTIP2 expression (Figure S1K,M). Notably, dendritic growth persisted until day 28 (Figure S2A), coinciding with the expression of synaptic markers like synapsin and PSD-95 (Figure S2B). By day 28, most neurons from each line co-expressed glutamatergic and GABAergic markers, but by day 40, the loss of vGAT immunoreactivity suggested a predominant population of glutamatergic cells (Figure S3). Additionally, fluorescence calcium imaging revealed a progressive increase in spontaneous and synchronous neuronal activity over time, culminating in a sporadic and synchronous pattern by day 40 (Figure S4).&lt;/p&gt;&lt;p&gt;Our investigation progressed to examine the impact of CHI3L1 on neuronal morphology and synaptic plasticity by treating MS-10 and MS-6 neuronal cultures at day 28 with CHI3L1 (300 ng/mL) or vehicle (PBS) for 24 and 72 h (Figure 1A). The analysis revealed a 17.5% reduction in dendritic arborization by 24 h and a 19% reduction by 72 h, along with a 16.5% decrease in dendrite length at 72 h (Figure 1B–D). Additionally, synaptic plastic","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"14 12","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631566/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142806201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigating intra-tumoural heterogeneity and microenvironment diversity in primary cardiac angiosarcoma through single-cell RNA sequencing 通过单细胞RNA测序研究原发性心脏血管肉瘤的肿瘤内异质性和微环境多样性。
IF 7.9 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2024-12-10 DOI: 10.1002/ctm2.70113
Jingyuan Huo, Zhen Wang, Wenting Zhao, Miao Chen, Haoyang Li, Fengpu He, Xiao Tian, Yaqi Ma, Firyuza Husanova, Liang Ma, Yiming Ni, Hongda Ding, Weidong Li, Hongfei Xu
<div> <section> <h3> Background</h3> <p>Primary cardiac angiosarcoma (PCAS) is a rare and aggressive heart tumour with limited treatment options and a poor prognosis. Understanding cellular heterogeneity and tumour microenvironment (TME) is crucial for the development of effective therapies. Here, we investigated the intratumoural heterogeneity and TME diversity of PCAS using single-cell RNA sequencing (scRNA-seq).</p> </section> <section> <h3> Methods</h3> <p>We performed scRNA-seq analysis on tumour samples from four patients with PCAS, supplemented with multicolour immunohistochemistry for identification. We used scRNA-seq data from five normal cardiac tissue samples downloaded from public databases for comparative analyses. Bioinformatic analyses, including Cell Ranger, Seurat, Monocle2, hdWGCNA, SCENIC and NicheNet, were utilized to identify distinct cell populations, transcriptional patterns, and co-regulating gene modules.</p> </section> <section> <h3> Results</h3> <p>Our analysis revealed significant intratumoural heterogeneity in PCAS driven by diverse biological processes such as protein synthesis, degradation, and RIG-I signalling inhibition. The SCENIC analysis identified three primary transcription factors' clusters (<i>CEBPB</i>, <i>MYC</i> and <i>TAL1</i>). T-cell subset analysis showed exhausted antigen-specific T-cells, complicating the efficacy of immune checkpoint blockade. Furthermore, we observed suppressive macrophages (SPP1+ and OLR1+) and reduced mitochondrial gene <i>MT-RNR2</i> (MTRNR2L12) expression in TME-infiltrating cells, indicating impaired mitochondrial function.</p> </section> <section> <h3> Conclusion</h3> <p>This study elucidates the complex cellular landscape and immune microenvironment of PCAS, highlighting potential molecular targets for the development of novel therapies. These findings underscore the importance of a multifaceted therapeutic approach for addressing the challenges posed by PCAS's heterogeneity and immune evasion.</p> </section> <section> <h3> Key points</h3> <div> <ul> <li>Insights into the heterogeneity and transcriptional patterns of sarcoma cells may explain the challenges in treating primary cardiac angiosarcoma (PCAS) using the current therapeutic modalities.</li> <li>Characterization of the immune microenvironment revealed significant immunosuppression mediated by specific myeloid cell
背景:原发性心脏血管肉瘤(PCAS)是一种罕见的侵袭性心脏肿瘤,治疗方案有限,预后差。了解细胞异质性和肿瘤微环境(TME)对于开发有效的治疗方法至关重要。在这里,我们使用单细胞RNA测序(scRNA-seq)研究了PCAS的肿瘤内异质性和TME多样性。方法:我们对4例PCAS患者的肿瘤样本进行scRNA-seq分析,并辅以多色免疫组织化学进行鉴定。我们使用从公共数据库下载的五个正常心脏组织样本的scRNA-seq数据进行比较分析。利用生物信息学分析,包括Cell Ranger、Seurat、Monocle2、hdWGCNA、SCENIC和NicheNet,鉴定不同的细胞群、转录模式和共调节基因模块。结果:我们的分析揭示了PCAS在多种生物过程(如蛋白质合成、降解和rig - 1信号抑制)驱动下的肿瘤内显著异质性。SCENIC分析确定了三个主要转录因子簇(CEBPB、MYC和TAL1)。t细胞亚群分析显示耗尽抗原特异性t细胞,使免疫检查点阻断的效果复杂化。此外,我们观察到tme浸润细胞中巨噬细胞(SPP1+和OLR1+)受到抑制,线粒体基因MT-RNR2 (MTRNR2L12)表达降低,表明线粒体功能受损。结论:本研究阐明了PCAS复杂的细胞景观和免疫微环境,揭示了开发新疗法的潜在分子靶点。这些发现强调了解决PCAS异质性和免疫逃避带来的挑战的多方面治疗方法的重要性。重点:对肉瘤细胞异质性和转录模式的深入了解可以解释使用当前治疗方式治疗原发性心肌血管肉瘤(PCAS)的挑战。免疫微环境的表征显示特异性骨髓细胞群(SPP1+和OLR1+巨噬细胞)介导了显著的免疫抑制。鉴定PCAS微环境中免疫细胞的线粒体功能障碍,特别是MTRNR2L12蛋白的显著下调,为治疗靶向提供了新的途径。
{"title":"Investigating intra-tumoural heterogeneity and microenvironment diversity in primary cardiac angiosarcoma through single-cell RNA sequencing","authors":"Jingyuan Huo,&nbsp;Zhen Wang,&nbsp;Wenting Zhao,&nbsp;Miao Chen,&nbsp;Haoyang Li,&nbsp;Fengpu He,&nbsp;Xiao Tian,&nbsp;Yaqi Ma,&nbsp;Firyuza Husanova,&nbsp;Liang Ma,&nbsp;Yiming Ni,&nbsp;Hongda Ding,&nbsp;Weidong Li,&nbsp;Hongfei Xu","doi":"10.1002/ctm2.70113","DOIUrl":"10.1002/ctm2.70113","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Background&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Primary cardiac angiosarcoma (PCAS) is a rare and aggressive heart tumour with limited treatment options and a poor prognosis. Understanding cellular heterogeneity and tumour microenvironment (TME) is crucial for the development of effective therapies. Here, we investigated the intratumoural heterogeneity and TME diversity of PCAS using single-cell RNA sequencing (scRNA-seq).&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We performed scRNA-seq analysis on tumour samples from four patients with PCAS, supplemented with multicolour immunohistochemistry for identification. We used scRNA-seq data from five normal cardiac tissue samples downloaded from public databases for comparative analyses. Bioinformatic analyses, including Cell Ranger, Seurat, Monocle2, hdWGCNA, SCENIC and NicheNet, were utilized to identify distinct cell populations, transcriptional patterns, and co-regulating gene modules.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Our analysis revealed significant intratumoural heterogeneity in PCAS driven by diverse biological processes such as protein synthesis, degradation, and RIG-I signalling inhibition. The SCENIC analysis identified three primary transcription factors' clusters (&lt;i&gt;CEBPB&lt;/i&gt;, &lt;i&gt;MYC&lt;/i&gt; and &lt;i&gt;TAL1&lt;/i&gt;). T-cell subset analysis showed exhausted antigen-specific T-cells, complicating the efficacy of immune checkpoint blockade. Furthermore, we observed suppressive macrophages (SPP1+ and OLR1+) and reduced mitochondrial gene &lt;i&gt;MT-RNR2&lt;/i&gt; (MTRNR2L12) expression in TME-infiltrating cells, indicating impaired mitochondrial function.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Conclusion&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;This study elucidates the complex cellular landscape and immune microenvironment of PCAS, highlighting potential molecular targets for the development of novel therapies. These findings underscore the importance of a multifaceted therapeutic approach for addressing the challenges posed by PCAS's heterogeneity and immune evasion.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Key points&lt;/h3&gt;\u0000 \u0000 &lt;div&gt;\u0000 &lt;ul&gt;\u0000 \u0000 &lt;li&gt;Insights into the heterogeneity and transcriptional patterns of sarcoma cells may explain the challenges in treating primary cardiac angiosarcoma (PCAS) using the current therapeutic modalities.&lt;/li&gt;\u0000 \u0000 &lt;li&gt;Characterization of the immune microenvironment revealed significant immunosuppression mediated by specific myeloid cell","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"14 12","pages":""},"PeriodicalIF":7.9,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631565/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142806211","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Clinical and Translational Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1