Ayushi Singh, Sanjay K. S. Patel, Ajit Varma, Manabendra Mandal, Shalini Porwal
Tannery effluent waste comprises various potentially toxic metals, including chromium (Cr) with varying acute or chronic toxicity. Cr(VI) is known to be a category-A carcinogen. Reduction of toxic Cr(VI) to Cr(III), which has lesser bioavailability, is one of the mechanisms used by many microbes to withstand Cr(VI) toxicity in the contaminated effluents. Oxidoreductase (OXRs) reduces toxic Cr(VI) to Cr(III); hence a thorough understanding of the OXRs is important for developing a suitable strategy to minimize Cr(VI) toxicity. Therefore, the OXR-encoding genes were sequenced using metagenomic DNA shotgun sequencing from the tannery effluent-contaminated soil. Six OXR-encoding genes were expressed in Escherichia coli, and OXR activity was confirmed by in situ quantitative assays. The six proteins were subjected to phylogenetic and evolutionary analysis. Further, detailed structural analysis of the two OXRs, namely, OXR3 and OXR8 with lowest and highest activity respectively, were investigated in silico for structural characteristics. The results revealed that both the proteins were soluble FMN-linked oxidoreductases. Eight conserved active site residues (Pro24, Thr26, Ala59, Tyr139, His178, Tyr180, His219, Tyr221, Arg269, and Lys360) in the enzyme OXR3 were predicted. Similarly, nine conserved active site residues (Pro20, Thr22, Ala55, Glu97, His191, Tyr193, Arg241, Cys334, and Arg335) were predicted in OXR8. The tertiary structure of OXR8 was an aldolase TIM barrel structure, like Thermus scotoductus chromate reductase. Docking with FMN revealed the involvement of all the nine predicted active site residues in FMN binding with Pro20, Thr22, and Cys334 as the most important ones.
{"title":"In silico analysis of chromium-reducing OXR genes derived from tannery effluent-contaminated soil metagenome","authors":"Ayushi Singh, Sanjay K. S. Patel, Ajit Varma, Manabendra Mandal, Shalini Porwal","doi":"10.1002/clen.202300345","DOIUrl":"10.1002/clen.202300345","url":null,"abstract":"<p>Tannery effluent waste comprises various potentially toxic metals, including chromium (Cr) with varying acute or chronic toxicity. Cr(VI) is known to be a category-A carcinogen. Reduction of toxic Cr(VI) to Cr(III), which has lesser bioavailability, is one of the mechanisms used by many microbes to withstand Cr(VI) toxicity in the contaminated effluents. Oxidoreductase (OXRs) reduces toxic Cr(VI) to Cr(III); hence a thorough understanding of the OXRs is important for developing a suitable strategy to minimize Cr(VI) toxicity. Therefore, the OXR-encoding genes were sequenced using metagenomic DNA shotgun sequencing from the tannery effluent-contaminated soil. Six OXR-encoding genes were expressed in <i>Escherichia coli</i>, and OXR activity was confirmed by in situ quantitative assays. The six proteins were subjected to phylogenetic and evolutionary analysis. Further, detailed structural analysis of the two OXRs, namely, OXR3 and OXR8 with lowest and highest activity respectively, were investigated in silico for structural characteristics. The results revealed that both the proteins were soluble FMN-linked oxidoreductases. Eight conserved active site residues (Pro24, Thr26, Ala59, Tyr139, His178, Tyr180, His219, Tyr221, Arg269, and Lys360) in the enzyme OXR3 were predicted. Similarly, nine conserved active site residues (Pro20, Thr22, Ala55, Glu97, His191, Tyr193, Arg241, Cys334, and Arg335) were predicted in OXR8. The tertiary structure of OXR8 was an aldolase TIM barrel structure, like <i>Thermus scotoductus</i> chromate reductase. Docking with FMN revealed the involvement of all the nine predicted active site residues in FMN binding with Pro20, Thr22, and Cys334 as the most important ones.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139955177","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Divyanshu Sikarwar, Yasser Bashir, Neha Sharma, Almeenu Rasheed, Sovik Das
Industrial water pollution originating from various industries like textile, dairy, oil, and petrochemical industries, etc. is a huge concern globally and has led to devastating effects on the environment due to the release of refractory emerging contaminants (ECs). These ECs of concern have attracted wide devotion from the scientific community due to their recalcitrant nature and disastrous effects on plants, aquatic life forms, and humans. In this regard, conventional wastewater treatment technologies such as coagulation, flocculation, membrane technologies, electrocoagulation, and other biological technologies like sequencing batch reactor, anaerobic up-flow sludge blanket reactor, etc., are inefficient in removing ECs from the industrial effluent, while conventional advanced oxidation processes incur high cost due to the extensive requirement of energy for the degradation of ECs. To overcome this issue, microbial electrochemical technologies (METs) can be employed. For instance, METs have shown promising results in the degradation of various ECs, such as microbial fuel cells, which have shown nearly 92% to 98% removal of sulfamethoxazole with simultaneous power recovery. Alizarin yellow R, nitrobenzene, and Congo red were degraded by microbial electrolysis cells with removal efficiency in the range of 88% to 98%, demonstrating their superiority in the elimination of trace contaminants. Similarly, almost 100% mineralization of pyraclostrobin was noticed for the bio-electro-Fenton process, showing the elevated potential of these neoteric technologies for the remediation of recalcitrant pollutants. Thus, the current review article aims to critically analyze the intervention of METs for the elimination of ECs from industrial wastewater.
{"title":"Critical perspective on the elimination of emerging contaminants from industrial wastewater via microbial electrochemical technologies","authors":"Divyanshu Sikarwar, Yasser Bashir, Neha Sharma, Almeenu Rasheed, Sovik Das","doi":"10.1002/clen.202300346","DOIUrl":"10.1002/clen.202300346","url":null,"abstract":"<p>Industrial water pollution originating from various industries like textile, dairy, oil, and petrochemical industries, etc. is a huge concern globally and has led to devastating effects on the environment due to the release of refractory emerging contaminants (ECs). These ECs of concern have attracted wide devotion from the scientific community due to their recalcitrant nature and disastrous effects on plants, aquatic life forms, and humans. In this regard, conventional wastewater treatment technologies such as coagulation, flocculation, membrane technologies, electrocoagulation, and other biological technologies like sequencing batch reactor, anaerobic up-flow sludge blanket reactor, etc., are inefficient in removing ECs from the industrial effluent, while conventional advanced oxidation processes incur high cost due to the extensive requirement of energy for the degradation of ECs. To overcome this issue, microbial electrochemical technologies (METs) can be employed. For instance, METs have shown promising results in the degradation of various ECs, such as microbial fuel cells, which have shown nearly 92% to 98% removal of sulfamethoxazole with simultaneous power recovery. Alizarin yellow R, nitrobenzene, and Congo red were degraded by microbial electrolysis cells with removal efficiency in the range of 88% to 98%, demonstrating their superiority in the elimination of trace contaminants. Similarly, almost 100% mineralization of pyraclostrobin was noticed for the bio-electro-Fenton process, showing the elevated potential of these neoteric technologies for the remediation of recalcitrant pollutants. Thus, the current review article aims to critically analyze the intervention of METs for the elimination of ECs from industrial wastewater.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139955329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Masthead: Clean Soil Air Water. 2/2024","authors":"","doi":"10.1002/clen.202470022","DOIUrl":"https://doi.org/10.1002/clen.202470022","url":null,"abstract":"","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 2","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/clen.202470022","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139937358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
During the period 2019–2020, size-segregated aerosol samples containing elemental and organic carbon (EC and OC) were investigated. These samples were collected weekly using an eight-stage cascade impactor from an urban site located at Aksaray University, Aksaray. The quantification of EC and OC was carried out through a thermal-optical transmission device. The results revealed consistent size distribution attributes of EC and OC between winter and summer. Although EC accounted for an insignificant percentage (4.4%) of particulate matter (PM) in the PM9.0–10.0 fraction during winter, a more substantial portion of OC in the same fraction (13.4%) comprised EC. Seasonal variations were distinct for EC but not significant for OC. Strong correlations between OC and EC were observed in coarse particle fractions, indicating a common source, with weaker correlations in fine particles. The highest OC/EC ratio was in the PM0.43–0.65 fraction, followed by PM2.1–3.3. The ratio of OC to EC in fine PM exceeded the threshold of 15 consistently. The observation indicates that as particle size increases, there is a noticeable decline in the OC to EC ratios. Secondary organic aerosols (SOA) accounted for 60.8% (winter) and 89.8% (summer) of OC values, emphasizing the substantial impact of SOA on Aksaray's atmosphere. Both seasons exhibited a multimodal distribution of ambient OC. In winter, the EC distribution was dominated by fine particles, with a bimodal pattern (PM1.1–2.1 and PM0.43–0.65 peaks). Common pollutant sources, including traffic emissions, road dust, biogenic emissions, and coal combustion, were identified for both seasons in coarse and fine particle fractions. These findings underscore the importance of emission control strategies targeting fine PM in Aksaray.
{"title":"Temporal dynamics, meteorological effects, secondary organic aerosol estimation, and source identification of size-segregated carbonaceous aerosols","authors":"Burçak Tarhan, Ebru Koçak","doi":"10.1002/clen.202300095","DOIUrl":"10.1002/clen.202300095","url":null,"abstract":"<p>During the period 2019–2020, size-segregated aerosol samples containing elemental and organic carbon (EC and OC) were investigated. These samples were collected weekly using an eight-stage cascade impactor from an urban site located at Aksaray University, Aksaray. The quantification of EC and OC was carried out through a thermal-optical transmission device. The results revealed consistent size distribution attributes of EC and OC between winter and summer. Although EC accounted for an insignificant percentage (4.4%) of particulate matter (PM) in the PM<sub>9.0–10.0</sub> fraction during winter, a more substantial portion of OC in the same fraction (13.4%) comprised EC. Seasonal variations were distinct for EC but not significant for OC. Strong correlations between OC and EC were observed in coarse particle fractions, indicating a common source, with weaker correlations in fine particles. The highest OC/EC ratio was in the PM<sub>0.43–0.65</sub> fraction, followed by PM<sub>2.1–3.3</sub>. The ratio of OC to EC in fine PM exceeded the threshold of 15 consistently. The observation indicates that as particle size increases, there is a noticeable decline in the OC to EC ratios. Secondary organic aerosols (SOA) accounted for 60.8% (winter) and 89.8% (summer) of OC values, emphasizing the substantial impact of SOA on Aksaray's atmosphere. Both seasons exhibited a multimodal distribution of ambient OC. In winter, the EC distribution was dominated by fine particles, with a bimodal pattern (PM<sub>1.1–2.1</sub> and PM<sub>0.43–0.65</sub> peaks). Common pollutant sources, including traffic emissions, road dust, biogenic emissions, and coal combustion, were identified for both seasons in coarse and fine particle fractions. These findings underscore the importance of emission control strategies targeting fine PM in Aksaray.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 4","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139955331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ozan Eskikaya, Pinar Belibagli, Raouf Bouchareb, Zelal Isik, Nadir Dizge
Waste motor oil (WMO), which has no stable form or structure, causes major environmental problems and damage to the ecosystem once it is disposed to the environment. Because of the high toxicity of contents in such effluent, it must be treated before being discharged into the receiving environment. In recent years, the valorization and the use of waste materials to remove toxic pollutants is of great importance to researchers and diverse industries. In this study, the usability of waste welding powder (WWP) as an adsorbent for waste oil removal was investigated. For this purpose, investigating the usability of material, which is generated as industrial waste, in wastewater treatment will lead to the evaluation of waste. The effects of temperature, pH, WWP amount, and initial WMO amount were investigated. According to the adsorption studies, 1 g WWP/L of the processed adsorbent was able to effectively remove 95.05% of WMO (100 mg) at a pH of 2 at 30°C. Stereo microscopy images showed a large amount of oil adsorbed on the WWP surface. The different WWP properties were determined by adsorption isotherm (Harkins–Jura), kinetic (pseudo-second order), and thermodynamic (ΔG: −5.1 kJ mol–1) experiments. It is thought that WWP, which is a low-cost and waste material, can be used as a promising adsorbent in WMO removal.
{"title":"Use of welding powder as a low-cost adsorbent for waste motor oil removal","authors":"Ozan Eskikaya, Pinar Belibagli, Raouf Bouchareb, Zelal Isik, Nadir Dizge","doi":"10.1002/clen.202300083","DOIUrl":"10.1002/clen.202300083","url":null,"abstract":"<p>Waste motor oil (WMO), which has no stable form or structure, causes major environmental problems and damage to the ecosystem once it is disposed to the environment. Because of the high toxicity of contents in such effluent, it must be treated before being discharged into the receiving environment. In recent years, the valorization and the use of waste materials to remove toxic pollutants is of great importance to researchers and diverse industries. In this study, the usability of waste welding powder (WWP) as an adsorbent for waste oil removal was investigated. For this purpose, investigating the usability of material, which is generated as industrial waste, in wastewater treatment will lead to the evaluation of waste. The effects of temperature, pH, WWP amount, and initial WMO amount were investigated. According to the adsorption studies, 1 g WWP/L of the processed adsorbent was able to effectively remove 95.05% of WMO (100 mg) at a pH of 2 at 30°C. Stereo microscopy images showed a large amount of oil adsorbed on the WWP surface. The different WWP properties were determined by adsorption isotherm (Harkins–Jura), kinetic (pseudo-second order), and thermodynamic (Δ<i>G</i>: −5.1 kJ mol<sup>–1</sup>) experiments. It is thought that WWP, which is a low-cost and waste material, can be used as a promising adsorbent in WMO removal.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139955180","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The increasing drought due to climate change poses a threat to issues such as safe and accessible drinking water, food safety, and protection from diseases. The provision of water supply is vital for agricultural and livestock activities, which are commonly practiced around natural ore deposits. Examining traditional “irrigation water quality” methods alone is insufficient; investigating potentially toxic metal content in the region's waters is vital, especially around metallic ore deposits. This study focused on the Kiraz district in Turkey, known for its agricultural activities, to assess the impact of geogenic water pollution on irrigation water quality and its implications for food safety and human health. Geology determines nutrient availability, water resources, and land suitability for agriculture. Conventional irrigation water quality parameters indicate groundwater suitability for irrigation in the study area, considering Na%, sodium adsorption ratio, residual sodium carbonate, permeability index, Kelly ratio, magnesium hazard, and potential salinity. However, when examining the potential toxic metal content in the region, it was determined that the values of Al ranged from 96 to 8676 ppb, Ni values ranged from 27 to 360 ppb, and Sb concentrations varied between 9 and 53 432 ppb. Utilizing geogenically contaminated water for irrigation and its indiscriminate use in livestock, dairy, and food industries can lead to foodborne illnesses (cancer, endocrine disruptors, tuberculosis, antimony spots, thyroid tumors, goiter, neurologic and cardiovascular diseases) that endanger human health. The use of low-quality water throughout the agricultural sector and food production chain increases food safety risks.
{"title":"Hydrogeochemical investigation of irrigation water in the vicinity of metallic ore deposits in Kiraz-İzmir, Turkey: Understanding the crucial nexus between “geology and food safety”","authors":"Melis Somay-Altas","doi":"10.1002/clen.202300195","DOIUrl":"10.1002/clen.202300195","url":null,"abstract":"<p>The increasing drought due to climate change poses a threat to issues such as safe and accessible drinking water, food safety, and protection from diseases. The provision of water supply is vital for agricultural and livestock activities, which are commonly practiced around natural ore deposits. Examining traditional “irrigation water quality” methods alone is insufficient; investigating potentially toxic metal content in the region's waters is vital, especially around metallic ore deposits. This study focused on the Kiraz district in Turkey, known for its agricultural activities, to assess the impact of geogenic water pollution on irrigation water quality and its implications for food safety and human health. Geology determines nutrient availability, water resources, and land suitability for agriculture. Conventional irrigation water quality parameters indicate groundwater suitability for irrigation in the study area, considering Na%, sodium adsorption ratio, residual sodium carbonate, permeability index, Kelly ratio, magnesium hazard, and potential salinity. However, when examining the potential toxic metal content in the region, it was determined that the values of Al ranged from 96 to 8676 ppb, Ni values ranged from 27 to 360 ppb, and Sb concentrations varied between 9 and 53 432 ppb. Utilizing geogenically contaminated water for irrigation and its indiscriminate use in livestock, dairy, and food industries can lead to foodborne illnesses (cancer, endocrine disruptors, tuberculosis, antimony spots, thyroid tumors, goiter, neurologic and cardiovascular diseases) that endanger human health. The use of low-quality water throughout the agricultural sector and food production chain increases food safety risks.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/clen.202300195","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139769918","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The impact of sodium dodecyl sulfate (SDS, as model linear anionic surfactant) dosage on overall nitrogen removal performance of anammox reactor alongside its microbial population and sludge properties was investigated. In this study (day 136), an anmmox sequencing batch biofilm reactor was subjected to gradual dosage of SDS from 0 to 20 mg L−1. Intriguingly, results revealed that SDS at ≥7.5 mg L−1 prompted sludge disintegration, evidenced by increased protein and polysaccharide content in the effluent. Nevertheless, reactor's average total nitrogen removal efficiency slightly improved from 83.12% (0 mg L−1) to 86.3% (20 mg L−1). The 16S rRNA gene sequencing revealed that SDS dosing significantly suppressed the unwanted and unavoidable nitrite oxidizing bacteria (NOBs) in the reactor as the abundance of genus Nitrospira declined from 40.68% (day 1) to 19.15% (day 136). The abundance of anammox genus Candidatus Kuenenia significantly improved from 1.86% (day 1) to 40.02% (day 136) as a result of NOB suppression. This study revealed that low concentration of surfactants in wastewater does not affect the anammox bacteria in a biofilm reactor. Furthermore, adding low concentrations of SDS (≥7.5 to 20 mg L−1) to wastewater may effectively suppress notorious NOBs in biofilm-based anammox systems.
{"title":"Effect of linear anionic surfactant (sodium dodecyl sulfate) dosage on nitrogen removal performance of an anammox reactor","authors":"Shelly Verma, Ehkamul Haq, Achlesh Daverey","doi":"10.1002/clen.202300226","DOIUrl":"10.1002/clen.202300226","url":null,"abstract":"<p>The impact of sodium dodecyl sulfate (SDS, as model linear anionic surfactant) dosage on overall nitrogen removal performance of anammox reactor alongside its microbial population and sludge properties was investigated. In this study (day 136), an anmmox sequencing batch biofilm reactor was subjected to gradual dosage of SDS from 0 to 20 mg L<sup>−1</sup>. Intriguingly, results revealed that SDS at ≥7.5 mg L<sup>−1</sup> prompted sludge disintegration, evidenced by increased protein and polysaccharide content in the effluent. Nevertheless, reactor's average total nitrogen removal efficiency slightly improved from 83.12% (0 mg L<sup>−1</sup>) to 86.3% (20 mg L<sup>−1</sup>). The 16S rRNA gene sequencing revealed that SDS dosing significantly suppressed the unwanted and unavoidable nitrite oxidizing bacteria (NOBs) in the reactor as the abundance of genus <i>Nitrospira</i> declined from 40.68% (day 1) to 19.15% (day 136). The abundance of anammox genus <i>Candidatus</i> Kuenenia significantly improved from 1.86% (day 1) to 40.02% (day 136) as a result of NOB suppression. This study revealed that low concentration of surfactants in wastewater does not affect the anammox bacteria in a biofilm reactor. Furthermore, adding low concentrations of SDS (≥7.5 to 20 mg L<sup>−1</sup>) to wastewater may effectively suppress notorious NOBs in biofilm-based anammox systems.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 12","pages":""},"PeriodicalIF":1.5,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139896418","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Surface water is renowned for its natural organic matter, constituting approximately 45% of total dissolved organic carbon (DOC) which can be removed in water treatment plants. However, residual DOC in water can react with chlorine to form several carcinogenic disinfectant by-products (DBPs). This study aimed to examine the molecular weight of organic fractions dissolved in three different water sources that act as precursors to the formation of DBPs species. The coagulants used were Al- and Fe-based, frequently used in water treatment plants to remove organic fractions. Characterization of DOC in source water served as the first step in determining the performance of both coagulants in terms of organic properties. The results showed that the selected surface waters had similar DOC characteristics, including biopolymers, humic substances, building blocks, and a low molecular weight. These fractions contributed to the formation of trihalomethanes (THMs) and haloacetic acids (HAAs). The Fe-based coagulant was more effective than the Al-based coagulant in removing all organic fractions and reducing THMs compared to HAAs. Furthermore, one-way ANOVA analysis showed a significant difference in the average removal of organic fractions and DBP species between the Fe-based and Al-based coagulants. The Fe-based coagulant showed higher efficiency in removing biopolymers, dibromochloromethane, and chlorodibromoacetic acid than the Al-based coagulant. In contrast, the Al-based coagulant had better performance in reducing dibromo HAA and tribromo HAA. Both coagulants had no significant difference in extracting other organic fractions or DBPs species.
{"title":"Comparison of Fe-based and Al-based coagulants in the removal of organic and disinfection by-product precursors","authors":"Euis Nurul Hidayah, Okik Hendriyanto Cahyonugroho, Rizka Novembrianto, Kindriari Nurma Wahyusi, Endang Srihari","doi":"10.1002/clen.202300177","DOIUrl":"10.1002/clen.202300177","url":null,"abstract":"<p>Surface water is renowned for its natural organic matter, constituting approximately 45% of total dissolved organic carbon (DOC) which can be removed in water treatment plants. However, residual DOC in water can react with chlorine to form several carcinogenic disinfectant by-products (DBPs). This study aimed to examine the molecular weight of organic fractions dissolved in three different water sources that act as precursors to the formation of DBPs species. The coagulants used were Al- and Fe-based, frequently used in water treatment plants to remove organic fractions. Characterization of DOC in source water served as the first step in determining the performance of both coagulants in terms of organic properties. The results showed that the selected surface waters had similar DOC characteristics, including biopolymers, humic substances, building blocks, and a low molecular weight. These fractions contributed to the formation of trihalomethanes (THMs) and haloacetic acids (HAAs). The Fe-based coagulant was more effective than the Al-based coagulant in removing all organic fractions and reducing THMs compared to HAAs. Furthermore, one-way ANOVA analysis showed a significant difference in the average removal of organic fractions and DBP species between the Fe-based and Al-based coagulants. The Fe-based coagulant showed higher efficiency in removing biopolymers, dibromochloromethane, and chlorodibromoacetic acid than the Al-based coagulant. In contrast, the Al-based coagulant had better performance in reducing dibromo HAA and tribromo HAA. Both coagulants had no significant difference in extracting other organic fractions or DBPs species.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139770030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaoyu Luo, Dingzhi Peng, Wenjian Shang, Yu Gu, Qun Luo, Zhongfan Zhu, Bo Pang
Due to human activities, the overabundance of regional nitrogen/phosphorus (N/P) has a huge impact on ecological environment worldwide. It is necessary to comprehensively understand the human-induced N/P input and spatiotemporal variations of nutrients in a river. As the adjustment to the spatial structure of Beijing, the Beijing's subcenter is an important strategic position in promoting the coordinated development of Beijing–Tianjin–Hebei. In this study, the dynamic changes of ammonia nitrogen (NH3-N) and total phosphorus (TP) from 2012 to 2022 were analyzed, then the net anthropogenic N input (NANI) and net anthropogenic P input (NAPI) was estimated in the Beijing's subcenter. The results showed that both NH3-N and TP had an overall downward trend with a three-stage pattern. The NANI and NAPI declined from 5.68 × 104 and 0.95 × 104 to 0.78 × 104 and 0.15 × 104 kg km−2 per year, respectively. The chemical fertilizers input accounted for the largest part at 53–81% of NANI and 49–80% of NAPI. There were high values of N and P input in the southeast of Tongzhou, and the fluxes of N and P were positively correlated with the input of anthropogenic N and P in the Chaobai River Basin (Tongzhou District) and the Beiyun River Basin (Tongzhou District). This study would provide the foundation for setting priorities and enacting more targeted N/P management strategies in the Beijing's subcenter.
由于人类活动,区域性氮磷(N/P)过剩对全球生态环境造成了巨大影响。有必要全面了解人类活动造成的氮磷输入及河流营养盐的时空变化。作为北京空间结构的调整,北京城市副中心在促进京津冀协同发展中具有重要的战略地位。本研究分析了北京城市副中心 2012 年至 2022 年氨氮(NH3-N)和总磷(TP)的动态变化,并估算了北京城市副中心人为氮净输入量(NANI)和人为磷净输入量(NAPI)。结果表明,NH3-N 和 TP 总体呈下降趋势,且呈三阶段模式。NANI 和 NAPI 分别从每年 5.68 × 104 kg km-2 和 0.95 × 104 kg km-2 下降到 0.78 × 104 kg km-2 和 0.15 × 104 kg km-2 。化肥投入占最大部分,占 NANI 的 53-81%,占 NAPI 的 49-80%。通州东南部的氮、磷输入量较高,潮白河流域(通州区)和北运河流域(通州区)的氮、磷通量与人为氮、磷输入量呈正相关。这项研究将为北京城市副中心确定氮磷管理重点和制定更有针对性的氮磷管理策略奠定基础。
{"title":"Dynamic changes of net anthropogenic nitrogen/phosphorus input and its riverine export in the Beijing's subcenter","authors":"Xiaoyu Luo, Dingzhi Peng, Wenjian Shang, Yu Gu, Qun Luo, Zhongfan Zhu, Bo Pang","doi":"10.1002/clen.202300165","DOIUrl":"10.1002/clen.202300165","url":null,"abstract":"<p>Due to human activities, the overabundance of regional nitrogen/phosphorus (N/P) has a huge impact on ecological environment worldwide. It is necessary to comprehensively understand the human-induced N/P input and spatiotemporal variations of nutrients in a river. As the adjustment to the spatial structure of Beijing, the Beijing's subcenter is an important strategic position in promoting the coordinated development of Beijing–Tianjin–Hebei. In this study, the dynamic changes of ammonia nitrogen (NH<sub>3</sub>-N) and total phosphorus (TP) from 2012 to 2022 were analyzed, then the net anthropogenic N input (NANI) and net anthropogenic P input (NAPI) was estimated in the Beijing's subcenter. The results showed that both NH<sub>3</sub>-N and TP had an overall downward trend with a three-stage pattern. The NANI and NAPI declined from 5.68 × 10<sup>4</sup> and 0.95 × 10<sup>4</sup> to 0.78 × 10<sup>4</sup> and 0.15 × 10<sup>4</sup> kg km<sup>−2</sup> per year, respectively. The chemical fertilizers input accounted for the largest part at 53–81% of NANI and 49–80% of NAPI. There were high values of N and P input in the southeast of Tongzhou, and the fluxes of N and P were positively correlated with the input of anthropogenic N and P in the Chaobai River Basin (Tongzhou District) and the Beiyun River Basin (Tongzhou District). This study would provide the foundation for setting priorities and enacting more targeted N/P management strategies in the Beijing's subcenter.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139666181","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xiaocong Chen, Yixin Sun, Zhihua Feng, Changkao Mu, Tao Zhang
Portunus trituberculatus is important in coastal benthic communities and a favorite seafood for coastal residents. However, microplastics have been detected in different tissues of P. trituberculatus, but the toxicological effects of micro- and nanoplastics (MNPs) on the different tissues of P. trituberculatus have not been reported. We found that the lethal effect of MNPs on P. trituberculatus is not obvious, but they can stimulate the body's stress response. The responses of P. trituberculatus tissues to MNPs are different, which may be due to differences in enzyme reactions between tissues and organs. Compared with microplastics (MPs), nanoplastics (NPs) have a more significant physiological and metabolic stress effect on P. trituberculatus because of their smaller particle size. In summary, plastic particles have physiological stress effects on the physiological metabolism of P. trituberculatus, which may be closely related to the plastic's particle size and concentration.
{"title":"Effects of micro- and nanoplastics on the physiology and metabolism of Portunus trituberculatus","authors":"Xiaocong Chen, Yixin Sun, Zhihua Feng, Changkao Mu, Tao Zhang","doi":"10.1002/clen.202300175","DOIUrl":"10.1002/clen.202300175","url":null,"abstract":"<p><i>Portunus trituberculatus</i> is important in coastal benthic communities and a favorite seafood for coastal residents. However, microplastics have been detected in different tissues of <i>P. trituberculatus</i>, but the toxicological effects of micro- and nanoplastics (MNPs) on the different tissues of <i>P. trituberculatus</i> have not been reported. We found that the lethal effect of MNPs on <i>P. trituberculatus</i> is not obvious, but they can stimulate the body's stress response. The responses of <i>P. trituberculatus</i> tissues to MNPs are different, which may be due to differences in enzyme reactions between tissues and organs. Compared with microplastics (MPs), nanoplastics (NPs) have a more significant physiological and metabolic stress effect on <i>P. trituberculatus</i> because of their smaller particle size. In summary, plastic particles have physiological stress effects on the physiological metabolism of <i>P. trituberculatus</i>, which may be closely related to the plastic's particle size and concentration.</p>","PeriodicalId":10306,"journal":{"name":"Clean-soil Air Water","volume":"52 3","pages":""},"PeriodicalIF":1.7,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139666185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}