Lu Z, Zheng S, Liu C, et al. S100A7 as a potential diagnostic andprognostic biomarker of esophageal squamous cellcarcinoma promotes M2 macrophage infiltrationand angiogenesis. Clin Transl Med. 2021;11:e459. doi: 10.1002/ctm2.459
The reason for the correction:
We proofread the entire article and found that the Western Blot band of the p65 protein in the S100A7 siRNA silencing group in Figure 3H on page 6 accidentally used the same band as the p65 protein in the S100A7 siRNA silencing group in Figure 3G during the editing process.
The western Blot band of p65 protein in the S100A7 siRNA silencing group in Figure 3H that needs errata is marked with a red block below.
Idiopathic pulmonary fibrosis (IPF) is a fibrotic disease driven by both environmental and genetic factors. Epigenetics refers to changes in gene expression or cellular phenotype that do not involve alterations to DNA sequence. KMT2A is a member of the SET family which catalyses H3K4 methylation.
Through microarray and single-cell sequencing data, we discovered KMT2A-positive fibroblasts were increased in IPF lung tissues. KMT2A level was increased in IPF and bleomycin-induced pulmonary fibrosis mice lung tissues collected in our centre. Mice with AAV6-induced KMT2A knockdown in fibroblast showed attenuated pulmonary fibrosis after bleomycin treatment. Bioinformation also revealed that transcription factor PU.1 was a target of KMT2A. We demonstrated that PU.1 levels were increased in IPF tissues, bleomycin-induced mice lung tissues and primary fibrotic fibroblasts. KMT2A knockdown decreases PU.1 expression in vitro while KMT2A overexpression induces PU.1 activation. PU.1 fibroblast-specific knockout mice showed attenuated lung fibrosis induced by bleomycin. Furthermore, we demonstrated KMT2A up-regulated PU.1 in fibroblasts by catalysing H3K4me3 at the promoter of the PU.1 gene. The KMT2A transcription complex inhibitor mm102 treatment attenuated bleomycin-induced pulmonary fibrosis.
The current study indicated that histone modification participates in the pathogenesis of IPF and KMT2A may have the potential to be a therapeutic target of IPF treatment.
To investigate the potential mechanisms underlying neutrophil extracellular traps (NETs) confer ferroptosis resistance and CD8(+) T cell inhibition in lung adenocarcinoma (LUAD). By the intravenous injection of LLC cells into the tail vein, a LUAD mouse model was created. Phorbol-12-myristate-13-acetate (PMA) stimulated neutrophils to facilitate NETs formation and combined with NETs inhibitor DNase I to explore NETs mechanism on LLC cell proliferation, migration, ferroptosis resistance, and CD8(+) T cell activity. CitH3, myeloperoxidase (MPO), cell-free DNA, and MPO-DNA levels in LUAD were increased, indicating an increase in NETs formation in LUAD. PMA promoted NETs formation in tumours of mice, increased the number of CD3(+)CD4(+) T cells, decreased perforin, granzyme A, granzyme B, IFNγ, and TNF-α levels, and promoted LUAD growth and the number of lung tumour nodules, indicating that PMA promoted NETs formation, reduced the activity of CD8(+)T cells, and promoted LUAD growth. DNase I partially reversed the effects of PMA. NETs promoted LLC cell proliferation and migration, while DNase I reversed NETs effects. Erastin inhibited LLC cell proliferation and migration and promoted ferroptosis. NETs partially reversed Erastin effects. Further results showed that NETs promoted LLC cell proliferation and migration and inhibited ferroptosis by promoting YTHDF2-mediated SLC2A3 mRNA degradation. Sh-YTHDF2 partially reversed the effect of NETs on LLC cells, whereas si-SLC2A3 partially reversed sh-YTHDF2 effects on LLC cells. In addition, NETs inhibited LLC cell ferroptosis by inhibiting CD8(+) T cell activity. Sh-YTHDF2 and DNase I inhibited NETs formation in tumours, increased the activity of CD8(+) T cells and inhibited LUAD growth. Our results suggested that NETs promoted the growth of LUAD through inhibiting ferroptosis and CD8(+) T cell activity by promoting YTHDF2-mediated SLC2A3 mRNA degradation.
The eXchange Unit between Thiolation domains approach and artificial intelligence (AI)-driven tools like Synthetic Intelligence are transforming nonribosomal peptide synthetase and polyketide synthase engineering, enabling the creation of novel bioactive compounds that address critical challenges like antibiotic resistance and cancer. These innovations expand chemical space and optimize biosynthetic pathways, offering precise and scalable therapeutic solutions. Collaboration across synthetic biology, AI, and clinical research is essential to translating these breakthroughs into next-generation treatments and revolutionizing drug discovery and patient care.