首页 > 最新文献

Clinical and Translational Medicine最新文献

英文 中文
A new paradigm for tumour profiling: Spatiotemporal omics in living tissue 肿瘤分析的新范式:活组织中的时空组学。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-12-08 DOI: 10.1002/ctm2.70547
Ciro Chiappini
<p>One of the central challenges in oncology is understanding why tumours stop responding to therapy. Clinicians see this repeatedly: an initial response that gives way to relapse, often driven by the tumour's ability to adapt at the molecular level. These adaptations are not static. They unfold over hours, days, and weeks, and they vary across different regions of the same tumour.</p><p>This means that the molecular programmes that enable a tumour to escape treatment are <i>dynamic, spatially organised, and highly patient-specific</i>. Yet the tools we use today, bulk sequencing, fixed-tissue analysis, and endpoint assays, capture only isolated moments in time. They fall short when clinicians need to know how a tumour changes during treatment, where resistance emerges within the tissue, and when a vulnerable state might be present. This gap calls for a new paradigm for tumour profiling: capturing molecular dynamics directly in living tissue, in both space and time (Figure 1).</p><p>Emerging spatial and temporal omics technologies are heralding this paradigm, but each captures only part of the picture.</p><p>Spatial omics platforms provide detailed maps of fixed biopsy material, yet remain static snapshots that cannot show how these patterns change once treatment begins. Temporal profiling methods offer insight into dynamic responses but rely on sequential biopsies and cannot reveal where within the tissue those changes arise. Lineage tracing,<span><sup>1</sup></span> metabolic labelling,<span><sup>2</sup></span> and live-tissue imaging<span><sup>3</sup></span> each contribute fragments of the picture, but they either require destructive processing, genetic manipulation, or provide only limited molecular depth.</p><p>The core challenge remains: we can map a tumour's landscape or track its evolution, but not capture both in living tissue. This limits our ability to detect early resistance and make timely, biology-guided decisions.</p><p>A key barrier in studying treatment response is that most molecular analyses require destroying the tissue. This makes it impossible to follow how the same piece of patient-derived material changes over time. Nanotechnology now offers a way around this by enabling longitudinal molecular sampling: the ability to extract small amounts of intracellular material from living tissue without compromising its viability.</p><p>Pioneering work using single-probe technologies such as nanopipettes<span><sup>4</sup></span> and FluidFM<span><sup>5</sup></span> showed that it is possible to take ‘live-cell biopsies’: tiny samples of RNA, proteins, or metabolites from the same living cell at multiple timepoints. These studies proved the concept that molecular pathways can be monitored dynamically in living systems, a breakthrough step for temporal omics. However, these approaches work cell-by-cell and are not scalable to tissue-level analysis or to most types of patient-derived samples used in clinical research.</p><p>Nanoneedle a
肿瘤学的核心挑战之一是理解肿瘤对治疗停止反应的原因。临床医生反复看到这种情况:最初的反应让位于复发,通常是由肿瘤在分子水平上的适应能力驱动的。这些适应并不是一成不变的。它们在数小时、数天和数周内展开,并且在同一肿瘤的不同区域有所不同。这意味着使肿瘤逃避治疗的分子程序是动态的、有空间组织的和高度患者特异性的。然而,我们今天使用的工具,批量测序,固定组织分析和终点分析,只能捕获孤立的时刻。当临床医生需要知道肿瘤在治疗过程中如何变化,组织中出现耐药性的地方,以及何时可能出现脆弱状态时,这些方法就不够用了。这一差距需要一种新的肿瘤分析范式:在空间和时间上直接捕获活组织中的分子动力学(图1)。新兴的空间组学和时间组学技术预示着这种范式,但每种技术都只捕获了部分图像。空间组学平台提供了固定活检材料的详细地图,但仍然是静态快照,无法显示治疗开始后这些模式如何变化。时间谱分析方法提供了对动态反应的洞察,但依赖于顺序活检,不能揭示组织内发生这些变化的位置。谱系追踪、代谢标记和活体组织成像都提供了图像的片段,但它们要么需要破坏性处理,要么需要基因操作,要么只能提供有限的分子深度。核心挑战仍然存在:我们可以绘制肿瘤的分布图或追踪其演变,但无法在活组织中捕捉到这两者。这限制了我们发现早期耐药性并及时做出生物学指导决策的能力。研究治疗反应的一个关键障碍是,大多数分子分析需要破坏组织。这使得追踪同一块来自患者的材料随时间的变化变得不可能。现在,纳米技术通过纵向分子采样提供了一种解决方法:从活组织中提取少量细胞内物质而不影响其生存能力的能力。使用纳米管和FluidFM5等单探针技术的开创性工作表明,在多个时间点从同一个活细胞中提取RNA、蛋白质或代谢物的微小样本,进行“活细胞活检”是可能的。这些研究证明了分子通路可以在生命系统中动态监测的概念,这是时间组学的突破性进展。然而,这些方法逐细胞工作,不能扩展到组织水平分析或用于临床研究中大多数类型的患者来源样本。纳米针阵列克服了这些实际限制与一次对一个细胞取样不同,由成千上万个显微针组成的阵列可以同时在组织中与许多细胞接触它们轻轻地进入细胞质,取出最少的物质,使细胞保持完整重要的是,这可以重复,允许临床医生和研究人员跟踪相同的组织,因为它适应了治疗,而不需要重复活检或破坏性处理。通过这种非破坏性采样,纳米针以与现代组学分析相容的产量恢复RNA,蛋白质和代谢物,同时保留组织结构和功能。这首次创造了一个对活体人体组织进行时空多组学分析的平台。在我们最近的研究中,我们将这项技术应用于活的人类神经胶质瘤组织,并展示了临床肿瘤学长期以来所需要的:能够在空间和时间上跟踪患者的肿瘤对治疗的反应9(图2)。纳米针取样产生了组织的“分子印记”,以高保真度捕获代谢物的空间组织,同时保持组织存活。这些印迹保留了区分高级别和低级别胶质瘤的分子模式,并且鉴定了通常需要对原始组织进行破坏性分析的相同生物标志物特征。至关重要的是,由于这个过程是无破坏性的,我们可以在化疗前后对同一组织进行取样。这使我们第一次能够直接观察活体肿瘤对治疗的时空代谢反应。我们可以看到组织中的代谢特征在哪里被重新连接,关键脂质的丰度是如何变化的,以及这些变化是如何随着时间的推移而展开的。这种对治疗诱导的动态的直接测量为了解耐药性的实时出现打开了大门。我们在空间和时间上分析活组织的能力为临床研究、精准肿瘤学和患者护理创造了新的机会。 对于临床医生来说,最直接的价值在于了解单个患者的肿瘤在放射学或临床表现出这些变化之前对治疗的反应。在精准医学和转化研究中,纳米针取样能够直接在活体患者来源的组织上动态测试治疗反应。通过捕捉表明敏感性或新出现的耐药性的早期分子变化,它可以帮助临床医生选择有效的药物组合,并避免易发生适应性逃逸的方案。纵向印记同时为研究人员提供早期疗效信号,澄清跨队列的异质性反应,并显示候选疗法如何重塑关键分子途径。微创纵向取样有可能减少重复活检的负担。我们已经开发出将纳米针整合到熟悉的临床仪器中的方法,10如贴片、绷带、内窥镜、导管和血管成形术气球,使临床医生能够在不切除组织的情况下从可触及的病变中获得分子印迹。在监测规划期间对癌前病变或炎性病变进行重复采样,可支持早期发现进展并指导及时干预。术中,分子印迹可以提供比冷冻切片分析更多的信息反馈,而无需组织切除。他们额外的分子深度可能会加强决策,特别是边际评估和治疗升级。总之,这些能力预示着未来临床医生可以实时跟踪患者的疾病生物学,根据动态分子反应的直接证据为治疗选择提供信息,并减少与传统组织采样相关的程序负担。因此,纳米针支持的时空分析代表了向更具适应性、个性化和临床可操作的分子医学迈出的有希望的一步。
{"title":"A new paradigm for tumour profiling: Spatiotemporal omics in living tissue","authors":"Ciro Chiappini","doi":"10.1002/ctm2.70547","DOIUrl":"10.1002/ctm2.70547","url":null,"abstract":"&lt;p&gt;One of the central challenges in oncology is understanding why tumours stop responding to therapy. Clinicians see this repeatedly: an initial response that gives way to relapse, often driven by the tumour's ability to adapt at the molecular level. These adaptations are not static. They unfold over hours, days, and weeks, and they vary across different regions of the same tumour.&lt;/p&gt;&lt;p&gt;This means that the molecular programmes that enable a tumour to escape treatment are &lt;i&gt;dynamic, spatially organised, and highly patient-specific&lt;/i&gt;. Yet the tools we use today, bulk sequencing, fixed-tissue analysis, and endpoint assays, capture only isolated moments in time. They fall short when clinicians need to know how a tumour changes during treatment, where resistance emerges within the tissue, and when a vulnerable state might be present. This gap calls for a new paradigm for tumour profiling: capturing molecular dynamics directly in living tissue, in both space and time (Figure 1).&lt;/p&gt;&lt;p&gt;Emerging spatial and temporal omics technologies are heralding this paradigm, but each captures only part of the picture.&lt;/p&gt;&lt;p&gt;Spatial omics platforms provide detailed maps of fixed biopsy material, yet remain static snapshots that cannot show how these patterns change once treatment begins. Temporal profiling methods offer insight into dynamic responses but rely on sequential biopsies and cannot reveal where within the tissue those changes arise. Lineage tracing,&lt;span&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;/span&gt; metabolic labelling,&lt;span&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/span&gt; and live-tissue imaging&lt;span&gt;&lt;sup&gt;3&lt;/sup&gt;&lt;/span&gt; each contribute fragments of the picture, but they either require destructive processing, genetic manipulation, or provide only limited molecular depth.&lt;/p&gt;&lt;p&gt;The core challenge remains: we can map a tumour's landscape or track its evolution, but not capture both in living tissue. This limits our ability to detect early resistance and make timely, biology-guided decisions.&lt;/p&gt;&lt;p&gt;A key barrier in studying treatment response is that most molecular analyses require destroying the tissue. This makes it impossible to follow how the same piece of patient-derived material changes over time. Nanotechnology now offers a way around this by enabling longitudinal molecular sampling: the ability to extract small amounts of intracellular material from living tissue without compromising its viability.&lt;/p&gt;&lt;p&gt;Pioneering work using single-probe technologies such as nanopipettes&lt;span&gt;&lt;sup&gt;4&lt;/sup&gt;&lt;/span&gt; and FluidFM&lt;span&gt;&lt;sup&gt;5&lt;/sup&gt;&lt;/span&gt; showed that it is possible to take ‘live-cell biopsies’: tiny samples of RNA, proteins, or metabolites from the same living cell at multiple timepoints. These studies proved the concept that molecular pathways can be monitored dynamically in living systems, a breakthrough step for temporal omics. However, these approaches work cell-by-cell and are not scalable to tissue-level analysis or to most types of patient-derived samples used in clinical research.&lt;/p&gt;&lt;p&gt;Nanoneedle a","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 12","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12685608/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145707560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stereo cell: A new approach to the next generation of clinical precision medicine 立体细胞:下一代临床精准医学的新途径
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-11-28 DOI: 10.1002/ctm2.70537
Wanxin Duan, Mingjie Wang, Yifei Liu, Celine Desoyer, Christian Baumgartner, Xiangdong Wang

Precision medicine has evolved through distinct phases, from the origins of the Human Genome Project to mutation-based targeted therapies. This editorial posits that “stereological cell biomedicine” could be a new approach promoting the development of the next generation of precision medicine. This emerging discipline transitions the focus from genomic data to the multi-dimensional and spatiotemporal complexity of single cells. Driven by advances in Stereo single-cell multi-omics (Stereo Cell-seq), spatial transcriptomics (Stereo-seq), and single-cell surfaceomics (sc-surfaceome), this approach aims to capture the stereologically dynamic interactions between organelles within a cell and between cells in the tissue. We argue that understanding the spatiotemporal location of molecules, particularly protein interactions at organelle interfaces and on the cell surface, is as critical as their abundance for defining cellular function in health and disease. Integrating these high-resolution measurements with artificial intelligence and computational modelling will bridge the gap between advanced omics and pathology. Initiatives such as the newly established European Stereo Cell Center (ESCC) signal a global shift towards this new paradigm, which promises to unlock novel diagnostic biomarkers and therapeutic targets for truly multi-factorial and dynamic precision medicine.

从人类基因组计划的起源到基于突变的靶向治疗,精准医学经历了不同的发展阶段。这篇社论认为,“立体细胞生物医学”可能是促进下一代精准医学发展的新途径。这一新兴学科将重点从基因组数据转移到单细胞的多维和时空复杂性。在立体单细胞多组学(Stereo cell -seq)、空间转录组学(Stereo-seq)和单细胞表面组学(sc-surfaceome)进展的推动下,该方法旨在捕捉细胞内细胞器之间和组织中细胞之间的立体动态相互作用。我们认为,了解分子的时空位置,特别是在细胞器界面和细胞表面的蛋白质相互作用,与它们的丰度一样,对于确定健康和疾病中的细胞功能至关重要。将这些高分辨率测量与人工智能和计算建模相结合,将弥合先进组学与病理学之间的差距。新成立的欧洲立体细胞中心(ESCC)等倡议标志着全球向这种新范式的转变,它有望为真正的多因子和动态精准医学解锁新的诊断生物标志物和治疗靶点。
{"title":"Stereo cell: A new approach to the next generation of clinical precision medicine","authors":"Wanxin Duan,&nbsp;Mingjie Wang,&nbsp;Yifei Liu,&nbsp;Celine Desoyer,&nbsp;Christian Baumgartner,&nbsp;Xiangdong Wang","doi":"10.1002/ctm2.70537","DOIUrl":"https://doi.org/10.1002/ctm2.70537","url":null,"abstract":"<p>Precision medicine has evolved through distinct phases, from the origins of the Human Genome Project to mutation-based targeted therapies. This editorial posits that “stereological cell biomedicine” could be a new approach promoting the development of the next generation of precision medicine. This emerging discipline transitions the focus from genomic data to the multi-dimensional and spatiotemporal complexity of single cells. Driven by advances in Stereo single-cell multi-omics (Stereo Cell-seq), spatial transcriptomics (Stereo-seq), and single-cell surfaceomics (sc-surfaceome), this approach aims to capture the stereologically dynamic interactions between organelles within a cell and between cells in the tissue. We argue that understanding the spatiotemporal location of molecules, particularly protein interactions at organelle interfaces and on the cell surface, is as critical as their abundance for defining cellular function in health and disease. Integrating these high-resolution measurements with artificial intelligence and computational modelling will bridge the gap between advanced omics and pathology. Initiatives such as the newly established European Stereo Cell Center (ESCC) signal a global shift towards this new paradigm, which promises to unlock novel diagnostic biomarkers and therapeutic targets for truly multi-factorial and dynamic precision medicine.</p>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 12","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70537","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145626431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CLINICAL AND TRANSLATIONAL MEDICINE 临床和转化医学
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-11-26 DOI: 10.1002/ctm2.70544
{"title":"CLINICAL AND TRANSLATIONAL MEDICINE","authors":"","doi":"10.1002/ctm2.70544","DOIUrl":"https://doi.org/10.1002/ctm2.70544","url":null,"abstract":"","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 12","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70544","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145626357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Translational values of tissue-resident memory T cells in chronic inflammation and cancer 组织驻留记忆T细胞在慢性炎症和癌症中的翻译价值
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-11-25 DOI: 10.1002/ctm2.70516
Wanxin Duan, Xiangdong Wang
<p>T cells are central orchestrators of adaptive immunity and play important and complex roles in chronic inflammation, despite that their roles remain even paradoxical. The dysregulations of T cells occur in chronic diseases, such as inflammation and cancer, from being protectors to potent drivers of tissue pathology.<span><sup>1-3</sup></span> Of those, the pro-inflammatory tissue-resident memory (TRM) T cells accumulate within the tissue, perpetuating a cycle of inflammation. Subsets of TRM T cells, including those producing the highly inflammatory cytokine interleulin-17 (IL-17), are directly implicated in tissue damage, to form the ectopic lymphoid tissues, remodel the microenvironment, and amplify the local response in inflammation and cancer.<span><sup>4, 5</sup></span> Reformed lymphoid alter local gradients of inflammatory mediators to trap and retain more lymphocytes and exacerbate the microenvironmental bioecology. The pre-activated TRM-like T cells harboured in lungs of smokers as the pre-existing state of a tissue can create an immune pressure that reprograms subsequent tumour evolution and response to therapy and profoundly influences disease progression.<span><sup>6</sup></span></p><p>The deep understanding of TRM T-cell phenomes and bio-behaviours provides new insights for the identification of diagnostic biomarkers and therapeutic targets. The TRM T cells as a special type of memory T cells are categorised on basis of the locations (e.g., gut-TRM, lung-TRM, brain-TRM), cell surface antigens (e.g., CD8⁺TRM, CD4⁺TRM), or cell identity gene markers measured by single-cell RNA sequencing (scRNA-seq).<span><sup>7-9</sup></span> One of biological characteristics is their long-term residence in specific tissue to take an immediate action in the initiation of immune responses to invaded pathogens and reduction infectious spreads, faster than circulating memory T cells. Of those, CD8⁺TRM T cells are the majority responsible for antiviral and anti-tumour immunity and can directly terminate infected cells and pathogen replication by releasing inflammatory mediators and enzymes. CD4⁺TRM can support other immune cells (like B cells for antibody production, macrophages for activation), and regulate local immune responses to infectious and autoimmune diseases by enhancing the synergistic effects of the immune networks. In addition, TRM T cells play critical roles in the tissue repair by controlling microenvironmental contents of inflammatory mediators and recognising abnormal cells like infected cells or cancer cells to reduce the risk of tissue damage and maintain microenvironmental immune bioecology. The molecular processes of reservable immune memory in TRM T cells can provide a number of alternatives for vaccination and immunotherapy.</p><p>Recent redefinition of redefining T-cell behaviour in inflamed or tumour microenvironment are largely driven by high-resolution techniques such as scRNA-seq, spatial transcriptomics and multi-omics integ
T细胞是适应性免疫的中枢协调者,在慢性炎症中发挥着重要而复杂的作用,尽管它们的作用仍然是矛盾的。T细胞的失调发生在慢性疾病中,如炎症和癌症,从组织病理学的保护者到强有力的驱动者。其中,促炎组织驻留记忆(TRM) T细胞在组织内积累,使炎症循环持续下去。TRM T细胞亚群,包括那些产生高炎性细胞因子白介素-17 (IL-17)的细胞亚群,直接参与组织损伤,形成异位淋巴组织,重塑微环境,放大炎症和癌症的局部反应。4,5重组淋巴细胞改变炎症介质的局部梯度,以捕获和保留更多淋巴细胞,加剧微环境生物生态。吸烟者肺部中预先激活的trm样T细胞作为组织的预先存在状态,可以产生免疫压力,重新编程随后的肿瘤进化和对治疗的反应,并深刻影响疾病进展。对TRM t细胞现象和生物行为的深入了解为鉴定诊断性生物标志物和治疗靶点提供了新的见解。TRM T细胞作为一种特殊类型的记忆T细胞,根据位置(例如,肠道TRM,肺TRM,脑TRM),细胞表面抗原(例如,CD8 + TRM, CD4 + TRM)或通过单细胞RNA测序(scRNA-seq)测量的细胞身份基因标记物进行分类。7-9生物学特性之一是它们长期驻留在特定组织中,对入侵病原体的免疫反应立即采取行动,减少感染扩散,比循环记忆T细胞更快。其中,CD8 + TRM T细胞主要负责抗病毒和抗肿瘤免疫,可以通过释放炎症介质和酶直接终止感染细胞和病原体复制。CD4 + TRM可以支持其他免疫细胞(如B细胞产生抗体,巨噬细胞活化),通过增强免疫网络的协同作用,调节局部对感染性和自身免疫性疾病的免疫反应。此外,TRM T细胞通过控制炎症介质的微环境含量,识别感染细胞或癌细胞等异常细胞,降低组织损伤风险,维持微环境免疫生物生态,在组织修复中发挥关键作用。TRM T细胞中保留免疫记忆的分子过程可以为疫苗接种和免疫治疗提供许多替代方案。最近对炎症或肿瘤微环境中t细胞行为的重新定义主要是由高分辨率技术如scRNA-seq、空间转录组学和多组学整合驱动的。使用scRNA-seq重新发现新的t细胞亚群/状态,不同于使用大量RNA分析的描述。炎症和损伤组织中TRM T细胞的形成受多种因素调控。功能不同的TRM亚群遵循不同的发育路径,例如,产生IFN-γ的TRM1细胞依赖于T-bet-Hobit轴,而产生il -17的TRM17细胞则由转录因子c- maf独立编程这突出了TRM谱系中组织特异性特化的显著程度。此外,外部因素,如化学传感和代谢线索显著影响TRM细胞的行为。转录因子C/EBPβ作为某些化学物质的传感器可以直接促进T细胞驱动的肠道炎症11,而表达颗粒酶k的CD8+ T细胞的不同群体可能是慢性鼻窦炎复发的关键驱动因素12关键的是,细胞代谢已经成为一个中央调控枢纽。ATP柠檬酸解酶通过改变糖酵解ATP的产生以及磷脂和磷脂酰胆碱的生物合成,对t细胞驱动的结肠炎是必不可少的TRM T细胞的存活依赖于外源性脂质摄取,代谢副产物乳酸可以主动重编程炎症组织中的T细胞。ACLY通过产生乙酰辅酶a,为促炎基因位点的组蛋白乙酰化提供必需的底物,从而在表观遗传上促进IFN-γ和IL-17A等细胞因子的表达。TRM T细胞的分子现象和调控也在临床和转化发现和医学中得到强调。使用scRNA-seq,发现肺组织CD8+naïve和记忆T细胞参与CD8+T细胞向耗竭细胞和/或细胞毒性细胞的分化,并积极调节细胞死亡和细胞因子的产生干细胞样记忆T细胞,一群具有自我更新和分化能力的长寿命记忆T细胞,在新诊断的多发性骨髓瘤中减少。 15在淀粉样蛋白轻链患者的骨髓中发现CD8+TRM T细胞具有高表达的抑制分子,在达拉单抗联合环磷酰胺、硼替佐米和地塞米松后,抑制分子下调,IFNG表达上调,迅速激活。这些细胞被迅速激活,抑制标记物的表达减少,IFNG转录增加在肺中,TRM T细胞也被证明与基质相互作用肺TRM T细胞也被发现与间质细胞如远端细胞紧密联系,维持组织修复的激活这表明TRM T细胞的分子生物学行为可以作为诊断性生物标志物发现的来源,也可以作为治疗靶点鉴定的来源。然而,基于TRM t细胞的诊断和治疗的临床应用需要进一步完善其分子特征。TRM t细胞识别基因标记板的亚群和功能状态的准确性和特异性应根据组织类型和疾病进一步界定和标准化,以满足临床应用的要求,提高患者的预后。展望未来,TRM T细胞的生物学功能和保护作用高度依赖于TRM T细胞起源和分化轨迹的组织特异性和异质性。细胞内和细胞外信号的时空定位可以将TRM T细胞定向为分化或祖细胞样,通过不同的配体受体活性、细胞因子梯度和通过TGFβ或CXCL9和CXCL10.19等多种信号通路的特化细胞接触进行调节。此外,TRM T细胞真实生活的微环境在立体上是时空、动态和实时变化的。连续的空间转录组可以提供TRM T细胞的立体图像,用于可视化多维连接/相互作用,而立体细胞测序可以为研究TRM T细胞如何调节炎症和癌症微环境的形成提供动态和形态学平台。20,21随着多组学技术的发展,人工智能TRM T单细胞将被构建,从而在单细胞水平上为了解分子调控动态、影响临床诊断和疾病预测提供可靠、快速的信息因此,更深入地挖掘TRM t细胞的功能、特异性和它们的亚群、相互作用的细胞和位置之间的规律,将创造更多的临床治疗方案。
{"title":"Translational values of tissue-resident memory T cells in chronic inflammation and cancer","authors":"Wanxin Duan,&nbsp;Xiangdong Wang","doi":"10.1002/ctm2.70516","DOIUrl":"https://doi.org/10.1002/ctm2.70516","url":null,"abstract":"&lt;p&gt;T cells are central orchestrators of adaptive immunity and play important and complex roles in chronic inflammation, despite that their roles remain even paradoxical. The dysregulations of T cells occur in chronic diseases, such as inflammation and cancer, from being protectors to potent drivers of tissue pathology.&lt;span&gt;&lt;sup&gt;1-3&lt;/sup&gt;&lt;/span&gt; Of those, the pro-inflammatory tissue-resident memory (TRM) T cells accumulate within the tissue, perpetuating a cycle of inflammation. Subsets of TRM T cells, including those producing the highly inflammatory cytokine interleulin-17 (IL-17), are directly implicated in tissue damage, to form the ectopic lymphoid tissues, remodel the microenvironment, and amplify the local response in inflammation and cancer.&lt;span&gt;&lt;sup&gt;4, 5&lt;/sup&gt;&lt;/span&gt; Reformed lymphoid alter local gradients of inflammatory mediators to trap and retain more lymphocytes and exacerbate the microenvironmental bioecology. The pre-activated TRM-like T cells harboured in lungs of smokers as the pre-existing state of a tissue can create an immune pressure that reprograms subsequent tumour evolution and response to therapy and profoundly influences disease progression.&lt;span&gt;&lt;sup&gt;6&lt;/sup&gt;&lt;/span&gt;&lt;/p&gt;&lt;p&gt;The deep understanding of TRM T-cell phenomes and bio-behaviours provides new insights for the identification of diagnostic biomarkers and therapeutic targets. The TRM T cells as a special type of memory T cells are categorised on basis of the locations (e.g., gut-TRM, lung-TRM, brain-TRM), cell surface antigens (e.g., CD8⁺TRM, CD4⁺TRM), or cell identity gene markers measured by single-cell RNA sequencing (scRNA-seq).&lt;span&gt;&lt;sup&gt;7-9&lt;/sup&gt;&lt;/span&gt; One of biological characteristics is their long-term residence in specific tissue to take an immediate action in the initiation of immune responses to invaded pathogens and reduction infectious spreads, faster than circulating memory T cells. Of those, CD8⁺TRM T cells are the majority responsible for antiviral and anti-tumour immunity and can directly terminate infected cells and pathogen replication by releasing inflammatory mediators and enzymes. CD4⁺TRM can support other immune cells (like B cells for antibody production, macrophages for activation), and regulate local immune responses to infectious and autoimmune diseases by enhancing the synergistic effects of the immune networks. In addition, TRM T cells play critical roles in the tissue repair by controlling microenvironmental contents of inflammatory mediators and recognising abnormal cells like infected cells or cancer cells to reduce the risk of tissue damage and maintain microenvironmental immune bioecology. The molecular processes of reservable immune memory in TRM T cells can provide a number of alternatives for vaccination and immunotherapy.&lt;/p&gt;&lt;p&gt;Recent redefinition of redefining T-cell behaviour in inflamed or tumour microenvironment are largely driven by high-resolution techniques such as scRNA-seq, spatial transcriptomics and multi-omics integ","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 12","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70516","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145595363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CAR-DC combined with CAR-T therapy for relapsed/refractory acute myeloid leukaemia: Research progress and future perspectives CAR-DC联合CAR-T治疗复发/难治性急性髓性白血病:研究进展及未来展望
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-11-25 DOI: 10.1002/ctm2.70536
Rui Zhang, Jinlin Zhang, Hongkai Zhang, Mingfeng Zhao
<div> <section> <p>Acute myeloid leukaemia (AML) remains the most common type of leukaemia in adults. Despite advances in conventional therapies, high relapse rates persist, underscoring the need for novel approaches such as chimeric antigen receptor T (CAR-T) cell therapy. C-type lectin-like molecule-1 (CLL1)-targeted CAR-T emerges as a promising treatment for relapsed/refractory (R/R) AML. Although approximately 70% patients achieved remission, only a subset achieved minimal residual disease-negative remission, which still has much room for improvement. The main reasons for the failure of CLL1 CAR-T-cell therapy include: (1) persistence of CLL1-negative AML cells persist due to antigen escape; (2) downregulation of interleukin (IL)-12 and other cytokines by the immunosuppressive tumour microenvironment (TME), contributing to the exhaustion of both endogenous T cells and CLL1 CAR-T cells.</p> <p>We synthesise a combination of CAR-engineered dendritic cells (CAR-DCs) and CLL1 CAR-T cells to overcome current limitations. CAR-DCs enhance antigen cross-presentation to activate endogenous T cells against antigen-negative clones, secrete immunostimulatory cytokines (e.g., IL-12) to sustain CAR-T activity, and remodel the TME. Key challenges involve optimising CAR designs (e.g., incorporating Fms-like tyrosine kinase 3 ligand [FLT-3L] or CD40 signalling domains), mitigating toxicity and establishing clinical administration protocols.</p> <p>In this review, a focused discussion was provided on the specific challenges limiting CLL1-targeted CAR-T-cell therapy in R/R AML, namely antigen escape and the TME, and a novel combination strategy of CAR-DCs with CLL1 CAR-T cells was proposed as a promising approach to mitigate these barriers. Here, the rationale, current research advances, and future perspectives of this synergistic strategy were critically examined.</p> </section> <section> <h3> Highlights</h3> <div> <ul> <li> <p>Our earlier clinical trials showed that C-type lectin-like molecule-1 (CLL1)-targeted therapy for refractory/relapse acute myeloid leukaemia (AML) was validated, which still has a considerable room for improvement.</p> </li> <li> <p>We summarise the clinical trials and basic research on the dendritic cell (DC) therapy and chimeric antigen receptor-engineered DC (CAR-DC) therapy.</p> </li> <li> <p>We explored the synergistic mechanism and prospects of CLL1 CAR-DC cells combined with CLL1 CAR-T cells in AML.</p> </li>
急性髓性白血病(AML)仍然是成人中最常见的白血病类型。尽管传统疗法取得了进步,但高复发率仍然存在,这强调了对嵌合抗原受体T (CAR-T)细胞疗法等新方法的需求。c型凝集素样分子-1 (CLL1)靶向CAR-T成为复发/难治性AML (R/R)的一种有希望的治疗方法。尽管大约70%的患者获得了缓解,但只有一小部分患者获得了最小的残留疾病阴性缓解,这仍有很大的改进空间。CLL1 car - t细胞治疗失败的主要原因包括:(1)CLL1阴性AML细胞因抗原逃逸而持续存在;(2)免疫抑制性肿瘤微环境(TME)下调白细胞介素(IL)-12和其他细胞因子,导致内源性T细胞和CLL1 CAR-T细胞衰竭。我们合成了car -工程树突状细胞(car - dc)和CLL1 CAR-T细胞的组合,以克服目前的局限性。car - dc增强抗原交叉呈递,激活内源性T细胞对抗抗原阴性克隆,分泌免疫刺激细胞因子(如IL-12)以维持CAR-T活性,并重塑TME。关键的挑战包括优化CAR设计(例如,结合fms样酪氨酸激酶3配体[FLT-3L]或CD40信号域),减轻毒性和建立临床给药方案。在这篇综述中,重点讨论了限制CLL1靶向CAR-T细胞治疗R/R AML的具体挑战,即抗原逃逸和TME,并提出了一种新的car - dc与CLL1 CAR-T细胞的联合策略,作为缓解这些障碍的有希望的方法。在这里,理论基础,目前的研究进展和未来的前景,这种协同战略进行了严格审查。我们早期的临床试验表明,c型凝集素样分子-1 (CLL1)靶向治疗难治性/复发性急性髓性白血病(AML)是有效的,但仍有相当大的改进空间。本文综述了树突状细胞(DC)治疗和嵌合抗原受体工程DC (CAR-DC)治疗的临床试验和基础研究。我们探讨了CLL1 CAR-DC细胞联合CLL1 CAR-T细胞在AML中的协同作用机制和前景。
{"title":"CAR-DC combined with CAR-T therapy for relapsed/refractory acute myeloid leukaemia: Research progress and future perspectives","authors":"Rui Zhang,&nbsp;Jinlin Zhang,&nbsp;Hongkai Zhang,&nbsp;Mingfeng Zhao","doi":"10.1002/ctm2.70536","DOIUrl":"https://doi.org/10.1002/ctm2.70536","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;p&gt;Acute myeloid leukaemia (AML) remains the most common type of leukaemia in adults. Despite advances in conventional therapies, high relapse rates persist, underscoring the need for novel approaches such as chimeric antigen receptor T (CAR-T) cell therapy. C-type lectin-like molecule-1 (CLL1)-targeted CAR-T emerges as a promising treatment for relapsed/refractory (R/R) AML. Although approximately 70% patients achieved remission, only a subset achieved minimal residual disease-negative remission, which still has much room for improvement. The main reasons for the failure of CLL1 CAR-T-cell therapy include: (1) persistence of CLL1-negative AML cells persist due to antigen escape; (2) downregulation of interleukin (IL)-12 and other cytokines by the immunosuppressive tumour microenvironment (TME), contributing to the exhaustion of both endogenous T cells and CLL1 CAR-T cells.&lt;/p&gt;\u0000 \u0000 &lt;p&gt;We synthesise a combination of CAR-engineered dendritic cells (CAR-DCs) and CLL1 CAR-T cells to overcome current limitations. CAR-DCs enhance antigen cross-presentation to activate endogenous T cells against antigen-negative clones, secrete immunostimulatory cytokines (e.g., IL-12) to sustain CAR-T activity, and remodel the TME. Key challenges involve optimising CAR designs (e.g., incorporating Fms-like tyrosine kinase 3 ligand [FLT-3L] or CD40 signalling domains), mitigating toxicity and establishing clinical administration protocols.&lt;/p&gt;\u0000 \u0000 &lt;p&gt;In this review, a focused discussion was provided on the specific challenges limiting CLL1-targeted CAR-T-cell therapy in R/R AML, namely antigen escape and the TME, and a novel combination strategy of CAR-DCs with CLL1 CAR-T cells was proposed as a promising approach to mitigate these barriers. Here, the rationale, current research advances, and future perspectives of this synergistic strategy were critically examined.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Highlights&lt;/h3&gt;\u0000 \u0000 &lt;div&gt;\u0000 &lt;ul&gt;\u0000 \u0000 &lt;li&gt;\u0000 &lt;p&gt;Our earlier clinical trials showed that C-type lectin-like molecule-1 (CLL1)-targeted therapy for refractory/relapse acute myeloid leukaemia (AML) was validated, which still has a considerable room for improvement.&lt;/p&gt;\u0000 &lt;/li&gt;\u0000 \u0000 &lt;li&gt;\u0000 &lt;p&gt;We summarise the clinical trials and basic research on the dendritic cell (DC) therapy and chimeric antigen receptor-engineered DC (CAR-DC) therapy.&lt;/p&gt;\u0000 &lt;/li&gt;\u0000 \u0000 &lt;li&gt;\u0000 &lt;p&gt;We explored the synergistic mechanism and prospects of CLL1 CAR-DC cells combined with CLL1 CAR-T cells in AML.&lt;/p&gt;\u0000 &lt;/li&gt;\u0000 ","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 12","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70536","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145595297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated pathway analysis identifies prognostically relevant subtypes of glioblastoma characterized by abnormalities in multi-omics 综合通路分析确定以多组学异常为特征的胶质母细胞瘤预后相关亚型
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-11-25 DOI: 10.1002/ctm2.70517
Pei Zhang, Dan Liu, Tonghui Yu, Yanlin Zhang, Lu Zhong, Xiao Ouyang, Qin Xia, Lei Dong
<div> <section> <h3> Background</h3> <p>Gene expression-based molecular subtypes in glioblastoma from The Cancer Genome Atlas Network (TCGA-GBM) unraveled the pathological origins by identifying tumour cell driver genes. However, the causal inference between molecular subtype origins and their therapeutic efficacy remains obscure.</p> </section> <section> <h3> Methods</h3> <p>We integrated TCGA-GBM multi-omics (DNA, mRNA, and protein profiles) using correlation analysis to identify <i>cis-</i>regulation. We analyzed the exposure-mediated base substitution-level mutations and their potential triggers. Importantly, we performed Consensus Clustering based on the MSigDB database with Silhouette-correction to identify prognostically relevant pathway-based MSig subtypes. The tumour driver mutations (co-occurrence mutation pattern), aberrant pathways (tumour hallmarks), immune microenvironment (<i>xCell</i>), and pseudo-time analysis (<i>dyno</i>) were used to characterize the MSig subtype landscape. Furthermore, we evaluated potential drug sensitivities across MSig subtypes using the Genomics of Drug Sensitivity in Cancer database.</p> </section> <section> <h3> Results</h3> <p>We classified five MSig subtypes, characterized by neural-like, tumour-driving, low tumour evolution, immune-inflamed, and classical tumour features. We observed several key features in ‘tumour-driving’ GBM patients: (1) mutual exclusivity between prognostic factors TP53 and EGFR; and (2) IDH1 mutations co-occurring with TP53, which account for the protective role of IDH1 in TP53 mutant patients. The immune-inflamed GBM, characterized as a ‘hot’ tumour, exhibited upregulation of immune-related pathways, including PD-1 and IFN-γ signalling responses. DNA methylation landscape revealed 14 MGMT CpG-rich regions regulating expression. Evolutionary trajectories revealed progression from a primary tumour state (close to normal tissue) to two distinct endpoints (tumour-driving and immune-inflamed subtypes).</p> </section> <section> <h3> Conclusions</h3> <p>Our findings reveal interactions between tumour cells and their surrounding immune environment, classifying GBM into two newly identified subtypes: (1) the tumour-driving subtype is characterized by multiple oncogenic mutations, while (2) the immune-blockade subtype is marked by a high presence of immune cells. We highlight the importance of integrating multi-type data (somatic mutations, DNA methylation, and RNA transcripts, etc.) to decipher GBM biology and potential therapeutic implications.</p> </section>
来自癌症基因组图谱网络(TCGA-GBM)的基于基因表达的胶质母细胞瘤分子亚型通过鉴定肿瘤细胞驱动基因揭示了其病理起源。然而,分子亚型起源与其治疗效果之间的因果关系仍然不清楚。方法利用相关分析整合TCGA-GBM多组学(DNA、mRNA和蛋白质谱),鉴定顺式调控。我们分析了暴露介导的碱基取代水平突变及其潜在的触发因素。重要的是,我们基于具有轮廓校正的mssigdb数据库进行了共识聚类,以识别与预后相关的基于通路的MSig亚型。肿瘤驱动突变(共发生突变模式)、异常通路(肿瘤标志)、免疫微环境(xCell)和伪时间分析(dyno)被用来表征MSig亚型的特征。此外,我们使用癌症药物敏感性基因组学数据库评估了MSig亚型的潜在药物敏感性。结果我们将MSig分为5种亚型,其特征为神经样、肿瘤驱动、低肿瘤进化、免疫炎症和典型肿瘤特征。我们观察到“肿瘤驱动”GBM患者的几个关键特征:(1)预后因子TP53和EGFR之间的相互排他性;(2) IDH1突变与TP53共同发生,说明IDH1对TP53突变患者具有保护作用。免疫炎症性GBM的特征是“热”肿瘤,表现出免疫相关途径的上调,包括PD-1和IFN-γ信号反应。DNA甲基化图谱显示有14个富含MGMT cpg的区域调控表达。进化轨迹揭示了从原发性肿瘤状态(接近正常组织)到两个不同的终点(肿瘤驱动和免疫炎症亚型)的进展。我们的研究结果揭示了肿瘤细胞与其周围免疫环境之间的相互作用,将GBM分为两种新发现的亚型:(1)肿瘤驱动亚型以多个致癌突变为特征,而(2)免疫阻断亚型以免疫细胞的高存在为特征。我们强调整合多类型数据(体细胞突变、DNA甲基化和RNA转录等)的重要性,以破译GBM生物学和潜在的治疗意义。我们报道了肿瘤细胞与环境免疫细胞之间的相互作用,将GBM分为两种主要亚型:1)肿瘤驱动亚型以多种致癌突变为特征,而2)免疫阻断亚型以免疫细胞的高存在为特征。我们对体细胞突变、DNA甲基化和RNA转录物进行了综合多维分析,以更深入地了解GBM生物学和潜在的治疗意义。
{"title":"Integrated pathway analysis identifies prognostically relevant subtypes of glioblastoma characterized by abnormalities in multi-omics","authors":"Pei Zhang,&nbsp;Dan Liu,&nbsp;Tonghui Yu,&nbsp;Yanlin Zhang,&nbsp;Lu Zhong,&nbsp;Xiao Ouyang,&nbsp;Qin Xia,&nbsp;Lei Dong","doi":"10.1002/ctm2.70517","DOIUrl":"https://doi.org/10.1002/ctm2.70517","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Background&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Gene expression-based molecular subtypes in glioblastoma from The Cancer Genome Atlas Network (TCGA-GBM) unraveled the pathological origins by identifying tumour cell driver genes. However, the causal inference between molecular subtype origins and their therapeutic efficacy remains obscure.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We integrated TCGA-GBM multi-omics (DNA, mRNA, and protein profiles) using correlation analysis to identify &lt;i&gt;cis-&lt;/i&gt;regulation. We analyzed the exposure-mediated base substitution-level mutations and their potential triggers. Importantly, we performed Consensus Clustering based on the MSigDB database with Silhouette-correction to identify prognostically relevant pathway-based MSig subtypes. The tumour driver mutations (co-occurrence mutation pattern), aberrant pathways (tumour hallmarks), immune microenvironment (&lt;i&gt;xCell&lt;/i&gt;), and pseudo-time analysis (&lt;i&gt;dyno&lt;/i&gt;) were used to characterize the MSig subtype landscape. Furthermore, we evaluated potential drug sensitivities across MSig subtypes using the Genomics of Drug Sensitivity in Cancer database.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We classified five MSig subtypes, characterized by neural-like, tumour-driving, low tumour evolution, immune-inflamed, and classical tumour features. We observed several key features in ‘tumour-driving’ GBM patients: (1) mutual exclusivity between prognostic factors TP53 and EGFR; and (2) IDH1 mutations co-occurring with TP53, which account for the protective role of IDH1 in TP53 mutant patients. The immune-inflamed GBM, characterized as a ‘hot’ tumour, exhibited upregulation of immune-related pathways, including PD-1 and IFN-γ signalling responses. DNA methylation landscape revealed 14 MGMT CpG-rich regions regulating expression. Evolutionary trajectories revealed progression from a primary tumour state (close to normal tissue) to two distinct endpoints (tumour-driving and immune-inflamed subtypes).&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Conclusions&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Our findings reveal interactions between tumour cells and their surrounding immune environment, classifying GBM into two newly identified subtypes: (1) the tumour-driving subtype is characterized by multiple oncogenic mutations, while (2) the immune-blockade subtype is marked by a high presence of immune cells. We highlight the importance of integrating multi-type data (somatic mutations, DNA methylation, and RNA transcripts, etc.) to decipher GBM biology and potential therapeutic implications.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 ","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 12","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70517","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145595364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Metabolic enzyme PFKFB3 mediates matrix stiffness-potentiated tumour growth and radiotherapeutic resistance in HCC 代谢酶PFKFB3介导HCC中基质刚度增强的肿瘤生长和放射治疗耐药
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-11-25 DOI: 10.1002/ctm2.70509
Mimi Wang, Jiajun Li, Jiali Qian, Xi Zhang, Miao Li, Yingying Zhao, Zhiming Wang, Kun Guo, Dongmei Gao, Yan Zhao, Rongxin Chen, Zhenggang Ren, Taiwei Sun, Fan Wang, Jiefeng Cui

Background

Although the contribution of matrix stiffness to aggravating the malignant features of HCC cells has been well documented, the effects of matrix stiffness on chemoradiotherapy resistance and its underlying mechanism remain largely elusive.

Methods

To delineate the role of matrix stiffness in HCC progression, we engineered novel in vivo animal models with defined liver stiffness and a complementary tunable hydrogel culture system. This integrated approach enabled a comprehensive investigation into how biomechanical cues modulate HCC cell proliferation and DNA repair both in vitro and in vivo.

Results

High stiffness stimulation noticeably enhanced cell proliferation and cell survival from DNA damage through changing the expression and distribution of metabolic enzyme PFKFB3. Specifically, high stiffness stimulation prominently suppressed PFKFB3 ubiquitination by downregulating E3 ubiquitin ligase NEDD4, and then increased the stability of PFKFB3 protein to enhance glycolysis, ultimately promoted HCC growth. Meanwhile, high matrix stiffness stimulation also effectively strengthened the DNA damage repair ability of irradiated HCC cells, and PFKFB3 nuclear translocation mediated in matrix stiffness-regulated DNA damage repair by interacting with Ku70.

Conclusions

Our results delineate a PFKFB3-mediated pathway that underpins how increased matrix stiffness potentiates HCC growth and compromises radiotherapy efficacy. These findings not only highlight the contribution of matrix stiffness to tumor growth and DNA damage repair in HCC, but also disclose a previously unidentified nonmetabolic function of PFKFB3.

Key points

  • Increased matrix stiffness significantly promoted glycolysis in HCC cells via upregulating PFKFB3 expression.
  • High stiffness stimulation suppressed PFKFB3 ubiquitination by downregulating E3 ubiquitin ligase NEDD4 expression.
  • PFKFB3 participated in DNA damage repair by translocating into nuclear and interacting with Ku70, which strengthened by matrix stiffness.
虽然基质硬度加重HCC细胞的恶性特征的贡献已经得到了很好的证明,但基质硬度对放化疗耐药的影响及其潜在机制在很大程度上仍然是未知的。为了描述基质硬度在HCC进展中的作用,我们设计了具有明确肝脏硬度和互补可调水凝胶培养系统的新型体内动物模型。这种综合方法能够全面研究生物力学线索如何在体外和体内调节HCC细胞增殖和DNA修复。结果高刚度刺激通过改变代谢酶PFKFB3的表达和分布,显著提高DNA损伤细胞的增殖和存活能力。具体而言,高刚度刺激通过下调E3泛素连接酶NEDD4显著抑制PFKFB3泛素化,进而增加PFKFB3蛋白的稳定性,促进糖酵解,最终促进HCC生长。同时,高基质刚度刺激也有效增强了肝癌细胞的DNA损伤修复能力,PFKFB3核易位通过与Ku70相互作用介导基质刚度调控的DNA损伤修复。我们的研究结果描述了pfkfb3介导的途径,该途径支持基质刚度增加如何增强HCC生长并影响放疗效果。这些发现不仅突出了基质硬度对肝癌肿瘤生长和DNA损伤修复的贡献,而且揭示了PFKFB3先前未被发现的非代谢功能。基质硬度增加通过上调PFKFB3表达显著促进HCC细胞糖酵解。高刚度刺激通过下调E3泛素连接酶NEDD4的表达抑制PFKFB3泛素化。PFKFB3参与DNA损伤修复,通过转移到细胞核中,与Ku70相互作用,并通过基质硬度加强。
{"title":"Metabolic enzyme PFKFB3 mediates matrix stiffness-potentiated tumour growth and radiotherapeutic resistance in HCC","authors":"Mimi Wang,&nbsp;Jiajun Li,&nbsp;Jiali Qian,&nbsp;Xi Zhang,&nbsp;Miao Li,&nbsp;Yingying Zhao,&nbsp;Zhiming Wang,&nbsp;Kun Guo,&nbsp;Dongmei Gao,&nbsp;Yan Zhao,&nbsp;Rongxin Chen,&nbsp;Zhenggang Ren,&nbsp;Taiwei Sun,&nbsp;Fan Wang,&nbsp;Jiefeng Cui","doi":"10.1002/ctm2.70509","DOIUrl":"https://doi.org/10.1002/ctm2.70509","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>Although the contribution of matrix stiffness to aggravating the malignant features of HCC cells has been well documented, the effects of matrix stiffness on chemoradiotherapy resistance and its underlying mechanism remain largely elusive.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>To delineate the role of matrix stiffness in HCC progression, we engineered novel in vivo animal models with defined liver stiffness and a complementary tunable hydrogel culture system. This integrated approach enabled a comprehensive investigation into how biomechanical cues modulate HCC cell proliferation and DNA repair both in vitro and in vivo.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>High stiffness stimulation noticeably enhanced cell proliferation and cell survival from DNA damage through changing the expression and distribution of metabolic enzyme PFKFB3. Specifically, high stiffness stimulation prominently suppressed PFKFB3 ubiquitination by downregulating E3 ubiquitin ligase NEDD4, and then increased the stability of PFKFB3 protein to enhance glycolysis, ultimately promoted HCC growth. Meanwhile, high matrix stiffness stimulation also effectively strengthened the DNA damage repair ability of irradiated HCC cells, and PFKFB3 nuclear translocation mediated in matrix stiffness-regulated DNA damage repair by interacting with Ku70.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>Our results delineate a PFKFB3-mediated pathway that underpins how increased matrix stiffness potentiates HCC growth and compromises radiotherapy efficacy. These findings not only highlight the contribution of matrix stiffness to tumor growth and DNA damage repair in HCC, but also disclose a previously unidentified nonmetabolic function of PFKFB3.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Key points</h3>\u0000 \u0000 <div>\u0000 <ul>\u0000 \u0000 <li>Increased matrix stiffness significantly promoted glycolysis in HCC cells via upregulating PFKFB3 expression.</li>\u0000 \u0000 <li>High stiffness stimulation suppressed PFKFB3 ubiquitination by downregulating E3 ubiquitin ligase NEDD4 expression.</li>\u0000 \u0000 <li>PFKFB3 participated in DNA damage repair by translocating into nuclear and interacting with Ku70, which strengthened by matrix stiffness.</li>\u0000 </ul>\u0000 </div>\u0000 </section>\u0000 </div>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 12","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70509","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145595298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beyond tumour suppression: cGAS-STING pathway in urologic malignancies: Context-dependent duality and therapeutic implications 超越肿瘤抑制:泌尿系统恶性肿瘤中的cGAS-STING通路:环境依赖性的二元性和治疗意义。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-11-23 DOI: 10.1002/ctm2.70531
Qi Wei, Kui Zhao, Yifan Wu, Wenhui Wu, Na Hao

Background

The cyclic GMP–AMP synthase (cGAS)–stimulator of interferon (IFN) genes (STING) pathway emerges as a dual-functional role in urologic malignancies, exhibiting context-dependent tumor-suppressive and pro-tumorigenic activities. When this pathway is activated in urologic tumors, IFN transcription and CD8+ T cell infiltration are triggered, which has an anticancer effect. However, this pathway facilitates the development of prostate cancer through the up-regulation of regulatory B cells. STING palmitoylation triggers immune escape in renal cell carcinoma, and the STING/SLC14A1 axis also mediates chemoresistance in bladder cancer.

Main topics covered

Based on these findings, we establish the first systematic comparison of tissue-specific STING regulation in urological malignancies, challenging the conventional tumor suppressor-centric view. This review also highlights several innovative strategies leveraging this duality during urologic cancers. The demand for the long-term safety and effectiveness of these targeted STING treatments has not been fully met.

Conclusions

This study introduces a framework that harnesses the dual functions of the cGAS-STING pathway to strengthen immunotherapy approaches and improve clinical outcomes to bridge the pre-clinical-clinical gap.

Key points

  • The context-dependent duality of cGAS–STING signalling in urologic tumours is revealed.
  • Targeting the STING pathway, in combination with immunotherapies and gene therapies, enhances the anti-tumour response.
  • Sex hormone differences in urological malignancies are correlated with the cGAS–STING pathway.
背景:环GMP-AMP合成酶(cGAS)-干扰素(IFN)基因刺激因子(STING)通路在泌尿系统恶性肿瘤中发挥双重功能,表现出依赖于环境的肿瘤抑制和促肿瘤活性。当该通路在泌尿系统肿瘤中被激活时,可触发IFN转录和CD8+ T细胞浸润,具有抗癌作用。然而,这一途径通过上调调节性B细胞促进前列腺癌的发展。STING棕榈酰化引发肾细胞癌的免疫逃逸,STING/SLC14A1轴也介导膀胱癌的化疗耐药。基于这些发现,我们建立了泌尿系统恶性肿瘤中组织特异性STING调节的第一个系统比较,挑战了传统的肿瘤抑制因子中心观点。这篇综述还强调了在泌尿系统癌症中利用这种二元性的一些创新策略。对这些靶向STING治疗的长期安全性和有效性的需求尚未得到充分满足。结论:本研究引入了一个框架,利用cGAS-STING通路的双重功能来加强免疫治疗方法,改善临床结果,弥合临床前与临床之间的差距。重点:揭示了泌尿系统肿瘤中cGAS-STING信号的上下文依赖性二元性。靶向STING通路,结合免疫疗法和基因疗法,增强抗肿瘤反应。泌尿系统恶性肿瘤性激素差异与cGAS-STING通路相关。
{"title":"Beyond tumour suppression: cGAS-STING pathway in urologic malignancies: Context-dependent duality and therapeutic implications","authors":"Qi Wei,&nbsp;Kui Zhao,&nbsp;Yifan Wu,&nbsp;Wenhui Wu,&nbsp;Na Hao","doi":"10.1002/ctm2.70531","DOIUrl":"10.1002/ctm2.70531","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>The cyclic GMP–AMP synthase (cGAS)–stimulator of interferon (IFN) genes (STING) pathway emerges as a dual-functional role in urologic malignancies, exhibiting context-dependent tumor-suppressive and pro-tumorigenic activities. When this pathway is activated in urologic tumors, IFN transcription and CD8<sup>+</sup> T cell infiltration are triggered, which has an anticancer effect. However, this pathway facilitates the development of prostate cancer through the up-regulation of regulatory B cells. STING palmitoylation triggers immune escape in renal cell carcinoma, and the STING/SLC14A1 axis also mediates chemoresistance in bladder cancer.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Main topics covered</h3>\u0000 \u0000 <p>Based on these findings, we establish the first systematic comparison of tissue-specific STING regulation in urological malignancies, challenging the conventional tumor suppressor-centric view. This review also highlights several innovative strategies leveraging this duality during urologic cancers. The demand for the long-term safety and effectiveness of these targeted STING treatments has not been fully met.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>This study introduces a framework that harnesses the dual functions of the cGAS-STING pathway to strengthen immunotherapy approaches and improve clinical outcomes to bridge the pre-clinical-clinical gap.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Key points</h3>\u0000 \u0000 <div>\u0000 <ul>\u0000 \u0000 <li>The context-dependent duality of cGAS–STING signalling in urologic tumours is revealed.</li>\u0000 \u0000 <li>Targeting the STING pathway, in combination with immunotherapies and gene therapies, enhances the anti-tumour response.</li>\u0000 \u0000 <li>Sex hormone differences in urological malignancies are correlated with the cGAS–STING pathway.</li>\u0000 </ul>\u0000 </div>\u0000 </section>\u0000 </div>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 11","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12640615/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145586179","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LNP-mediated in vivo base editing corrects Agxt to cure primary hyperoxaluria type 1 lnp介导的体内碱基编辑纠正Agxt治疗原发性1型高血氧症。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-11-23 DOI: 10.1002/ctm2.70533
Dexin Zhang, Rui Zheng, Zhoutong Chen, Xi Chen, Lei Yang, Yanan Huo, Yining Zhao, Jiaxin Huang, Dan Zhang, Shuming Yin, Dali Li, Hongquan Geng

Objective

Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive disorder caused by AGXT mutations, leading to hepatic oxalate overproduction, nephrolithiasis, and progressive renal failure. This study aims to evaluate the therapeutic potential of base editors delivered via lipid nanoparticles (LNPs) for treating PH1.

Methods

We utilized LNPs to deliver the base editor variant spG-ABE8e into a PH1 rat model. A single-dose injection of LNP-ABE was administered to assess its efficacy in correcting the pathogenic Agxt point mutation.

Results

Treatment with LNP-ABE achieved highly efficient correction of the Agxt mutation, which resulted in the normalization of urinary oxalate excretion, prevention of calcium oxalate deposits, and reversal of renal injury-associated gene expression profiles in PH1 rats. Furthermore, this study identified the minimum Agxt correction efficiency required for urinary oxalate normalization.

Conclusion

Our findings demonstrate that LNP-mediated delivery of base editors can effectively correct AGXT pathogenic mutations and ameliorate disease phenotypes in PH1, providing critical preclinical benchmarks for future clinical translation.

Key points

  1. The base editor precisely corrected the Agxt gene with high efficiency in PH1 rats.

  2. LNP-delivered Adenine Base Editor (ABE) normalized urinary oxalate levels and prevented calculus formation.

  3. This study identified the minimal Agxt correction efficiency required for urinary oxalate normalization.

目的:原发性高草酸尿1型(PH1)是一种罕见的常染色体隐性遗传病,由AGXT突变引起,可导致肝脏草酸过量产生、肾结石和进行性肾衰竭。本研究旨在评估通过脂质纳米颗粒(LNPs)递送的碱基编辑器治疗PH1的治疗潜力。方法:利用LNPs将碱基编辑器变体spG-ABE8e导入PH1大鼠模型。采用单剂量注射LNP-ABE,观察其纠正致病性Agxt点突变的效果。结果:LNP-ABE治疗能够高效纠正Agxt突变,从而使PH1大鼠尿草酸盐排泄正常化,防止草酸钙沉积,逆转肾损伤相关基因表达谱。此外,本研究确定了尿草酸正常化所需的最低Agxt校正效率。结论:我们的研究结果表明,lnp介导的碱基编辑器递送可以有效地纠正AGXT致病突变,改善PH1的疾病表型,为未来的临床翻译提供关键的临床前基准。重点:该碱基编辑器在PH1大鼠中高效精确地校正了Agxt基因。lnp递送的腺嘌呤碱基编辑器(ABE)使尿草酸水平正常化,并防止结石的形成。本研究确定了尿草酸正常化所需的最小Agxt校正效率。
{"title":"LNP-mediated in vivo base editing corrects Agxt to cure primary hyperoxaluria type 1","authors":"Dexin Zhang,&nbsp;Rui Zheng,&nbsp;Zhoutong Chen,&nbsp;Xi Chen,&nbsp;Lei Yang,&nbsp;Yanan Huo,&nbsp;Yining Zhao,&nbsp;Jiaxin Huang,&nbsp;Dan Zhang,&nbsp;Shuming Yin,&nbsp;Dali Li,&nbsp;Hongquan Geng","doi":"10.1002/ctm2.70533","DOIUrl":"10.1002/ctm2.70533","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Objective</h3>\u0000 \u0000 <p>Primary hyperoxaluria type 1 (PH1) is a rare autosomal recessive disorder caused by AGXT mutations, leading to hepatic oxalate overproduction, nephrolithiasis, and progressive renal failure. This study aims to evaluate the therapeutic potential of base editors delivered via lipid nanoparticles (LNPs) for treating PH1.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>We utilized LNPs to deliver the base editor variant spG-ABE8e into a PH1 rat model. A single-dose injection of LNP-ABE was administered to assess its efficacy in correcting the pathogenic Agxt point mutation.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>Treatment with LNP-ABE achieved highly efficient correction of the Agxt mutation, which resulted in the normalization of urinary oxalate excretion, prevention of calcium oxalate deposits, and reversal of renal injury-associated gene expression profiles in PH1 rats. Furthermore, this study identified the minimum Agxt correction efficiency required for urinary oxalate normalization.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusion</h3>\u0000 \u0000 <p>Our findings demonstrate that LNP-mediated delivery of base editors can effectively correct AGXT pathogenic mutations and ameliorate disease phenotypes in PH1, providing critical preclinical benchmarks for future clinical translation.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Key points</h3>\u0000 \u0000 <div>\u0000 <ol>\u0000 \u0000 <li>\u0000 <p>The base editor precisely corrected the Agxt gene with high efficiency in PH1 rats.</p>\u0000 </li>\u0000 \u0000 <li>\u0000 <p>LNP-delivered Adenine Base Editor (ABE) normalized urinary oxalate levels and prevented calculus formation.</p>\u0000 </li>\u0000 \u0000 <li>\u0000 <p>This study identified the minimal Agxt correction efficiency required for urinary oxalate normalization.\u0000</p>\u0000 </li>\u0000 </ol>\u0000 </div>\u0000 </section>\u0000 </div>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 11","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12640612/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145586201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Single-cell landscape of the tumour immune microenvironment in human gynaecologic malignancies 人类妇科恶性肿瘤中肿瘤免疫微环境的单细胞景观。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-11-23 DOI: 10.1002/ctm2.70538
Simin Yin, Sen Li, Mengyan Tu, Junfen Xu

Background

The immune microenvironment of the three most common gynaecological malignancies—tubo-ovarian cancer, endometrial cancer and cervical cancer—has not been systematically studied, limiting clinical application.

Methods

This study analyses 272 389 CD45+ immune cells by integrating publicly available single-cell RNA sequencing (scRNA-seq) data from 111 tumour and non-malignant tissue samples. We identified distinct subsets within immune cells: 11 for monocytes/macrophages, six for CD4 T cells, eight for CD8 T cells and five for B cells, detailing their distribution, prevalence and distinct functions.

Results

A pro-angiogenic macrophage subset linked to NF-κB signalling was associated with worse clinical outcomes and an interferon-primed macrophage subset correlated with improved survival by recruiting T cells through CXCL9/10/11 secretion, as confirmed by multi-colour immunohistochemistry. T cells exhibited dynamic roles in tubo-ovarian cancer, with CD8 Tex cells contributing to immune dysfunction and poor prognosis, while CD8 Trm cells in early-stage tumours supported immune surveillance. Additionally, we identified co-stimulatory and co-inhibitory receptor interactions and classified distinct B cell subsets with varying prognostic implications.

Conclusions

This comprehensive analysis of the tumour immune microenvironment in gynaecological malignancies provides new insights into immune cell composition and function offering potential for optimising immunotherapies and improving clinical outcomes in these cancers.

背景:三种最常见的妇科恶性肿瘤-输卵管卵巢癌、子宫内膜癌和宫颈癌的免疫微环境尚未系统研究,限制了临床应用。方法:本研究通过整合来自111个肿瘤和非恶性组织样本的公开单细胞RNA测序(scRNA-seq)数据,分析了272 389个CD45+免疫细胞。我们在免疫细胞中确定了不同的亚群:11个为单核细胞/巨噬细胞,6个为CD4 T细胞,8个为CD8 T细胞,5个为B细胞,详细说明了它们的分布、流行程度和不同的功能。结果:多色免疫组织化学证实,与NF-κB信号相关的促血管生成巨噬细胞亚群与较差的临床结果相关,干扰素引发的巨噬细胞亚群通过CXCL9/10/11分泌募集T细胞,与提高生存率相关。T细胞在输卵管卵巢癌中表现出动态作用,CD8 Tex细胞有助于免疫功能障碍和预后不良,而CD8 Trm细胞在早期肿瘤中支持免疫监视。此外,我们确定了共刺激和共抑制受体的相互作用,并分类了具有不同预后意义的不同B细胞亚群。结论:对妇科恶性肿瘤肿瘤免疫微环境的全面分析为免疫细胞组成和功能提供了新的见解,为优化这些癌症的免疫治疗和改善临床结果提供了潜力。
{"title":"Single-cell landscape of the tumour immune microenvironment in human gynaecologic malignancies","authors":"Simin Yin,&nbsp;Sen Li,&nbsp;Mengyan Tu,&nbsp;Junfen Xu","doi":"10.1002/ctm2.70538","DOIUrl":"10.1002/ctm2.70538","url":null,"abstract":"<div>\u0000 \u0000 \u0000 <section>\u0000 \u0000 <h3> Background</h3>\u0000 \u0000 <p>The immune microenvironment of the three most common gynaecological malignancies—tubo-ovarian cancer, endometrial cancer and cervical cancer—has not been systematically studied, limiting clinical application.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Methods</h3>\u0000 \u0000 <p>This study analyses 272 389 <i>CD45</i>+ immune cells by integrating publicly available single-cell RNA sequencing (scRNA-seq) data from 111 tumour and non-malignant tissue samples. We identified distinct subsets within immune cells: 11 for monocytes/macrophages, six for CD4 T cells, eight for CD8 T cells and five for B cells, detailing their distribution, prevalence and distinct functions.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Results</h3>\u0000 \u0000 <p>A pro-angiogenic macrophage subset linked to NF-κB signalling was associated with worse clinical outcomes and an interferon-primed macrophage subset correlated with improved survival by recruiting T cells through CXCL9/10/11 secretion, as confirmed by multi-colour immunohistochemistry. T cells exhibited dynamic roles in tubo-ovarian cancer, with CD8 Tex cells contributing to immune dysfunction and poor prognosis, while CD8 Trm cells in early-stage tumours supported immune surveillance. Additionally, we identified co-stimulatory and co-inhibitory receptor interactions and classified distinct B cell subsets with varying prognostic implications.</p>\u0000 </section>\u0000 \u0000 <section>\u0000 \u0000 <h3> Conclusions</h3>\u0000 \u0000 <p>This comprehensive analysis of the tumour immune microenvironment in gynaecological malignancies provides new insights into immune cell composition and function offering potential for optimising immunotherapies and improving clinical outcomes in these cancers.</p>\u0000 </section>\u0000 </div>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 11","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12640613/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145586228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Clinical and Translational Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1