首页 > 最新文献

Clinical and Translational Medicine最新文献

英文 中文
Comprehensive multi-omics mapping of immune perturbations in autism spectrum disorder 自闭症谱系障碍免疫紊乱的综合多组学定位。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-12-12 DOI: 10.1002/ctm2.70552
Chun Yan, Fangmei Feng, Chaoting Lan, Gang Luo, Xiaotao Jiang, Huijuan Wang, Yinchun Chen, Yuling Yang, Liangqiong Deng, Xiaoli Huang, Yuxin Wu, Wenxiong Chen, Yufeng Liu
<div> <section> <h3> Background</h3> <p>Autism spectrum disorder (ASD) is increasingly recognized as a neurodevelopmental condition with systemic immunological involvement, yet the underlying immune mechanisms remain incompletely defined.</p> </section> <section> <h3> Aims</h3> <p>To delineate the peripheral immune landscape in ASD using integrated multi-omics profiling and to determine how immune and immunometabolic alterations relate to clinical severity.</p> </section> <section> <h3> Materials & Methods</h3> <p>Circulating immune cells from individuals with ASD were profiled using multicolor flow cytometry, single-cell RNA sequencing, and bulk RNA sequencing. Plasma proteomic and metabolomic analyses were performed to identify immune-related and metabolic biomarkers. Immune features were evaluated for associations with clinical severity measures.</p> </section> <section> <h3> Results</h3> <p>Multi-omics profiling revealed marked immune dysregulation in ASD, with significant shifts in immune cell subsets and inflammatory signatures that correlated with clinical severity. T cell abnormalities included reduced frequencies and a skewed Th1/Th2 balance, consistent with a chronic inflammatory milieu. Natural killer (NK) cells showed increased activation but impaired cytotoxic capacity, accompanied by expansion of an atypical NK subset. Myeloid-derived suppressor cells (MDSCs) and hyperinflammatory CD56+ monocytes were elevated. Transcriptomic analyses corroborated broad immune activation, prominently implicating interferon-driven and antiviral signaling pathways. Plasma metabolomics and proteomics further indicated disruptions in purine metabolism and oxidative phosphorylation, alongside increased inflammatory markers, which were significantly associated with symptom severity.</p> </section> <section> <h3> Discussion</h3> <p>These findings support a systemic immunometabolic framework in ASD characterized by concurrent immune activation and altered myeloid/NK cell states, providing mechanistic context for peripheral biomarkers linked to clinical phenotype.</p> </section> <section> <h3> Conclusion</h3> <p>Integrated multi-omics profiling identifies robust peripheral immune and metabolic disturbances in ASD. The dysregulated immune subsets, activated immune pathways, and plasma biomarker signatures highlight potential avenues for biomarker-driven str
背景:自闭症谱系障碍(ASD)越来越被认为是一种与全身免疫有关的神经发育疾病,但其潜在的免疫机制尚未完全确定。目的:利用综合多组学分析来描述ASD的外周免疫景观,并确定免疫和免疫代谢改变与临床严重程度的关系。材料与方法:使用多色流式细胞术、单细胞RNA测序和大量RNA测序对ASD患者的循环免疫细胞进行分析。进行血浆蛋白质组学和代谢组学分析以鉴定免疫相关和代谢生物标志物。评估免疫特征与临床严重程度的相关性。结果:多组学分析显示,ASD中存在明显的免疫失调,免疫细胞亚群和炎症特征的显著变化与临床严重程度相关。T细胞异常包括频率降低和Th1/Th2失衡,与慢性炎症环境一致。自然杀伤(NK)细胞的活化增加,但细胞毒性受损,并伴有非典型NK亚群的扩增。髓源性抑制细胞(MDSCs)和高炎性CD56+单核细胞升高。转录组学分析证实了广泛的免疫激活,主要涉及干扰素驱动和抗病毒信号通路。血浆代谢组学和蛋白质组学进一步表明嘌呤代谢和氧化磷酸化的破坏,以及炎症标志物的增加,这与症状严重程度显著相关。讨论:这些发现支持ASD的系统性免疫代谢框架,其特征是同时免疫激活和骨髓/NK细胞状态改变,为与临床表型相关的外周生物标志物提供了机制背景。结论:综合多组学分析可识别ASD中强大的外周免疫和代谢紊乱。失调的免疫亚群、激活的免疫途径和血浆生物标志物特征突出了生物标志物驱动的分层和免疫靶向治疗开发在ASD中的潜在途径。关键点:T细胞失调、NK细胞损伤和髓系扩张表明慢性炎症状态和免疫衰竭表型与ASD严重程度相关。血浆代谢组学和蛋白质组学的改变,包括氧化磷酸化的破坏和炎症标志物的升高,与ASD严重程度相关,并突出了潜在的生物标志物。多组学分析将外周免疫失调与神经发育异常联系起来,为免疫靶向ASD干预提供了框架。
{"title":"Comprehensive multi-omics mapping of immune perturbations in autism spectrum disorder","authors":"Chun Yan,&nbsp;Fangmei Feng,&nbsp;Chaoting Lan,&nbsp;Gang Luo,&nbsp;Xiaotao Jiang,&nbsp;Huijuan Wang,&nbsp;Yinchun Chen,&nbsp;Yuling Yang,&nbsp;Liangqiong Deng,&nbsp;Xiaoli Huang,&nbsp;Yuxin Wu,&nbsp;Wenxiong Chen,&nbsp;Yufeng Liu","doi":"10.1002/ctm2.70552","DOIUrl":"10.1002/ctm2.70552","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Background&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Autism spectrum disorder (ASD) is increasingly recognized as a neurodevelopmental condition with systemic immunological involvement, yet the underlying immune mechanisms remain incompletely defined.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Aims&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;To delineate the peripheral immune landscape in ASD using integrated multi-omics profiling and to determine how immune and immunometabolic alterations relate to clinical severity.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Materials &amp; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Circulating immune cells from individuals with ASD were profiled using multicolor flow cytometry, single-cell RNA sequencing, and bulk RNA sequencing. Plasma proteomic and metabolomic analyses were performed to identify immune-related and metabolic biomarkers. Immune features were evaluated for associations with clinical severity measures.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Multi-omics profiling revealed marked immune dysregulation in ASD, with significant shifts in immune cell subsets and inflammatory signatures that correlated with clinical severity. T cell abnormalities included reduced frequencies and a skewed Th1/Th2 balance, consistent with a chronic inflammatory milieu. Natural killer (NK) cells showed increased activation but impaired cytotoxic capacity, accompanied by expansion of an atypical NK subset. Myeloid-derived suppressor cells (MDSCs) and hyperinflammatory CD56+ monocytes were elevated. Transcriptomic analyses corroborated broad immune activation, prominently implicating interferon-driven and antiviral signaling pathways. Plasma metabolomics and proteomics further indicated disruptions in purine metabolism and oxidative phosphorylation, alongside increased inflammatory markers, which were significantly associated with symptom severity.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Discussion&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;These findings support a systemic immunometabolic framework in ASD characterized by concurrent immune activation and altered myeloid/NK cell states, providing mechanistic context for peripheral biomarkers linked to clinical phenotype.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Conclusion&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Integrated multi-omics profiling identifies robust peripheral immune and metabolic disturbances in ASD. The dysregulated immune subsets, activated immune pathways, and plasma biomarker signatures highlight potential avenues for biomarker-driven str","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 12","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70552","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145740331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipocalin 2 as a potential liquid biopsy marker for early detection of bladder cancer 脂钙蛋白2作为早期发现膀胱癌的潜在液体活检标志物。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-12-09 DOI: 10.1002/ctm2.70540
Mi-So Jeong, Jeong-Yeon Mun, Gi-Eun Yang, Seung-Woo Baek, Sang-Yeop Lee, Sung Ho Yun, Seung Il Kim, Jae-Jun Kim, Seo-Yeong Yoon, Jong-Kil Nam, Yung-Hyun Choi, Hyeok Jun Goh, Tae-Nam Kim, Sun-Hee Leem
<p>Dear Editor,</p><p>Research on liquid biopsy markers is actively ongoing as an alternative diagnostic method for patients with bladder cancer (BC), which frequently recurs.<span><sup>1-3</sup></span> Our study shows that LCN2 expression is linked to BC progression and may serve as a valuable urinary biomarker for identifying early-stage patients and predicting outcomes.</p><p>To identify secreted proteins linked to BC progression, we analysed stepwise 5637 gemcitabine-resistant cell (GRC) lines established in our previous study.<span><sup>4</sup></span> The conditioned media (CM) from highly motile GRC sublines enhanced invasion and migration (Figure S1A,B). Liquid Chromatography-Tandem Mass Spectrometry (LC‒MS/MS) analysis of concentrated CM revealed 408 differentially expressed proteins, with 178 upregulated in the highly mobile P7 cell line. Ingenuity pathway analysis identified 56 proteins associated with three motility-related pathways, 17 of which overlapped between expression and pathway analyses (Figure 1A). Notably, LCN2 demonstrated the strongest differential expression in RNA sequencing data, prompting further investigation due to its established correlation with motility.<span><sup>4</sup></span> LCN2 has been associated with tumour progression and metastasis and has been proposed as a non-invasive prognostic indicator,<span><sup>5-8</sup></span> although its precise role in BC remains unclear.</p><p>The GSE13057 dataset confirmed elevated LCN2 expression in BC tissues compared to normal tissues (Figure S1C). In the 5637GRC model, both intracellular levels and secretion of LCN2 increased at P3 and P7 stages, which were characterised by higher motility (Figure S1D‒H). Analysis of three NMIBC datasets (UROMOL2021, GSE163209 and GSE32894) revealed that 197 genes consistently correlated with LCN2 expression (Figure 1B). Pathway enrichment analysis linked these genes to biological processes involved in cell motility (Figure 1C). High LCN2 expression was associated with activation of Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB), Janus Kinase-Signal Transducer and Activator of Transcription (JAK‒STAT) and Phosphoinositide 3-Kinase (PI3K) signalling pathways, supporting its correlation with aggressive phenotypes (Figure 1D).</p><p>Clinical analyses highlighted the prognostic significance of LCN2. In the GSE163209 cohort, the LCN2 signature predicted progression to metastatic disease (AUC = .714; Figure 1E). Kaplan‒Meier survival analyses across three NMIBC cohorts revealed significantly poorer progression-free survival for patients with high LCN2 expression. In GSE163209, elevated LCN2 levels were also linked to a higher rate of metastatic progression (Figure 1F-I). Likewise, in The Cancer Genome Atlas (TCGA) and GSE13507 cohorts, elevated LCN2 expression was associated with poor cancer-specific survival and increased metastasis (Figure 1J-M). These results underscore LCN2 as a secreted protein linked to BC progre
亲爱的编辑,液体活检标志物的研究正在积极进行,作为膀胱癌(BC)患者的替代诊断方法,它经常复发。1-3我们的研究表明,LCN2表达与BC进展有关,可作为鉴别早期患者和预测预后的有价值的尿液生物标志物。为了确定与BC进展相关的分泌蛋白,我们逐步分析了我们先前研究中建立的5637株吉西他滨耐药细胞系(GRC)来自高运动性GRC亚细胞的条件培养基(CM)增强了入侵和迁移(图S1A,B)。液相色谱-串联质谱(LC-MS /MS)分析发现408个差异表达蛋白,其中178个在高流动性的P7细胞系中表达上调。匠心途径分析鉴定出56个与3条运动相关的途径相关的蛋白,其中17个在表达和途径分析之间重叠(图1A)。值得注意的是,LCN2在RNA测序数据中表现出最强的差异表达,由于其与运动性的相关性,值得进一步研究LCN2与肿瘤进展和转移有关,并被认为是一种非侵入性预后指标,尽管其在BC中的确切作用尚不清楚。GSE13057数据集证实,与正常组织相比,BC组织中LCN2表达升高(图S1C)。在5637GRC模型中,细胞内LCN2水平和分泌在P3和P7阶段均有所增加,表现为较高的运动性(图S1D-H)。对三个NMIBC数据集(UROMOL2021、GSE163209和GSE32894)的分析显示,197个基因与LCN2表达一致相关(图1B)。途径富集分析将这些基因与参与细胞运动的生物过程联系起来(图1C)。LCN2的高表达与活化B细胞的核因子kappa-轻链增强子(NF-κB)、Janus激酶信号转导和转录激活子(JAK-STAT)和磷酸肌苷激酶(PI3K)信号通路的激活有关,支持其与侵袭性表型的相关性(图1D)。临床分析强调了LCN2的预后意义。在GSE163209队列中,LCN2标记预测转移性疾病的进展(AUC = .714;图1E)。三个NMIBC队列的Kaplan-Meier生存分析显示,LCN2高表达患者的无进展生存期明显较差。在GSE163209中,升高的LCN2水平也与更高的转移进展率相关(图1f - 1)。同样,在癌症基因组图谱(TCGA)和GSE13507队列中,LCN2表达升高与癌症特异性生存率低和转移增加相关(图1J-M)。这些结果强调LCN2是一种与BC进展相关的分泌蛋白,也是疾病监测和预后的临床相关生物标志物。我们通过调节LCN2的表达来研究其功能作用。LCN2过表达导致细胞增殖、侵袭和迁移增加(图2A-F),上皮-间质转化相关因子改变(图2G,H)。来自过表达LCN2的细胞和重组人LCN2 (rhLCN2)的CM增强了5637个细胞的运动性(图2- m)。在小鼠中,LCN2过表达增加了肿瘤的形成,肿瘤组织中Ki67、LCN2、MMP3和CD31的表达增加(图3A-C),并促进了CD31免疫反应性支持的肺转移(图3D-F)。相反,LCN2敲低5637GRC-A-P7细胞抑制增殖、侵袭、迁移、肿瘤生长和转移(图S2A-O)。此外,先前建立的T24GRC细胞的RNA测序数据也表明LCN2表达上调(图S3A-C)操纵LCN2在T24GRC、T24和UC10细胞中的表达一致地证实了LCN2水平对细胞运动的影响(图S3D-K)。这些发现共同表明LCN2表达与BC增殖、移动性和转移潜能相关。鉴于血管生成在转移中的作用,我们研究了LCN2对其的调控作用。rhLCN2显著增强了人脐静脉内皮细胞(HUVECs)的管状形成(图3G),上调了VEGFA、ANG1、ANG2、TIE1和TIE2的表达(图3H,I)。在BC细胞系中,LCN2也影响VEGFA、ANG1和ANG2的表达(图3J、K)。此外,肿瘤组织中血管生成相关因子的水平根据LCN2的表达而变化(图3L,M)。这些结果表明,LCN2可能通过内皮细胞中VEGFA和ANG、VEGFR和TIE2配体的上调以及ANG - TIE2信号的调节,与血管生成信号的增强有关。 为了评估LCN2作为BC诊断的液体活检标志物,我们测量了血清和尿液中的LCN2水平,并使用受试者工作特征(ROC)曲线分析评估诊断效果。与对照组相比,BC患者血清LCN2水平显著升高(AUC = 0.644;图S4A)。值得注意的是,即使在低阶段疾病(Tis, Ta和T1)中,这些差异也很明显,这通常难以通过液体活检检测到。在tis期患者中,诊断表现尤其稳健(AUC = .902;图S4B)。此外,与对照组相比,血清LCN2可有效区分NMIBC、低级别和高级别BC。尽管样本量有限,但也证实了MIBC的显著性(图S4C,D)。分析了来自三家独立医院的尿液LCN2水平。与对照组相比,BC患者尿LCN2始终升高(图4A-D和S5A-C)。三个队列的汇总分析显示出较强的诊断性能(AUC = .789;图4B)。在截断值为2.974 ng/mL时,尿LCN2的敏感性为84.6%,特异性为61.5%。值得注意的是,尿LCN2有效地将所有T分期患者与对照组区分开来,在Tis和Ta中表现出特别强的表现,并且随着分期的进展,其水平趋于增加(图4E)。此外,尿LCN2分化了NMIBC和MIBC,以及与对照组相比的低级别和高级别肿瘤(图4F,G)。然而,它区分NMIBC和MIBC的能力有限。一个重要的发现是,术后1个月测得的尿LCN2水平与术前水平相比显著降低,提示肿瘤来源(图4H,I)。这表明尿LCN2有可能作为手术治疗后的预后生物标志物。总之,LCN2是一种很有前景的BC液体活检生物标志物。血清和尿液中LCN2水平升高,特别是在早期疾病中,可有效区分BC患者和对照组。术后尿LCN2水平的下降进一步提示其肿瘤来源和预后价值。此外,LCN2与BC运动和血管生成的关联使其成为生物标志物和潜在的治疗靶点。尽管LCN2作为单独标志物的有效性有限,但将LCN2与其他生物标志物结合在多模式方法中可以提高诊断准确性并促进早期发现。为了确认LCN2在BC监测中的临床适用性,有必要在更大、更多样化的人群中进一步验证。Jeong Mi-So, Jeong- yeon Mun, Tae-Nam Kim和Sun-Hee Leem构思并设计了这项研究。Jeong Mi-So, Jeong- yeon Mun, Gi-Eun Yang, Sung Ho Yun, Jae-Jun Kim和Seo-Yeong Yoon进行了实验。白承宇和李尚烨进行了统计分析。Tae-Nam Kim、Jong-Kil Nam和Hyeok Jun Goh收集临床样本并提供临床信息。郑美素、文正渊、杨基恩、白承宇等人起草了手稿。郑美素、文正渊、杨基恩、白承宇、金承日、崔永铉、金泰南、李善姬对原稿进行了批判性的修改和编辑。所有作者都阅读并认可了最终版本。所有作者声明他们没有经济或非经济利益冲突。这项涉及人类参与者的研究已获得釜山国立大学机构审查委员会(IRB号:H-1706-002-007)和釜山国立大学梁山医院(IRB号;55-2023-003)。样本采集前获得所有参与者的书面知情同意。动物实验得到了东亚大学动物机构管理使用委员会(IACUC)的批准(批准号:DIACUC-20-41),并按照机构指南和国家关于实验动物护理和使用的规定进行。本研究中使用的RNA测序
{"title":"Lipocalin 2 as a potential liquid biopsy marker for early detection of bladder cancer","authors":"Mi-So Jeong,&nbsp;Jeong-Yeon Mun,&nbsp;Gi-Eun Yang,&nbsp;Seung-Woo Baek,&nbsp;Sang-Yeop Lee,&nbsp;Sung Ho Yun,&nbsp;Seung Il Kim,&nbsp;Jae-Jun Kim,&nbsp;Seo-Yeong Yoon,&nbsp;Jong-Kil Nam,&nbsp;Yung-Hyun Choi,&nbsp;Hyeok Jun Goh,&nbsp;Tae-Nam Kim,&nbsp;Sun-Hee Leem","doi":"10.1002/ctm2.70540","DOIUrl":"10.1002/ctm2.70540","url":null,"abstract":"&lt;p&gt;Dear Editor,&lt;/p&gt;&lt;p&gt;Research on liquid biopsy markers is actively ongoing as an alternative diagnostic method for patients with bladder cancer (BC), which frequently recurs.&lt;span&gt;&lt;sup&gt;1-3&lt;/sup&gt;&lt;/span&gt; Our study shows that LCN2 expression is linked to BC progression and may serve as a valuable urinary biomarker for identifying early-stage patients and predicting outcomes.&lt;/p&gt;&lt;p&gt;To identify secreted proteins linked to BC progression, we analysed stepwise 5637 gemcitabine-resistant cell (GRC) lines established in our previous study.&lt;span&gt;&lt;sup&gt;4&lt;/sup&gt;&lt;/span&gt; The conditioned media (CM) from highly motile GRC sublines enhanced invasion and migration (Figure S1A,B). Liquid Chromatography-Tandem Mass Spectrometry (LC‒MS/MS) analysis of concentrated CM revealed 408 differentially expressed proteins, with 178 upregulated in the highly mobile P7 cell line. Ingenuity pathway analysis identified 56 proteins associated with three motility-related pathways, 17 of which overlapped between expression and pathway analyses (Figure 1A). Notably, LCN2 demonstrated the strongest differential expression in RNA sequencing data, prompting further investigation due to its established correlation with motility.&lt;span&gt;&lt;sup&gt;4&lt;/sup&gt;&lt;/span&gt; LCN2 has been associated with tumour progression and metastasis and has been proposed as a non-invasive prognostic indicator,&lt;span&gt;&lt;sup&gt;5-8&lt;/sup&gt;&lt;/span&gt; although its precise role in BC remains unclear.&lt;/p&gt;&lt;p&gt;The GSE13057 dataset confirmed elevated LCN2 expression in BC tissues compared to normal tissues (Figure S1C). In the 5637GRC model, both intracellular levels and secretion of LCN2 increased at P3 and P7 stages, which were characterised by higher motility (Figure S1D‒H). Analysis of three NMIBC datasets (UROMOL2021, GSE163209 and GSE32894) revealed that 197 genes consistently correlated with LCN2 expression (Figure 1B). Pathway enrichment analysis linked these genes to biological processes involved in cell motility (Figure 1C). High LCN2 expression was associated with activation of Nuclear Factor kappa-light-chain-enhancer of activated B cells (NF-κB), Janus Kinase-Signal Transducer and Activator of Transcription (JAK‒STAT) and Phosphoinositide 3-Kinase (PI3K) signalling pathways, supporting its correlation with aggressive phenotypes (Figure 1D).&lt;/p&gt;&lt;p&gt;Clinical analyses highlighted the prognostic significance of LCN2. In the GSE163209 cohort, the LCN2 signature predicted progression to metastatic disease (AUC = .714; Figure 1E). Kaplan‒Meier survival analyses across three NMIBC cohorts revealed significantly poorer progression-free survival for patients with high LCN2 expression. In GSE163209, elevated LCN2 levels were also linked to a higher rate of metastatic progression (Figure 1F-I). Likewise, in The Cancer Genome Atlas (TCGA) and GSE13507 cohorts, elevated LCN2 expression was associated with poor cancer-specific survival and increased metastasis (Figure 1J-M). These results underscore LCN2 as a secreted protein linked to BC progre","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 12","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12687296/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145707486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a multidimensional machine learning framework for predicting post-stroke cognitive impairment: A prospective cohort study 预测中风后认知障碍的多维机器学习框架的发展:一项前瞻性队列研究。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-12-08 DOI: 10.1002/ctm2.70546
Aini He, Houlin Lai, Xuefan Yao, Benke Zhao, Wenjing Yan, Wei Sun, Xiao Wu, Kehui Ma, Yuan Wang, Haiqing Song
<p>Dear Editor,</p><p>Post-stroke cognitive impairment (PSCI) remains a prevalent and debilitating complication that profoundly impacts stroke survivors’ quality of life and long-term outcomes.<span><sup>1</sup></span> Building upon our previous report that 78.7% of Chinese patients with first-ever ischemic stroke developed PSCI,<span><sup>2</sup></span> we conducted a prospective cohort study to establish an interpretable, multidimensional prediction framework using multiple machine learning (ML) algorithms.</p><p>A total of 518 acute ischemic stroke (AIS) patients were recruited at Xuanwu Hospital between January and December 2022. Following rigorous screening, 437 patients completed a 3-month cognitive follow-up using the Telephone Interview for Cognitive Status-40 (TICS-40), and 190 (43.5%) were identified as having PSCI (see Figure S1 for details). We collected 89 clinical, neuroimaging, and serological variables (see Table S1 for details). The dataset was split 8:2 into training and test sets. All preprocessing steps, namely outlier removal, imputation, and normalisation, were applied exclusively to the training set. Using 10-fold cross-validation combined with Recursive Feature Elimination (RFE), six ML algorithms, including Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Light Gradient Boosting Machine (LightGBM), eXtreme Gradient Boosting (XGBoost) and Categorical Boosting (CatBoost), were trained and optimised. Model performance was subsequently evaluated on the test set (see Supplementary Information for details).</p><p>Through the feature selection process, a set of twenty features was identified across the six models (see Figure 1 and Figure S2 for details). Baseline characteristics were compared between the PSCI and non-PSCI groups in Table S2. Comparative analysis revealed that the gradient boosting models (LightGBM, XGBoost and CatBoost) consistently demonstrated superior comprehensive predictive performance compared to LR, DT and RF across key metrics, including area under the curve (AUC) (0.73–0.77), precision-recall balance, and clinical net benefit in decision curve analysis (DCA) (see Table 1 and Figure 2 for details). LightGBM and XGBoost excelled in computational efficiency and scalability, whereas CatBoost offered superior stability on limited and imbalanced data. This functional diversity highlights ensemble methods as a robust and adaptable framework for developing clinically viable PSCI predictors.</p><p>All models consistently identified age and education level as core determinants of PSCI (see Figure 1 for details). Ageing is a primary non-modifiable risk factor that promotes the accumulation of neuropathological proteins, neuroinflammation, lipid dysregulation, and neurodegeneration, culminating in cognitive decline.<span><sup>3</sup></span> In contrast, higher education confers protection, plausibly via mechanisms of cognitive reserve and socioeconomic advantage, sustaining compensatory neural effi
亲爱的编辑,中风后认知障碍(PSCI)仍然是一个普遍和衰弱的并发症,深刻地影响中风幸存者的生活质量和长期结果基于我们之前的报告,78.7%的中国首次缺血性卒中患者发展为PSCI 2,我们进行了一项前瞻性队列研究,利用多机器学习(ML)算法建立一个可解释的多维预测框架。2022年1月至12月,宣武医院共招募了518例急性缺血性卒中(AIS)患者。经过严格的筛选,437名患者完成了为期3个月的认知随访,使用认知状态40 (tic -40)电话访谈,其中190名(43.5%)被确定为PSCI(详见图S1)。我们收集了89个临床、神经影像学和血清学变量(详见表S1)。数据集以8:2的比例分成训练集和测试集。所有预处理步骤,即异常值去除、归一化和归一化,都专门应用于训练集。采用10次交叉验证和递归特征消除(RFE)相结合的方法,对逻辑回归(LR)、决策树(DT)、随机森林(RF)、光梯度增强机(LightGBM)、极限梯度增强(XGBoost)和分类增强(CatBoost)等6种ML算法进行了训练和优化。随后在测试集上评估模型性能(详见补充信息)。通过特征选择过程,在六个模型中确定了一组20个特征(详细信息请参见图1和图S2)。表S2比较PSCI组和非PSCI组的基线特征。对比分析显示,梯度增强模型(LightGBM、XGBoost和CatBoost)在关键指标上始终表现出优于LR、DT和RF的综合预测性能,包括曲线下面积(AUC)(0.73-0.77)、精确召回率平衡和决策曲线分析(DCA)的临床净效益(详见表1和图2)。LightGBM和XGBoost在计算效率和可扩展性方面表现出色,而CatBoost在有限和不平衡数据上提供了卓越的稳定性。这种功能多样性突出了集成方法作为开发临床可行的PSCI预测指标的稳健和适应性框架。所有模型都一致认为年龄和教育水平是PSCI的核心决定因素(详见图1)。衰老是一个主要的不可改变的危险因素,它促进神经病理蛋白的积累、神经炎症、脂质失调和神经变性,最终导致认知能力下降相比之下,高等教育似乎通过认知储备和社会经济优势机制提供保护,维持代偿性神经效率和对血管和退行性损伤的恢复能力。4此外,心理和代谢特征经常在模型中被选择,包括汉密尔顿焦虑量表(HAMA)评分、尿酸(UA)和白蛋白(ALB)(详见图1)。有证据表明,慢性焦虑对老年人的认知和生活质量产生不利影响,可能是通过线粒体功能障碍和神经元轴突和突触的损伤UA是一种主要的内源性活性氧清除剂,可以防止缺血相关的氧化损伤,并支持神经血管网络的内皮功能旨在降低尿酸的药物干预,如别嘌呤醇和尿酸药物,已被研究与痴呆的关系;例如,别嘌呤醇已被用于治疗血管性痴呆和治疗阿尔茨海默病的尿嘧啶药物。然而,在调整了既定的痴呆风险因素后,这些关联减弱了生物化学方面,ALB具有多效性的神经保护作用:通过结合并促进β-淀粉样蛋白的清除,它可以减轻淀粉样蛋白的聚集和下游神经毒性。同时,ALB的抗氧化、抗炎和抗tau特性有助于保持突触完整性和抑制神经退行性通路。8,9其他几个变量,包括颅内大动脉狭窄、球蛋白、载脂蛋白a- 1、白细胞计数、甲状腺素(T4)、游离甲状腺素(FT4)、游离三碘甲状腺原氨酸(FT3)、舒张压、活化的部分凝血活素时间、γ -谷氨酰转移酶、低密度脂蛋白胆固醇、间接胆红素、Oxford Cognitive Screen Plus、Fazekas分级和总胆固醇,仅在个体模型中被确定(详细信息见图1)。模型之间不一致的选择可能源于复杂的相互依赖关系和高阶相互作用,这表明它们在风险因素网络中运作,而不是孤立的(详见图S3)。 因此,这些因素可能反映了潜在的预测信号,并揭示了PSCI的新的多因素机制,值得进一步研究。总之,ML框架一致地揭示了PSCI背后的人口统计学、心理、血管和代谢决定因素的核心集合,强调了其多因素、网络级的脆弱性。通过整合复杂的生物学和临床数据,这些方法提高了临床可解释性,指导精确预防,并为针对血管-代谢-神经轴的个性化、多模式干预提供信息。总的来说,这些发现加深了我们对PSCI病理生理学的理解,并为机制知情的治疗策略和未来的转化研究提供了路线图。何爱妮开发了这个模型,并写了手稿的初稿。宋海清和王源参与了研究的概念和设计,对所有研究数据有完全的查阅权,并对数据的完整性和分析的准确性负责。赖厚林、姚雪凡、吴晓、马克辉对患者进行筛查,收集基线数据;赵本科、孙伟进行随访。何爱妮、赖厚林、颜文静进行了统计分析。所有作者都提供了行政、技术或物质支持,并批准了最终稿件。作者声明无利益冲突。国家重点研发计划项目(2022YFC3600504)、科技创新2030-重大专项(2021ZD0201806)、北京市新星计划项目(20240484612)和国家自然科学基金重点项目(62433002)资助。本研究已获首都医科大学宣武医院伦理审查委员会批准(编号:临研审[2021]053).所有受试者在研究前均获得书面知情同意。如有合理要求,可向通讯作者索取详细资料。
{"title":"Development of a multidimensional machine learning framework for predicting post-stroke cognitive impairment: A prospective cohort study","authors":"Aini He,&nbsp;Houlin Lai,&nbsp;Xuefan Yao,&nbsp;Benke Zhao,&nbsp;Wenjing Yan,&nbsp;Wei Sun,&nbsp;Xiao Wu,&nbsp;Kehui Ma,&nbsp;Yuan Wang,&nbsp;Haiqing Song","doi":"10.1002/ctm2.70546","DOIUrl":"10.1002/ctm2.70546","url":null,"abstract":"&lt;p&gt;Dear Editor,&lt;/p&gt;&lt;p&gt;Post-stroke cognitive impairment (PSCI) remains a prevalent and debilitating complication that profoundly impacts stroke survivors’ quality of life and long-term outcomes.&lt;span&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;/span&gt; Building upon our previous report that 78.7% of Chinese patients with first-ever ischemic stroke developed PSCI,&lt;span&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/span&gt; we conducted a prospective cohort study to establish an interpretable, multidimensional prediction framework using multiple machine learning (ML) algorithms.&lt;/p&gt;&lt;p&gt;A total of 518 acute ischemic stroke (AIS) patients were recruited at Xuanwu Hospital between January and December 2022. Following rigorous screening, 437 patients completed a 3-month cognitive follow-up using the Telephone Interview for Cognitive Status-40 (TICS-40), and 190 (43.5%) were identified as having PSCI (see Figure S1 for details). We collected 89 clinical, neuroimaging, and serological variables (see Table S1 for details). The dataset was split 8:2 into training and test sets. All preprocessing steps, namely outlier removal, imputation, and normalisation, were applied exclusively to the training set. Using 10-fold cross-validation combined with Recursive Feature Elimination (RFE), six ML algorithms, including Logistic Regression (LR), Decision Tree (DT), Random Forest (RF), Light Gradient Boosting Machine (LightGBM), eXtreme Gradient Boosting (XGBoost) and Categorical Boosting (CatBoost), were trained and optimised. Model performance was subsequently evaluated on the test set (see Supplementary Information for details).&lt;/p&gt;&lt;p&gt;Through the feature selection process, a set of twenty features was identified across the six models (see Figure 1 and Figure S2 for details). Baseline characteristics were compared between the PSCI and non-PSCI groups in Table S2. Comparative analysis revealed that the gradient boosting models (LightGBM, XGBoost and CatBoost) consistently demonstrated superior comprehensive predictive performance compared to LR, DT and RF across key metrics, including area under the curve (AUC) (0.73–0.77), precision-recall balance, and clinical net benefit in decision curve analysis (DCA) (see Table 1 and Figure 2 for details). LightGBM and XGBoost excelled in computational efficiency and scalability, whereas CatBoost offered superior stability on limited and imbalanced data. This functional diversity highlights ensemble methods as a robust and adaptable framework for developing clinically viable PSCI predictors.&lt;/p&gt;&lt;p&gt;All models consistently identified age and education level as core determinants of PSCI (see Figure 1 for details). Ageing is a primary non-modifiable risk factor that promotes the accumulation of neuropathological proteins, neuroinflammation, lipid dysregulation, and neurodegeneration, culminating in cognitive decline.&lt;span&gt;&lt;sup&gt;3&lt;/sup&gt;&lt;/span&gt; In contrast, higher education confers protection, plausibly via mechanisms of cognitive reserve and socioeconomic advantage, sustaining compensatory neural effi","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 12","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12685603/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145707520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antisense oligonucleotides targeting valosin-containing protein ameliorate muscle pathology and molecular defects in cell and mouse models of multisystem proteinopathy 针对含缬氨酸蛋白的反义寡核苷酸改善了细胞和小鼠多系统蛋白病模型中的肌肉病理和分子缺陷。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-12-08 DOI: 10.1002/ctm2.70530
Pallabi Pal, Michele Carrer, Lan Weiss, Olga G. Jaime, Cheng Cheng, Alyaa Shmara, Victoria Boock, Danae Bosch, Marwan Youssef, Yasamin Fazeli, Megan Afetian, Tamar R. Grossman, Michael R. Hicks, Paymaan Jafar-nejad, Virginia Kimonis
<div> <section> <h3> Background</h3> <p>Valosin-containing protein (VCP) related disease, also known as multisystem proteinopathy 1 (MSP1), is an autosomal dominant disease caused by gain-of-function pathogenic variants of the <i>VCP</i> gene. The disease presents with variable combinations of inclusion body myopathy, early-onset Paget's disease of bone, frontotemporal dementia and may also overlap with familial amyotrophic lateral sclerosis. There is currently no treatment for this progressive disease associated with early demise resulting from proximal limb girdle and respiratory muscle weakness. We hypothesise that regulating VCP hyperactivity to normal levels can reduce the disease pathology.</p> </section> <section> <h3> Main topics covered</h3> <p>In this study, we assessed the effect of antisense oligonucleotides (ASOs) specifically targeting the human <i>VCP</i> gene in the patient (R155H) iPSC-derived skeletal muscle progenitor cells (SMPCs). ASOs were well tolerated up to a concentration of 5 µM and significantly reduced VCP protein expression in the SMPCs by 48% (95% CI [39–56]). We also treated the transgenic mouse model of VCP disease with the overexpressed humanised VCP severe A232E pathogenic gene variant (VCP A232E mice) with weekly subcutaneous ASO injections starting from 6 months of age for 3 months. In the skeletal muscle of transgenic mice, ASOs resulted in 30% (95% CI [27–32]) knockdown of VCP protein compared with control ASO. The ASO-mediated reduction of VCP expression in muscle tissue was associated with improvement in autophagy flux and reduction in TAR DNA binding protein 43 (TDP-43) expression, hallmarks of VCP related MSP1. In addition, ASO-treated VCP A232E mice showed improvements in functional tests of muscle strength, such as rotarod and inverted screen test compared with mice treated with control ASO.</p> </section> <section> <h3> Conclusions</h3> <p>These results suggest that targeting VCP could be beneficial in preventing the progression of the VCP myopathy and hold promise for the treatment of patients with VCP related MSP1.</p> </section> <section> <h3> Key points</h3> <div> <ol> <li> <p>VCP multisystem proteinopathy 1 is caused by gain-of-function pathogenic variants of the VCP gene.</p> </li> <li> <p>VCP targeting ASOs were well tolerated and significantly reduced VCP, TAR DNA binding protein 43 (TDP 43), and autophagy protein expression
背景:Valosin-containing protein (VCP)相关疾病,也称为多系统蛋白病1 (MSP1),是一种常染色体显性遗传病,由VCP基因的功能获得致病性变异引起。该病表现为包涵体肌病、早发性骨佩吉特病、额颞叶痴呆等多种组合,也可能与家族性肌萎缩性侧索硬化症重叠。目前尚无治疗这种进行性疾病的方法,这种疾病与近端肢带和呼吸肌无力导致的早期死亡相关。我们假设将VCP过度活跃调节到正常水平可以减少疾病病理。在本研究中,我们评估了在患者(R155H) ipsc衍生的骨骼肌祖细胞(SMPCs)中特异性靶向人VCP基因的反义寡核苷酸(ASOs)的作用。ASOs在5µM浓度下耐受良好,并显著降低SMPCs中VCP蛋白表达48% (95% CI[39-56])。我们还用过表达的人源性VCP严重A232E致病基因变体(VCP A232E小鼠)治疗VCP病转基因小鼠模型,从6月龄开始,每周皮下注射ASO,持续3个月。在转基因小鼠的骨骼肌中,与对照ASO相比,ASOs导致VCP蛋白下调30% (95% CI[27-32])。aso介导的肌肉组织VCP表达的减少与自噬通量的改善和TAR DNA结合蛋白43 (TDP-43)表达的减少有关,这是VCP相关MSP1的标志。此外,与对照组相比,ASO处理的VCP A232E小鼠在肌肉力量的功能测试,如旋转杆和倒筛测试中均有改善。结论:这些结果表明,靶向VCP可能有助于预防VCP肌病的进展,并为VCP相关MSP1患者的治疗带来希望。重点:VCP多系统蛋白病1是由VCP基因的功能获得致病性变异引起的。在(R155H) ipsc衍生的骨骼肌祖细胞(SMPCs)中,靶向ASOs的VCP耐受性良好,并显著降低VCP、TAR DNA结合蛋白43 (TDP 43)和自噬蛋白的表达。ASOs降低了人源VCP A232E小鼠VCP、TDP-43和自噬通量的表达,并改善了肌肉力量的功能测试。
{"title":"Antisense oligonucleotides targeting valosin-containing protein ameliorate muscle pathology and molecular defects in cell and mouse models of multisystem proteinopathy","authors":"Pallabi Pal,&nbsp;Michele Carrer,&nbsp;Lan Weiss,&nbsp;Olga G. Jaime,&nbsp;Cheng Cheng,&nbsp;Alyaa Shmara,&nbsp;Victoria Boock,&nbsp;Danae Bosch,&nbsp;Marwan Youssef,&nbsp;Yasamin Fazeli,&nbsp;Megan Afetian,&nbsp;Tamar R. Grossman,&nbsp;Michael R. Hicks,&nbsp;Paymaan Jafar-nejad,&nbsp;Virginia Kimonis","doi":"10.1002/ctm2.70530","DOIUrl":"10.1002/ctm2.70530","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Background&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Valosin-containing protein (VCP) related disease, also known as multisystem proteinopathy 1 (MSP1), is an autosomal dominant disease caused by gain-of-function pathogenic variants of the &lt;i&gt;VCP&lt;/i&gt; gene. The disease presents with variable combinations of inclusion body myopathy, early-onset Paget's disease of bone, frontotemporal dementia and may also overlap with familial amyotrophic lateral sclerosis. There is currently no treatment for this progressive disease associated with early demise resulting from proximal limb girdle and respiratory muscle weakness. We hypothesise that regulating VCP hyperactivity to normal levels can reduce the disease pathology.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Main topics covered&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;In this study, we assessed the effect of antisense oligonucleotides (ASOs) specifically targeting the human &lt;i&gt;VCP&lt;/i&gt; gene in the patient (R155H) iPSC-derived skeletal muscle progenitor cells (SMPCs). ASOs were well tolerated up to a concentration of 5 µM and significantly reduced VCP protein expression in the SMPCs by 48% (95% CI [39–56]). We also treated the transgenic mouse model of VCP disease with the overexpressed humanised VCP severe A232E pathogenic gene variant (VCP A232E mice) with weekly subcutaneous ASO injections starting from 6 months of age for 3 months. In the skeletal muscle of transgenic mice, ASOs resulted in 30% (95% CI [27–32]) knockdown of VCP protein compared with control ASO. The ASO-mediated reduction of VCP expression in muscle tissue was associated with improvement in autophagy flux and reduction in TAR DNA binding protein 43 (TDP-43) expression, hallmarks of VCP related MSP1. In addition, ASO-treated VCP A232E mice showed improvements in functional tests of muscle strength, such as rotarod and inverted screen test compared with mice treated with control ASO.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Conclusions&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;These results suggest that targeting VCP could be beneficial in preventing the progression of the VCP myopathy and hold promise for the treatment of patients with VCP related MSP1.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Key points&lt;/h3&gt;\u0000 \u0000 &lt;div&gt;\u0000 &lt;ol&gt;\u0000 \u0000 &lt;li&gt;\u0000 &lt;p&gt;VCP multisystem proteinopathy 1 is caused by gain-of-function pathogenic variants of the VCP gene.&lt;/p&gt;\u0000 &lt;/li&gt;\u0000 \u0000 &lt;li&gt;\u0000 &lt;p&gt;VCP targeting ASOs were well tolerated and significantly reduced VCP, TAR DNA binding protein 43 (TDP 43), and autophagy protein expression ","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 12","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12683293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145699945","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A new paradigm for tumour profiling: Spatiotemporal omics in living tissue 肿瘤分析的新范式:活组织中的时空组学。
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-12-08 DOI: 10.1002/ctm2.70547
Ciro Chiappini
<p>One of the central challenges in oncology is understanding why tumours stop responding to therapy. Clinicians see this repeatedly: an initial response that gives way to relapse, often driven by the tumour's ability to adapt at the molecular level. These adaptations are not static. They unfold over hours, days, and weeks, and they vary across different regions of the same tumour.</p><p>This means that the molecular programmes that enable a tumour to escape treatment are <i>dynamic, spatially organised, and highly patient-specific</i>. Yet the tools we use today, bulk sequencing, fixed-tissue analysis, and endpoint assays, capture only isolated moments in time. They fall short when clinicians need to know how a tumour changes during treatment, where resistance emerges within the tissue, and when a vulnerable state might be present. This gap calls for a new paradigm for tumour profiling: capturing molecular dynamics directly in living tissue, in both space and time (Figure 1).</p><p>Emerging spatial and temporal omics technologies are heralding this paradigm, but each captures only part of the picture.</p><p>Spatial omics platforms provide detailed maps of fixed biopsy material, yet remain static snapshots that cannot show how these patterns change once treatment begins. Temporal profiling methods offer insight into dynamic responses but rely on sequential biopsies and cannot reveal where within the tissue those changes arise. Lineage tracing,<span><sup>1</sup></span> metabolic labelling,<span><sup>2</sup></span> and live-tissue imaging<span><sup>3</sup></span> each contribute fragments of the picture, but they either require destructive processing, genetic manipulation, or provide only limited molecular depth.</p><p>The core challenge remains: we can map a tumour's landscape or track its evolution, but not capture both in living tissue. This limits our ability to detect early resistance and make timely, biology-guided decisions.</p><p>A key barrier in studying treatment response is that most molecular analyses require destroying the tissue. This makes it impossible to follow how the same piece of patient-derived material changes over time. Nanotechnology now offers a way around this by enabling longitudinal molecular sampling: the ability to extract small amounts of intracellular material from living tissue without compromising its viability.</p><p>Pioneering work using single-probe technologies such as nanopipettes<span><sup>4</sup></span> and FluidFM<span><sup>5</sup></span> showed that it is possible to take ‘live-cell biopsies’: tiny samples of RNA, proteins, or metabolites from the same living cell at multiple timepoints. These studies proved the concept that molecular pathways can be monitored dynamically in living systems, a breakthrough step for temporal omics. However, these approaches work cell-by-cell and are not scalable to tissue-level analysis or to most types of patient-derived samples used in clinical research.</p><p>Nanoneedle a
肿瘤学的核心挑战之一是理解肿瘤对治疗停止反应的原因。临床医生反复看到这种情况:最初的反应让位于复发,通常是由肿瘤在分子水平上的适应能力驱动的。这些适应并不是一成不变的。它们在数小时、数天和数周内展开,并且在同一肿瘤的不同区域有所不同。这意味着使肿瘤逃避治疗的分子程序是动态的、有空间组织的和高度患者特异性的。然而,我们今天使用的工具,批量测序,固定组织分析和终点分析,只能捕获孤立的时刻。当临床医生需要知道肿瘤在治疗过程中如何变化,组织中出现耐药性的地方,以及何时可能出现脆弱状态时,这些方法就不够用了。这一差距需要一种新的肿瘤分析范式:在空间和时间上直接捕获活组织中的分子动力学(图1)。新兴的空间组学和时间组学技术预示着这种范式,但每种技术都只捕获了部分图像。空间组学平台提供了固定活检材料的详细地图,但仍然是静态快照,无法显示治疗开始后这些模式如何变化。时间谱分析方法提供了对动态反应的洞察,但依赖于顺序活检,不能揭示组织内发生这些变化的位置。谱系追踪、代谢标记和活体组织成像都提供了图像的片段,但它们要么需要破坏性处理,要么需要基因操作,要么只能提供有限的分子深度。核心挑战仍然存在:我们可以绘制肿瘤的分布图或追踪其演变,但无法在活组织中捕捉到这两者。这限制了我们发现早期耐药性并及时做出生物学指导决策的能力。研究治疗反应的一个关键障碍是,大多数分子分析需要破坏组织。这使得追踪同一块来自患者的材料随时间的变化变得不可能。现在,纳米技术通过纵向分子采样提供了一种解决方法:从活组织中提取少量细胞内物质而不影响其生存能力的能力。使用纳米管和FluidFM5等单探针技术的开创性工作表明,在多个时间点从同一个活细胞中提取RNA、蛋白质或代谢物的微小样本,进行“活细胞活检”是可能的。这些研究证明了分子通路可以在生命系统中动态监测的概念,这是时间组学的突破性进展。然而,这些方法逐细胞工作,不能扩展到组织水平分析或用于临床研究中大多数类型的患者来源样本。纳米针阵列克服了这些实际限制与一次对一个细胞取样不同,由成千上万个显微针组成的阵列可以同时在组织中与许多细胞接触它们轻轻地进入细胞质,取出最少的物质,使细胞保持完整重要的是,这可以重复,允许临床医生和研究人员跟踪相同的组织,因为它适应了治疗,而不需要重复活检或破坏性处理。通过这种非破坏性采样,纳米针以与现代组学分析相容的产量恢复RNA,蛋白质和代谢物,同时保留组织结构和功能。这首次创造了一个对活体人体组织进行时空多组学分析的平台。在我们最近的研究中,我们将这项技术应用于活的人类神经胶质瘤组织,并展示了临床肿瘤学长期以来所需要的:能够在空间和时间上跟踪患者的肿瘤对治疗的反应9(图2)。纳米针取样产生了组织的“分子印记”,以高保真度捕获代谢物的空间组织,同时保持组织存活。这些印迹保留了区分高级别和低级别胶质瘤的分子模式,并且鉴定了通常需要对原始组织进行破坏性分析的相同生物标志物特征。至关重要的是,由于这个过程是无破坏性的,我们可以在化疗前后对同一组织进行取样。这使我们第一次能够直接观察活体肿瘤对治疗的时空代谢反应。我们可以看到组织中的代谢特征在哪里被重新连接,关键脂质的丰度是如何变化的,以及这些变化是如何随着时间的推移而展开的。这种对治疗诱导的动态的直接测量为了解耐药性的实时出现打开了大门。我们在空间和时间上分析活组织的能力为临床研究、精准肿瘤学和患者护理创造了新的机会。 对于临床医生来说,最直接的价值在于了解单个患者的肿瘤在放射学或临床表现出这些变化之前对治疗的反应。在精准医学和转化研究中,纳米针取样能够直接在活体患者来源的组织上动态测试治疗反应。通过捕捉表明敏感性或新出现的耐药性的早期分子变化,它可以帮助临床医生选择有效的药物组合,并避免易发生适应性逃逸的方案。纵向印记同时为研究人员提供早期疗效信号,澄清跨队列的异质性反应,并显示候选疗法如何重塑关键分子途径。微创纵向取样有可能减少重复活检的负担。我们已经开发出将纳米针整合到熟悉的临床仪器中的方法,10如贴片、绷带、内窥镜、导管和血管成形术气球,使临床医生能够在不切除组织的情况下从可触及的病变中获得分子印迹。在监测规划期间对癌前病变或炎性病变进行重复采样,可支持早期发现进展并指导及时干预。术中,分子印迹可以提供比冷冻切片分析更多的信息反馈,而无需组织切除。他们额外的分子深度可能会加强决策,特别是边际评估和治疗升级。总之,这些能力预示着未来临床医生可以实时跟踪患者的疾病生物学,根据动态分子反应的直接证据为治疗选择提供信息,并减少与传统组织采样相关的程序负担。因此,纳米针支持的时空分析代表了向更具适应性、个性化和临床可操作的分子医学迈出的有希望的一步。
{"title":"A new paradigm for tumour profiling: Spatiotemporal omics in living tissue","authors":"Ciro Chiappini","doi":"10.1002/ctm2.70547","DOIUrl":"10.1002/ctm2.70547","url":null,"abstract":"&lt;p&gt;One of the central challenges in oncology is understanding why tumours stop responding to therapy. Clinicians see this repeatedly: an initial response that gives way to relapse, often driven by the tumour's ability to adapt at the molecular level. These adaptations are not static. They unfold over hours, days, and weeks, and they vary across different regions of the same tumour.&lt;/p&gt;&lt;p&gt;This means that the molecular programmes that enable a tumour to escape treatment are &lt;i&gt;dynamic, spatially organised, and highly patient-specific&lt;/i&gt;. Yet the tools we use today, bulk sequencing, fixed-tissue analysis, and endpoint assays, capture only isolated moments in time. They fall short when clinicians need to know how a tumour changes during treatment, where resistance emerges within the tissue, and when a vulnerable state might be present. This gap calls for a new paradigm for tumour profiling: capturing molecular dynamics directly in living tissue, in both space and time (Figure 1).&lt;/p&gt;&lt;p&gt;Emerging spatial and temporal omics technologies are heralding this paradigm, but each captures only part of the picture.&lt;/p&gt;&lt;p&gt;Spatial omics platforms provide detailed maps of fixed biopsy material, yet remain static snapshots that cannot show how these patterns change once treatment begins. Temporal profiling methods offer insight into dynamic responses but rely on sequential biopsies and cannot reveal where within the tissue those changes arise. Lineage tracing,&lt;span&gt;&lt;sup&gt;1&lt;/sup&gt;&lt;/span&gt; metabolic labelling,&lt;span&gt;&lt;sup&gt;2&lt;/sup&gt;&lt;/span&gt; and live-tissue imaging&lt;span&gt;&lt;sup&gt;3&lt;/sup&gt;&lt;/span&gt; each contribute fragments of the picture, but they either require destructive processing, genetic manipulation, or provide only limited molecular depth.&lt;/p&gt;&lt;p&gt;The core challenge remains: we can map a tumour's landscape or track its evolution, but not capture both in living tissue. This limits our ability to detect early resistance and make timely, biology-guided decisions.&lt;/p&gt;&lt;p&gt;A key barrier in studying treatment response is that most molecular analyses require destroying the tissue. This makes it impossible to follow how the same piece of patient-derived material changes over time. Nanotechnology now offers a way around this by enabling longitudinal molecular sampling: the ability to extract small amounts of intracellular material from living tissue without compromising its viability.&lt;/p&gt;&lt;p&gt;Pioneering work using single-probe technologies such as nanopipettes&lt;span&gt;&lt;sup&gt;4&lt;/sup&gt;&lt;/span&gt; and FluidFM&lt;span&gt;&lt;sup&gt;5&lt;/sup&gt;&lt;/span&gt; showed that it is possible to take ‘live-cell biopsies’: tiny samples of RNA, proteins, or metabolites from the same living cell at multiple timepoints. These studies proved the concept that molecular pathways can be monitored dynamically in living systems, a breakthrough step for temporal omics. However, these approaches work cell-by-cell and are not scalable to tissue-level analysis or to most types of patient-derived samples used in clinical research.&lt;/p&gt;&lt;p&gt;Nanoneedle a","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 12","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12685608/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145707560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Stereo cell: A new approach to the next generation of clinical precision medicine 立体细胞:下一代临床精准医学的新途径
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-11-28 DOI: 10.1002/ctm2.70537
Wanxin Duan, Mingjie Wang, Yifei Liu, Celine Desoyer, Christian Baumgartner, Xiangdong Wang

Precision medicine has evolved through distinct phases, from the origins of the Human Genome Project to mutation-based targeted therapies. This editorial posits that “stereological cell biomedicine” could be a new approach promoting the development of the next generation of precision medicine. This emerging discipline transitions the focus from genomic data to the multi-dimensional and spatiotemporal complexity of single cells. Driven by advances in Stereo single-cell multi-omics (Stereo Cell-seq), spatial transcriptomics (Stereo-seq), and single-cell surfaceomics (sc-surfaceome), this approach aims to capture the stereologically dynamic interactions between organelles within a cell and between cells in the tissue. We argue that understanding the spatiotemporal location of molecules, particularly protein interactions at organelle interfaces and on the cell surface, is as critical as their abundance for defining cellular function in health and disease. Integrating these high-resolution measurements with artificial intelligence and computational modelling will bridge the gap between advanced omics and pathology. Initiatives such as the newly established European Stereo Cell Center (ESCC) signal a global shift towards this new paradigm, which promises to unlock novel diagnostic biomarkers and therapeutic targets for truly multi-factorial and dynamic precision medicine.

从人类基因组计划的起源到基于突变的靶向治疗,精准医学经历了不同的发展阶段。这篇社论认为,“立体细胞生物医学”可能是促进下一代精准医学发展的新途径。这一新兴学科将重点从基因组数据转移到单细胞的多维和时空复杂性。在立体单细胞多组学(Stereo cell -seq)、空间转录组学(Stereo-seq)和单细胞表面组学(sc-surfaceome)进展的推动下,该方法旨在捕捉细胞内细胞器之间和组织中细胞之间的立体动态相互作用。我们认为,了解分子的时空位置,特别是在细胞器界面和细胞表面的蛋白质相互作用,与它们的丰度一样,对于确定健康和疾病中的细胞功能至关重要。将这些高分辨率测量与人工智能和计算建模相结合,将弥合先进组学与病理学之间的差距。新成立的欧洲立体细胞中心(ESCC)等倡议标志着全球向这种新范式的转变,它有望为真正的多因子和动态精准医学解锁新的诊断生物标志物和治疗靶点。
{"title":"Stereo cell: A new approach to the next generation of clinical precision medicine","authors":"Wanxin Duan,&nbsp;Mingjie Wang,&nbsp;Yifei Liu,&nbsp;Celine Desoyer,&nbsp;Christian Baumgartner,&nbsp;Xiangdong Wang","doi":"10.1002/ctm2.70537","DOIUrl":"https://doi.org/10.1002/ctm2.70537","url":null,"abstract":"<p>Precision medicine has evolved through distinct phases, from the origins of the Human Genome Project to mutation-based targeted therapies. This editorial posits that “stereological cell biomedicine” could be a new approach promoting the development of the next generation of precision medicine. This emerging discipline transitions the focus from genomic data to the multi-dimensional and spatiotemporal complexity of single cells. Driven by advances in Stereo single-cell multi-omics (Stereo Cell-seq), spatial transcriptomics (Stereo-seq), and single-cell surfaceomics (sc-surfaceome), this approach aims to capture the stereologically dynamic interactions between organelles within a cell and between cells in the tissue. We argue that understanding the spatiotemporal location of molecules, particularly protein interactions at organelle interfaces and on the cell surface, is as critical as their abundance for defining cellular function in health and disease. Integrating these high-resolution measurements with artificial intelligence and computational modelling will bridge the gap between advanced omics and pathology. Initiatives such as the newly established European Stereo Cell Center (ESCC) signal a global shift towards this new paradigm, which promises to unlock novel diagnostic biomarkers and therapeutic targets for truly multi-factorial and dynamic precision medicine.</p>","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 12","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70537","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145626431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CLINICAL AND TRANSLATIONAL MEDICINE 临床和转化医学
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-11-26 DOI: 10.1002/ctm2.70544
{"title":"CLINICAL AND TRANSLATIONAL MEDICINE","authors":"","doi":"10.1002/ctm2.70544","DOIUrl":"https://doi.org/10.1002/ctm2.70544","url":null,"abstract":"","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 12","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70544","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145626357","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Translational values of tissue-resident memory T cells in chronic inflammation and cancer 组织驻留记忆T细胞在慢性炎症和癌症中的翻译价值
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-11-25 DOI: 10.1002/ctm2.70516
Wanxin Duan, Xiangdong Wang
<p>T cells are central orchestrators of adaptive immunity and play important and complex roles in chronic inflammation, despite that their roles remain even paradoxical. The dysregulations of T cells occur in chronic diseases, such as inflammation and cancer, from being protectors to potent drivers of tissue pathology.<span><sup>1-3</sup></span> Of those, the pro-inflammatory tissue-resident memory (TRM) T cells accumulate within the tissue, perpetuating a cycle of inflammation. Subsets of TRM T cells, including those producing the highly inflammatory cytokine interleulin-17 (IL-17), are directly implicated in tissue damage, to form the ectopic lymphoid tissues, remodel the microenvironment, and amplify the local response in inflammation and cancer.<span><sup>4, 5</sup></span> Reformed lymphoid alter local gradients of inflammatory mediators to trap and retain more lymphocytes and exacerbate the microenvironmental bioecology. The pre-activated TRM-like T cells harboured in lungs of smokers as the pre-existing state of a tissue can create an immune pressure that reprograms subsequent tumour evolution and response to therapy and profoundly influences disease progression.<span><sup>6</sup></span></p><p>The deep understanding of TRM T-cell phenomes and bio-behaviours provides new insights for the identification of diagnostic biomarkers and therapeutic targets. The TRM T cells as a special type of memory T cells are categorised on basis of the locations (e.g., gut-TRM, lung-TRM, brain-TRM), cell surface antigens (e.g., CD8⁺TRM, CD4⁺TRM), or cell identity gene markers measured by single-cell RNA sequencing (scRNA-seq).<span><sup>7-9</sup></span> One of biological characteristics is their long-term residence in specific tissue to take an immediate action in the initiation of immune responses to invaded pathogens and reduction infectious spreads, faster than circulating memory T cells. Of those, CD8⁺TRM T cells are the majority responsible for antiviral and anti-tumour immunity and can directly terminate infected cells and pathogen replication by releasing inflammatory mediators and enzymes. CD4⁺TRM can support other immune cells (like B cells for antibody production, macrophages for activation), and regulate local immune responses to infectious and autoimmune diseases by enhancing the synergistic effects of the immune networks. In addition, TRM T cells play critical roles in the tissue repair by controlling microenvironmental contents of inflammatory mediators and recognising abnormal cells like infected cells or cancer cells to reduce the risk of tissue damage and maintain microenvironmental immune bioecology. The molecular processes of reservable immune memory in TRM T cells can provide a number of alternatives for vaccination and immunotherapy.</p><p>Recent redefinition of redefining T-cell behaviour in inflamed or tumour microenvironment are largely driven by high-resolution techniques such as scRNA-seq, spatial transcriptomics and multi-omics integ
T细胞是适应性免疫的中枢协调者,在慢性炎症中发挥着重要而复杂的作用,尽管它们的作用仍然是矛盾的。T细胞的失调发生在慢性疾病中,如炎症和癌症,从组织病理学的保护者到强有力的驱动者。其中,促炎组织驻留记忆(TRM) T细胞在组织内积累,使炎症循环持续下去。TRM T细胞亚群,包括那些产生高炎性细胞因子白介素-17 (IL-17)的细胞亚群,直接参与组织损伤,形成异位淋巴组织,重塑微环境,放大炎症和癌症的局部反应。4,5重组淋巴细胞改变炎症介质的局部梯度,以捕获和保留更多淋巴细胞,加剧微环境生物生态。吸烟者肺部中预先激活的trm样T细胞作为组织的预先存在状态,可以产生免疫压力,重新编程随后的肿瘤进化和对治疗的反应,并深刻影响疾病进展。对TRM t细胞现象和生物行为的深入了解为鉴定诊断性生物标志物和治疗靶点提供了新的见解。TRM T细胞作为一种特殊类型的记忆T细胞,根据位置(例如,肠道TRM,肺TRM,脑TRM),细胞表面抗原(例如,CD8 + TRM, CD4 + TRM)或通过单细胞RNA测序(scRNA-seq)测量的细胞身份基因标记物进行分类。7-9生物学特性之一是它们长期驻留在特定组织中,对入侵病原体的免疫反应立即采取行动,减少感染扩散,比循环记忆T细胞更快。其中,CD8 + TRM T细胞主要负责抗病毒和抗肿瘤免疫,可以通过释放炎症介质和酶直接终止感染细胞和病原体复制。CD4 + TRM可以支持其他免疫细胞(如B细胞产生抗体,巨噬细胞活化),通过增强免疫网络的协同作用,调节局部对感染性和自身免疫性疾病的免疫反应。此外,TRM T细胞通过控制炎症介质的微环境含量,识别感染细胞或癌细胞等异常细胞,降低组织损伤风险,维持微环境免疫生物生态,在组织修复中发挥关键作用。TRM T细胞中保留免疫记忆的分子过程可以为疫苗接种和免疫治疗提供许多替代方案。最近对炎症或肿瘤微环境中t细胞行为的重新定义主要是由高分辨率技术如scRNA-seq、空间转录组学和多组学整合驱动的。使用scRNA-seq重新发现新的t细胞亚群/状态,不同于使用大量RNA分析的描述。炎症和损伤组织中TRM T细胞的形成受多种因素调控。功能不同的TRM亚群遵循不同的发育路径,例如,产生IFN-γ的TRM1细胞依赖于T-bet-Hobit轴,而产生il -17的TRM17细胞则由转录因子c- maf独立编程这突出了TRM谱系中组织特异性特化的显著程度。此外,外部因素,如化学传感和代谢线索显著影响TRM细胞的行为。转录因子C/EBPβ作为某些化学物质的传感器可以直接促进T细胞驱动的肠道炎症11,而表达颗粒酶k的CD8+ T细胞的不同群体可能是慢性鼻窦炎复发的关键驱动因素12关键的是,细胞代谢已经成为一个中央调控枢纽。ATP柠檬酸解酶通过改变糖酵解ATP的产生以及磷脂和磷脂酰胆碱的生物合成,对t细胞驱动的结肠炎是必不可少的TRM T细胞的存活依赖于外源性脂质摄取,代谢副产物乳酸可以主动重编程炎症组织中的T细胞。ACLY通过产生乙酰辅酶a,为促炎基因位点的组蛋白乙酰化提供必需的底物,从而在表观遗传上促进IFN-γ和IL-17A等细胞因子的表达。TRM T细胞的分子现象和调控也在临床和转化发现和医学中得到强调。使用scRNA-seq,发现肺组织CD8+naïve和记忆T细胞参与CD8+T细胞向耗竭细胞和/或细胞毒性细胞的分化,并积极调节细胞死亡和细胞因子的产生干细胞样记忆T细胞,一群具有自我更新和分化能力的长寿命记忆T细胞,在新诊断的多发性骨髓瘤中减少。 15在淀粉样蛋白轻链患者的骨髓中发现CD8+TRM T细胞具有高表达的抑制分子,在达拉单抗联合环磷酰胺、硼替佐米和地塞米松后,抑制分子下调,IFNG表达上调,迅速激活。这些细胞被迅速激活,抑制标记物的表达减少,IFNG转录增加在肺中,TRM T细胞也被证明与基质相互作用肺TRM T细胞也被发现与间质细胞如远端细胞紧密联系,维持组织修复的激活这表明TRM T细胞的分子生物学行为可以作为诊断性生物标志物发现的来源,也可以作为治疗靶点鉴定的来源。然而,基于TRM t细胞的诊断和治疗的临床应用需要进一步完善其分子特征。TRM t细胞识别基因标记板的亚群和功能状态的准确性和特异性应根据组织类型和疾病进一步界定和标准化,以满足临床应用的要求,提高患者的预后。展望未来,TRM T细胞的生物学功能和保护作用高度依赖于TRM T细胞起源和分化轨迹的组织特异性和异质性。细胞内和细胞外信号的时空定位可以将TRM T细胞定向为分化或祖细胞样,通过不同的配体受体活性、细胞因子梯度和通过TGFβ或CXCL9和CXCL10.19等多种信号通路的特化细胞接触进行调节。此外,TRM T细胞真实生活的微环境在立体上是时空、动态和实时变化的。连续的空间转录组可以提供TRM T细胞的立体图像,用于可视化多维连接/相互作用,而立体细胞测序可以为研究TRM T细胞如何调节炎症和癌症微环境的形成提供动态和形态学平台。20,21随着多组学技术的发展,人工智能TRM T单细胞将被构建,从而在单细胞水平上为了解分子调控动态、影响临床诊断和疾病预测提供可靠、快速的信息因此,更深入地挖掘TRM t细胞的功能、特异性和它们的亚群、相互作用的细胞和位置之间的规律,将创造更多的临床治疗方案。
{"title":"Translational values of tissue-resident memory T cells in chronic inflammation and cancer","authors":"Wanxin Duan,&nbsp;Xiangdong Wang","doi":"10.1002/ctm2.70516","DOIUrl":"https://doi.org/10.1002/ctm2.70516","url":null,"abstract":"&lt;p&gt;T cells are central orchestrators of adaptive immunity and play important and complex roles in chronic inflammation, despite that their roles remain even paradoxical. The dysregulations of T cells occur in chronic diseases, such as inflammation and cancer, from being protectors to potent drivers of tissue pathology.&lt;span&gt;&lt;sup&gt;1-3&lt;/sup&gt;&lt;/span&gt; Of those, the pro-inflammatory tissue-resident memory (TRM) T cells accumulate within the tissue, perpetuating a cycle of inflammation. Subsets of TRM T cells, including those producing the highly inflammatory cytokine interleulin-17 (IL-17), are directly implicated in tissue damage, to form the ectopic lymphoid tissues, remodel the microenvironment, and amplify the local response in inflammation and cancer.&lt;span&gt;&lt;sup&gt;4, 5&lt;/sup&gt;&lt;/span&gt; Reformed lymphoid alter local gradients of inflammatory mediators to trap and retain more lymphocytes and exacerbate the microenvironmental bioecology. The pre-activated TRM-like T cells harboured in lungs of smokers as the pre-existing state of a tissue can create an immune pressure that reprograms subsequent tumour evolution and response to therapy and profoundly influences disease progression.&lt;span&gt;&lt;sup&gt;6&lt;/sup&gt;&lt;/span&gt;&lt;/p&gt;&lt;p&gt;The deep understanding of TRM T-cell phenomes and bio-behaviours provides new insights for the identification of diagnostic biomarkers and therapeutic targets. The TRM T cells as a special type of memory T cells are categorised on basis of the locations (e.g., gut-TRM, lung-TRM, brain-TRM), cell surface antigens (e.g., CD8⁺TRM, CD4⁺TRM), or cell identity gene markers measured by single-cell RNA sequencing (scRNA-seq).&lt;span&gt;&lt;sup&gt;7-9&lt;/sup&gt;&lt;/span&gt; One of biological characteristics is their long-term residence in specific tissue to take an immediate action in the initiation of immune responses to invaded pathogens and reduction infectious spreads, faster than circulating memory T cells. Of those, CD8⁺TRM T cells are the majority responsible for antiviral and anti-tumour immunity and can directly terminate infected cells and pathogen replication by releasing inflammatory mediators and enzymes. CD4⁺TRM can support other immune cells (like B cells for antibody production, macrophages for activation), and regulate local immune responses to infectious and autoimmune diseases by enhancing the synergistic effects of the immune networks. In addition, TRM T cells play critical roles in the tissue repair by controlling microenvironmental contents of inflammatory mediators and recognising abnormal cells like infected cells or cancer cells to reduce the risk of tissue damage and maintain microenvironmental immune bioecology. The molecular processes of reservable immune memory in TRM T cells can provide a number of alternatives for vaccination and immunotherapy.&lt;/p&gt;&lt;p&gt;Recent redefinition of redefining T-cell behaviour in inflamed or tumour microenvironment are largely driven by high-resolution techniques such as scRNA-seq, spatial transcriptomics and multi-omics integ","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 12","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70516","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145595363","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CAR-DC combined with CAR-T therapy for relapsed/refractory acute myeloid leukaemia: Research progress and future perspectives CAR-DC联合CAR-T治疗复发/难治性急性髓性白血病:研究进展及未来展望
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-11-25 DOI: 10.1002/ctm2.70536
Rui Zhang, Jinlin Zhang, Hongkai Zhang, Mingfeng Zhao
<div> <section> <p>Acute myeloid leukaemia (AML) remains the most common type of leukaemia in adults. Despite advances in conventional therapies, high relapse rates persist, underscoring the need for novel approaches such as chimeric antigen receptor T (CAR-T) cell therapy. C-type lectin-like molecule-1 (CLL1)-targeted CAR-T emerges as a promising treatment for relapsed/refractory (R/R) AML. Although approximately 70% patients achieved remission, only a subset achieved minimal residual disease-negative remission, which still has much room for improvement. The main reasons for the failure of CLL1 CAR-T-cell therapy include: (1) persistence of CLL1-negative AML cells persist due to antigen escape; (2) downregulation of interleukin (IL)-12 and other cytokines by the immunosuppressive tumour microenvironment (TME), contributing to the exhaustion of both endogenous T cells and CLL1 CAR-T cells.</p> <p>We synthesise a combination of CAR-engineered dendritic cells (CAR-DCs) and CLL1 CAR-T cells to overcome current limitations. CAR-DCs enhance antigen cross-presentation to activate endogenous T cells against antigen-negative clones, secrete immunostimulatory cytokines (e.g., IL-12) to sustain CAR-T activity, and remodel the TME. Key challenges involve optimising CAR designs (e.g., incorporating Fms-like tyrosine kinase 3 ligand [FLT-3L] or CD40 signalling domains), mitigating toxicity and establishing clinical administration protocols.</p> <p>In this review, a focused discussion was provided on the specific challenges limiting CLL1-targeted CAR-T-cell therapy in R/R AML, namely antigen escape and the TME, and a novel combination strategy of CAR-DCs with CLL1 CAR-T cells was proposed as a promising approach to mitigate these barriers. Here, the rationale, current research advances, and future perspectives of this synergistic strategy were critically examined.</p> </section> <section> <h3> Highlights</h3> <div> <ul> <li> <p>Our earlier clinical trials showed that C-type lectin-like molecule-1 (CLL1)-targeted therapy for refractory/relapse acute myeloid leukaemia (AML) was validated, which still has a considerable room for improvement.</p> </li> <li> <p>We summarise the clinical trials and basic research on the dendritic cell (DC) therapy and chimeric antigen receptor-engineered DC (CAR-DC) therapy.</p> </li> <li> <p>We explored the synergistic mechanism and prospects of CLL1 CAR-DC cells combined with CLL1 CAR-T cells in AML.</p> </li>
急性髓性白血病(AML)仍然是成人中最常见的白血病类型。尽管传统疗法取得了进步,但高复发率仍然存在,这强调了对嵌合抗原受体T (CAR-T)细胞疗法等新方法的需求。c型凝集素样分子-1 (CLL1)靶向CAR-T成为复发/难治性AML (R/R)的一种有希望的治疗方法。尽管大约70%的患者获得了缓解,但只有一小部分患者获得了最小的残留疾病阴性缓解,这仍有很大的改进空间。CLL1 car - t细胞治疗失败的主要原因包括:(1)CLL1阴性AML细胞因抗原逃逸而持续存在;(2)免疫抑制性肿瘤微环境(TME)下调白细胞介素(IL)-12和其他细胞因子,导致内源性T细胞和CLL1 CAR-T细胞衰竭。我们合成了car -工程树突状细胞(car - dc)和CLL1 CAR-T细胞的组合,以克服目前的局限性。car - dc增强抗原交叉呈递,激活内源性T细胞对抗抗原阴性克隆,分泌免疫刺激细胞因子(如IL-12)以维持CAR-T活性,并重塑TME。关键的挑战包括优化CAR设计(例如,结合fms样酪氨酸激酶3配体[FLT-3L]或CD40信号域),减轻毒性和建立临床给药方案。在这篇综述中,重点讨论了限制CLL1靶向CAR-T细胞治疗R/R AML的具体挑战,即抗原逃逸和TME,并提出了一种新的car - dc与CLL1 CAR-T细胞的联合策略,作为缓解这些障碍的有希望的方法。在这里,理论基础,目前的研究进展和未来的前景,这种协同战略进行了严格审查。我们早期的临床试验表明,c型凝集素样分子-1 (CLL1)靶向治疗难治性/复发性急性髓性白血病(AML)是有效的,但仍有相当大的改进空间。本文综述了树突状细胞(DC)治疗和嵌合抗原受体工程DC (CAR-DC)治疗的临床试验和基础研究。我们探讨了CLL1 CAR-DC细胞联合CLL1 CAR-T细胞在AML中的协同作用机制和前景。
{"title":"CAR-DC combined with CAR-T therapy for relapsed/refractory acute myeloid leukaemia: Research progress and future perspectives","authors":"Rui Zhang,&nbsp;Jinlin Zhang,&nbsp;Hongkai Zhang,&nbsp;Mingfeng Zhao","doi":"10.1002/ctm2.70536","DOIUrl":"https://doi.org/10.1002/ctm2.70536","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;p&gt;Acute myeloid leukaemia (AML) remains the most common type of leukaemia in adults. Despite advances in conventional therapies, high relapse rates persist, underscoring the need for novel approaches such as chimeric antigen receptor T (CAR-T) cell therapy. C-type lectin-like molecule-1 (CLL1)-targeted CAR-T emerges as a promising treatment for relapsed/refractory (R/R) AML. Although approximately 70% patients achieved remission, only a subset achieved minimal residual disease-negative remission, which still has much room for improvement. The main reasons for the failure of CLL1 CAR-T-cell therapy include: (1) persistence of CLL1-negative AML cells persist due to antigen escape; (2) downregulation of interleukin (IL)-12 and other cytokines by the immunosuppressive tumour microenvironment (TME), contributing to the exhaustion of both endogenous T cells and CLL1 CAR-T cells.&lt;/p&gt;\u0000 \u0000 &lt;p&gt;We synthesise a combination of CAR-engineered dendritic cells (CAR-DCs) and CLL1 CAR-T cells to overcome current limitations. CAR-DCs enhance antigen cross-presentation to activate endogenous T cells against antigen-negative clones, secrete immunostimulatory cytokines (e.g., IL-12) to sustain CAR-T activity, and remodel the TME. Key challenges involve optimising CAR designs (e.g., incorporating Fms-like tyrosine kinase 3 ligand [FLT-3L] or CD40 signalling domains), mitigating toxicity and establishing clinical administration protocols.&lt;/p&gt;\u0000 \u0000 &lt;p&gt;In this review, a focused discussion was provided on the specific challenges limiting CLL1-targeted CAR-T-cell therapy in R/R AML, namely antigen escape and the TME, and a novel combination strategy of CAR-DCs with CLL1 CAR-T cells was proposed as a promising approach to mitigate these barriers. Here, the rationale, current research advances, and future perspectives of this synergistic strategy were critically examined.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Highlights&lt;/h3&gt;\u0000 \u0000 &lt;div&gt;\u0000 &lt;ul&gt;\u0000 \u0000 &lt;li&gt;\u0000 &lt;p&gt;Our earlier clinical trials showed that C-type lectin-like molecule-1 (CLL1)-targeted therapy for refractory/relapse acute myeloid leukaemia (AML) was validated, which still has a considerable room for improvement.&lt;/p&gt;\u0000 &lt;/li&gt;\u0000 \u0000 &lt;li&gt;\u0000 &lt;p&gt;We summarise the clinical trials and basic research on the dendritic cell (DC) therapy and chimeric antigen receptor-engineered DC (CAR-DC) therapy.&lt;/p&gt;\u0000 &lt;/li&gt;\u0000 \u0000 &lt;li&gt;\u0000 &lt;p&gt;We explored the synergistic mechanism and prospects of CLL1 CAR-DC cells combined with CLL1 CAR-T cells in AML.&lt;/p&gt;\u0000 &lt;/li&gt;\u0000 ","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 12","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70536","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145595297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Integrated pathway analysis identifies prognostically relevant subtypes of glioblastoma characterized by abnormalities in multi-omics 综合通路分析确定以多组学异常为特征的胶质母细胞瘤预后相关亚型
IF 6.8 1区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL Pub Date : 2025-11-25 DOI: 10.1002/ctm2.70517
Pei Zhang, Dan Liu, Tonghui Yu, Yanlin Zhang, Lu Zhong, Xiao Ouyang, Qin Xia, Lei Dong
<div> <section> <h3> Background</h3> <p>Gene expression-based molecular subtypes in glioblastoma from The Cancer Genome Atlas Network (TCGA-GBM) unraveled the pathological origins by identifying tumour cell driver genes. However, the causal inference between molecular subtype origins and their therapeutic efficacy remains obscure.</p> </section> <section> <h3> Methods</h3> <p>We integrated TCGA-GBM multi-omics (DNA, mRNA, and protein profiles) using correlation analysis to identify <i>cis-</i>regulation. We analyzed the exposure-mediated base substitution-level mutations and their potential triggers. Importantly, we performed Consensus Clustering based on the MSigDB database with Silhouette-correction to identify prognostically relevant pathway-based MSig subtypes. The tumour driver mutations (co-occurrence mutation pattern), aberrant pathways (tumour hallmarks), immune microenvironment (<i>xCell</i>), and pseudo-time analysis (<i>dyno</i>) were used to characterize the MSig subtype landscape. Furthermore, we evaluated potential drug sensitivities across MSig subtypes using the Genomics of Drug Sensitivity in Cancer database.</p> </section> <section> <h3> Results</h3> <p>We classified five MSig subtypes, characterized by neural-like, tumour-driving, low tumour evolution, immune-inflamed, and classical tumour features. We observed several key features in ‘tumour-driving’ GBM patients: (1) mutual exclusivity between prognostic factors TP53 and EGFR; and (2) IDH1 mutations co-occurring with TP53, which account for the protective role of IDH1 in TP53 mutant patients. The immune-inflamed GBM, characterized as a ‘hot’ tumour, exhibited upregulation of immune-related pathways, including PD-1 and IFN-γ signalling responses. DNA methylation landscape revealed 14 MGMT CpG-rich regions regulating expression. Evolutionary trajectories revealed progression from a primary tumour state (close to normal tissue) to two distinct endpoints (tumour-driving and immune-inflamed subtypes).</p> </section> <section> <h3> Conclusions</h3> <p>Our findings reveal interactions between tumour cells and their surrounding immune environment, classifying GBM into two newly identified subtypes: (1) the tumour-driving subtype is characterized by multiple oncogenic mutations, while (2) the immune-blockade subtype is marked by a high presence of immune cells. We highlight the importance of integrating multi-type data (somatic mutations, DNA methylation, and RNA transcripts, etc.) to decipher GBM biology and potential therapeutic implications.</p> </section>
来自癌症基因组图谱网络(TCGA-GBM)的基于基因表达的胶质母细胞瘤分子亚型通过鉴定肿瘤细胞驱动基因揭示了其病理起源。然而,分子亚型起源与其治疗效果之间的因果关系仍然不清楚。方法利用相关分析整合TCGA-GBM多组学(DNA、mRNA和蛋白质谱),鉴定顺式调控。我们分析了暴露介导的碱基取代水平突变及其潜在的触发因素。重要的是,我们基于具有轮廓校正的mssigdb数据库进行了共识聚类,以识别与预后相关的基于通路的MSig亚型。肿瘤驱动突变(共发生突变模式)、异常通路(肿瘤标志)、免疫微环境(xCell)和伪时间分析(dyno)被用来表征MSig亚型的特征。此外,我们使用癌症药物敏感性基因组学数据库评估了MSig亚型的潜在药物敏感性。结果我们将MSig分为5种亚型,其特征为神经样、肿瘤驱动、低肿瘤进化、免疫炎症和典型肿瘤特征。我们观察到“肿瘤驱动”GBM患者的几个关键特征:(1)预后因子TP53和EGFR之间的相互排他性;(2) IDH1突变与TP53共同发生,说明IDH1对TP53突变患者具有保护作用。免疫炎症性GBM的特征是“热”肿瘤,表现出免疫相关途径的上调,包括PD-1和IFN-γ信号反应。DNA甲基化图谱显示有14个富含MGMT cpg的区域调控表达。进化轨迹揭示了从原发性肿瘤状态(接近正常组织)到两个不同的终点(肿瘤驱动和免疫炎症亚型)的进展。我们的研究结果揭示了肿瘤细胞与其周围免疫环境之间的相互作用,将GBM分为两种新发现的亚型:(1)肿瘤驱动亚型以多个致癌突变为特征,而(2)免疫阻断亚型以免疫细胞的高存在为特征。我们强调整合多类型数据(体细胞突变、DNA甲基化和RNA转录等)的重要性,以破译GBM生物学和潜在的治疗意义。我们报道了肿瘤细胞与环境免疫细胞之间的相互作用,将GBM分为两种主要亚型:1)肿瘤驱动亚型以多种致癌突变为特征,而2)免疫阻断亚型以免疫细胞的高存在为特征。我们对体细胞突变、DNA甲基化和RNA转录物进行了综合多维分析,以更深入地了解GBM生物学和潜在的治疗意义。
{"title":"Integrated pathway analysis identifies prognostically relevant subtypes of glioblastoma characterized by abnormalities in multi-omics","authors":"Pei Zhang,&nbsp;Dan Liu,&nbsp;Tonghui Yu,&nbsp;Yanlin Zhang,&nbsp;Lu Zhong,&nbsp;Xiao Ouyang,&nbsp;Qin Xia,&nbsp;Lei Dong","doi":"10.1002/ctm2.70517","DOIUrl":"https://doi.org/10.1002/ctm2.70517","url":null,"abstract":"&lt;div&gt;\u0000 \u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Background&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Gene expression-based molecular subtypes in glioblastoma from The Cancer Genome Atlas Network (TCGA-GBM) unraveled the pathological origins by identifying tumour cell driver genes. However, the causal inference between molecular subtype origins and their therapeutic efficacy remains obscure.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Methods&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We integrated TCGA-GBM multi-omics (DNA, mRNA, and protein profiles) using correlation analysis to identify &lt;i&gt;cis-&lt;/i&gt;regulation. We analyzed the exposure-mediated base substitution-level mutations and their potential triggers. Importantly, we performed Consensus Clustering based on the MSigDB database with Silhouette-correction to identify prognostically relevant pathway-based MSig subtypes. The tumour driver mutations (co-occurrence mutation pattern), aberrant pathways (tumour hallmarks), immune microenvironment (&lt;i&gt;xCell&lt;/i&gt;), and pseudo-time analysis (&lt;i&gt;dyno&lt;/i&gt;) were used to characterize the MSig subtype landscape. Furthermore, we evaluated potential drug sensitivities across MSig subtypes using the Genomics of Drug Sensitivity in Cancer database.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Results&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;We classified five MSig subtypes, characterized by neural-like, tumour-driving, low tumour evolution, immune-inflamed, and classical tumour features. We observed several key features in ‘tumour-driving’ GBM patients: (1) mutual exclusivity between prognostic factors TP53 and EGFR; and (2) IDH1 mutations co-occurring with TP53, which account for the protective role of IDH1 in TP53 mutant patients. The immune-inflamed GBM, characterized as a ‘hot’ tumour, exhibited upregulation of immune-related pathways, including PD-1 and IFN-γ signalling responses. DNA methylation landscape revealed 14 MGMT CpG-rich regions regulating expression. Evolutionary trajectories revealed progression from a primary tumour state (close to normal tissue) to two distinct endpoints (tumour-driving and immune-inflamed subtypes).&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 \u0000 &lt;section&gt;\u0000 \u0000 &lt;h3&gt; Conclusions&lt;/h3&gt;\u0000 \u0000 &lt;p&gt;Our findings reveal interactions between tumour cells and their surrounding immune environment, classifying GBM into two newly identified subtypes: (1) the tumour-driving subtype is characterized by multiple oncogenic mutations, while (2) the immune-blockade subtype is marked by a high presence of immune cells. We highlight the importance of integrating multi-type data (somatic mutations, DNA methylation, and RNA transcripts, etc.) to decipher GBM biology and potential therapeutic implications.&lt;/p&gt;\u0000 &lt;/section&gt;\u0000 ","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 12","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70517","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145595364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Clinical and Translational Medicine
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1