<p>Personalized gene editing is rapidly transitioning from concept to clinical practice, marking one of the most significant shifts in contemporary medicine. Over the past decade, the field has advanced from preclinical proof-of-concept experiments to the first real-world demonstrations of patient-specific, clinically administered genome-editing therapies. In 2025, this progress culminated in the widely publicized case of “Baby KJ,” a child treated with a bespoke in vivo base-editing therapy for carbamoyl phosphate synthetase 1 (CPS1) deficiency. This case not only represents a remarkable scientific achievement but also a pivotal clinical milestone, demonstrating that individualized genome editing can be safely and effectively deployed in urgent, life-threatening conditions.<span><sup>1</sup></span> For clinicians, this case highlights the arrival of a new therapeutic modality with profound implications for diagnosis, care delivery and long-term disease management in rare genetic disorders.</p><p>Carbamoyl phosphate synthetase 1 deficiency is among the most severe urea cycle disorders, typically presenting in the neonatal period with hyperammonemia, neurological compromise and rapid progression to death without liver transplantation. Traditional management relies on dietary restriction, ammonia scavengers and transplantation, but these interventions are palliative or carry high risk rather than curative potential.<span><sup>2</sup></span> In Baby KJ's case, rapid genomic diagnosis revealed a pathogenic single-nucleotide mutation in the CPS1 gene that was directly amenable to correction through base editing. A multidisciplinary team of clinicians, geneticists and regulatory experts designed an individualized therapy using messenger RNA encoding a base editor and a customized guide RNA, packaged within lipid nanoparticles optimized for liver delivery. The therapeutic rationale was straightforward but powerful: directly correct the underlying mutation in hepatocytes to restore enzyme function, thereby normalizing nitrogen metabolism and preventing further neurotoxic crises.<span><sup>1</sup></span></p><p>The treatment journey underscored the complexities of developing personalized medicines. Patient-specific preclinical assays and genotoxicity evaluations were required within weeks, while cGMP manufacturing for a novel formulation had to be rapidly optimized. Regulatory authorities worked under an emergency investigational new drug framework, allowing expedited review and authorization.<span><sup>1</sup></span> The therapy was delivered through multiple infusions at a critical point when the patient faced imminent metabolic decompensation. Clinicians monitored metabolic parameters, liver enzymes and developmental milestones, while also conducting detailed genomic assays to confirm on-target editing and rule out off-target events.</p><p>The reported outcomes were encouraging. Following treatment, the patient achieved improved metabolic stability, red
个性化基因编辑正在迅速从概念转变为临床实践,标志着当代医学最重大的转变之一。在过去的十年中,该领域已经从临床前的概念验证实验发展到患者特异性临床管理的基因组编辑疗法的首次实际演示。2025年,这一进展在被广泛报道的“婴儿KJ”病例中达到高潮,这名儿童接受了针对磷酸氨基甲酰合成酶1 (CPS1)缺乏症的定制体内碱基编辑治疗。该病例不仅代表了一项非凡的科学成就,也是一个关键的临床里程碑,表明个性化基因组编辑可以安全有效地应用于紧急、危及生命的疾病对于临床医生来说,这个病例强调了一种新的治疗方式的到来,对罕见遗传疾病的诊断、护理和长期疾病管理具有深远的影响。磷酸氨基甲酰合成酶1缺乏症是最严重的尿素循环障碍之一,通常表现为新生儿期高氨血症、神经系统损害和快速进展至死亡,无需肝移植。传统的管理依赖于饮食限制,氨清除剂和移植,但这些干预措施是姑息性的或具有高风险,而不是治愈潜力在婴儿KJ的病例中,快速基因组诊断显示CPS1基因存在致病性单核苷酸突变,可直接通过碱基编辑进行纠正。一个由临床医生、遗传学家和监管专家组成的多学科团队设计了一种个性化的治疗方法,使用信使RNA编码碱基编辑器和定制的引导RNA,包装在优化的脂质纳米颗粒中,用于肝脏输送。这种治疗方法的原理很简单,但很有效:直接纠正肝细胞中潜在的突变,以恢复酶的功能,从而使氮代谢正常化,防止进一步的神经毒性危机。治疗过程凸显了开发个性化药物的复杂性。患者特异性临床前分析和遗传毒性评估需要在几周内完成,而新制剂的cGMP生产必须快速优化。监管机构在紧急新药研究框架下工作,允许快速审查和授权当患者面临即将到来的代谢失代偿时,治疗通过多次输注进行。临床医生监测代谢参数、肝酶和发育里程碑,同时进行详细的基因组分析,以确认靶向编辑并排除脱靶事件。报告的结果令人鼓舞。治疗后,患者的代谢稳定性得到改善,对常规疗法的依赖减少,在标准治疗下不太可能出现的发育进展。尽管长期监测是必要的,但直接的成功提供了原则性的证据,即针对患者的基因编辑可以改变破坏性单基因疾病的自然史。几项技术革新使这一成功成为可能。与传统的CRISPR-Cas9不同,碱基编辑允许精确的核苷酸转换,而不会产生双链断裂,从而降低了插入-删除突变和染色体重排的风险脂质纳米颗粒递送信使RNA确保了编辑机制的瞬时表达,限制了免疫并发症在全基因组测序和计算模型的支持下,患者特异性脱靶分析进一步增强了临床信心总之,这些创新创造了一种更安全、更可控的基因干预,适合急性儿科护理。现在的挑战是确保婴儿KJ的案例不是作为一个单一的轶事而被记住,而是作为可扩展和可重复的方法的起点。个性化基因组医学的可扩展性和获取驱动因素与大众市场疗法有着根本的不同概念验证演示必须发展为标准化的工作流程和平台,可以在患者和适应症之间复制。在费城儿童医院,该团队已经开始将KJ的经验转化为肝脏尿素循环疾病的伞形平台,创建可以通过共享基础设施(个人通信)支持多名患者的协议。个性化基因组药物也有类似的先例:Mila Makovec的案例,她接受了定制的反义寡核苷酸(ASO)“milasen”治疗巴顿病,6证明了个性化ASO疗法的可行性,但也暴露了定制方法在没有可扩展基础设施的情况下的局限性。实现基因组医学的可扩展性需要几个有利条件(图1)。 首先,必须建立健全的患者识别和资格系统,包括新生儿测序计划和能够早期发现和转诊的罕见疾病网络。传统的新生儿筛查(NBS)小组目前在美国大多数州只能识别50-60种疾病,因此遗漏了数千种罕见的单基因疾病,这些疾病总共影响约300名新生儿中的1名相比之下,试点新生儿基因组测序计划显示,检出率比传统筛查高10-15倍,在3%-5%的测序婴儿中发现了可能被标准小组忽略的可操作的遗传条件其次,必须建立经过验证的设计管道作为平台,以确保候选治疗药物满足快速周转的安全性和有效性要求第三,必须建立小批量GMP生产能力,允许以可预测的成本重复生产指南、编辑和交付系统。最后,必须发展报销机制,承认这些程序在医学上是必要的,有明确的编码,医疗补助或公共付款人的覆盖范围,以及公平的获取框架。一旦公共支付者采用这些干预措施,瓶颈将从保险审批转移到平台能力以及并行设计、制造和提供针对患者的治疗方法的能力。从概念上讲,个性化基因组编辑还需要重新定义干预措施的感知方式。传统疗法被视为一种治疗方法:大规模生产的产品针对大量人群进行了优化。个性化基因编辑更像是一种干预,类似于外科手术。临床工作流程包括诊断检查、计算设计、介入管理和纵向监测。在尿素循环紊乱中,碱基编辑可以与酶替代、清道夫疗法或移植进行比较。在神经肌肉疾病中,反义寡核苷酸可以与基因替代或体外细胞治疗相权衡。这种框架强调了基因组编辑的程序性质,并将其定位于介入医学而不是药物分配。这种思维的自然演变是干预性遗传诊所的发展,基因组编辑成为前沿学科的专业中心。与专注于诊断和咨询的传统遗传学诊所不同,这些单位的功能类似于介入心脏病学套房,配备了直接执行遗传程序的设备。介入遗传学家将接受培训,提供基于crispr的编辑、碱基或引物编辑、基因替代疗法和寡核苷酸调节剂。诊所将在统一治理下整合先进的诊断、人工智能驱动的设计、接近gmp的制造和长期随访。出生时确定的患者可以直接转诊进行干预,将个性化基因组编辑嵌入标准的连续护理中,并使获取民主化。数据共享对于推动可伸缩性也至关重要。没有可互操作的临床和基因组数据基础设施,每个病例的风险仍然是轶事。联邦注册中心和统一的检测标准将需要将N-of-1经验转化为群体水平的证据10(图1)。与传统的将群体汇总数据外推到个体的模型相比,自下而上的模型可以随后部署,以学习患者优化疗法并推广到更大的队列。这将使监管机构能够评估平台,临床医生能够验证安全性,支付方能够证明报销的合理性。长期患者登记对于监测持久性、免疫反应和迟发性安全问题也至关重要。综上所述,这些发展表明制药价值链发生了更广泛的转变。传统的药物开发是以人群为基础的、线性的和以产品为中心的。个性化基因组编辑是病人至上、模块化、服务化的。对于工业来说,这需要模块化平台和灵活的GMP能力。对于监管机构来说,它需要新的框架来评估平台,而不是孤立的产品。对于临床医生来说,它需要积极参与诊断、干预、监测和数据贡献。精准医疗将改变价值链,临床医生不能做旁观者。她们的参与将决定这些疗法能否成功地成为主流护理的一部分,以及获取是否公平。总之,使用个性化体内基因编辑疗法治疗婴儿KJ是一项里程碑式的成就,证明了个性化干预措施将患者从致命轨迹中拯救出来的可行性。对于临床医生来说,信息是明确的:个性化基因组编辑不再是猜测,而是一种新兴的治疗现实。 医院和护理团队通过新生儿测序、介入临床开发、标准化协议和联合数据基础设施,为未来做好准备,将站在提供改变生命疗法的最前沿。现在的挑战是将单一的成功转化为可持续的系统,可以为所有有需要的患者提供服务,重新定义医学,从使用通用药物治疗疾病到将直接遗传干预作为护理的标准组成部分。作者是丹纳赫公司的雇员。Sadik H. Kassim也是一名科学顾问,并持有以下基因医药公司的股权:Aurora Bio、Koi Bio、nChroma Bio和Profluent。
{"title":"Making the impossible possible: Baby KJ and the road map to personalized gene-editing care","authors":"Vanessa Almendro, Sadik H. Kassim","doi":"10.1002/ctm2.70515","DOIUrl":"10.1002/ctm2.70515","url":null,"abstract":"<p>Personalized gene editing is rapidly transitioning from concept to clinical practice, marking one of the most significant shifts in contemporary medicine. Over the past decade, the field has advanced from preclinical proof-of-concept experiments to the first real-world demonstrations of patient-specific, clinically administered genome-editing therapies. In 2025, this progress culminated in the widely publicized case of “Baby KJ,” a child treated with a bespoke in vivo base-editing therapy for carbamoyl phosphate synthetase 1 (CPS1) deficiency. This case not only represents a remarkable scientific achievement but also a pivotal clinical milestone, demonstrating that individualized genome editing can be safely and effectively deployed in urgent, life-threatening conditions.<span><sup>1</sup></span> For clinicians, this case highlights the arrival of a new therapeutic modality with profound implications for diagnosis, care delivery and long-term disease management in rare genetic disorders.</p><p>Carbamoyl phosphate synthetase 1 deficiency is among the most severe urea cycle disorders, typically presenting in the neonatal period with hyperammonemia, neurological compromise and rapid progression to death without liver transplantation. Traditional management relies on dietary restriction, ammonia scavengers and transplantation, but these interventions are palliative or carry high risk rather than curative potential.<span><sup>2</sup></span> In Baby KJ's case, rapid genomic diagnosis revealed a pathogenic single-nucleotide mutation in the CPS1 gene that was directly amenable to correction through base editing. A multidisciplinary team of clinicians, geneticists and regulatory experts designed an individualized therapy using messenger RNA encoding a base editor and a customized guide RNA, packaged within lipid nanoparticles optimized for liver delivery. The therapeutic rationale was straightforward but powerful: directly correct the underlying mutation in hepatocytes to restore enzyme function, thereby normalizing nitrogen metabolism and preventing further neurotoxic crises.<span><sup>1</sup></span></p><p>The treatment journey underscored the complexities of developing personalized medicines. Patient-specific preclinical assays and genotoxicity evaluations were required within weeks, while cGMP manufacturing for a novel formulation had to be rapidly optimized. Regulatory authorities worked under an emergency investigational new drug framework, allowing expedited review and authorization.<span><sup>1</sup></span> The therapy was delivered through multiple infusions at a critical point when the patient faced imminent metabolic decompensation. Clinicians monitored metabolic parameters, liver enzymes and developmental milestones, while also conducting detailed genomic assays to confirm on-target editing and rule out off-target events.</p><p>The reported outcomes were encouraging. Following treatment, the patient achieved improved metabolic stability, red","PeriodicalId":10189,"journal":{"name":"Clinical and Translational Medicine","volume":"15 11","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctm2.70515","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145400091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Louise Marie Voetmann, Bidda Rolin, Rikke Kaae Kirk, Lotte Bjerre Knudsen, Myrte Merkestein, Jonas Ahnfelt-Rønne, Anne Louise Kodal, Carsten Jessen, Asli Ozen, Charles Pyke, Axel Kornerup Hansen