The objective of this project is to compare the results of the same study carried out on NONMEM and nlmixr2. This analysis consists of evaluating previously published population pharmacokinetic models of gentamicin and tobramycin in our population of interest with sparse concentrations. A literature review was performed to determine the gentamicin and tobramycin models in critically ill adult patients. In parallel, gentamicin and tobramycin dosing data, information on the treatment, the patient, and the bacteria were collected retrospectively in 2 Quebec establishments. The external evaluations were previously performed using NONMEM Version 7.5. Model equations were rewritten with R, and external evaluations were performed using nlmixr2. Predictive performance was assessed based on the estimation of bias and imprecision of the prediction error for maximum a posteriori (MAP) Bayesian PK parameter and observed concentrations. Comparison between nlmixr2 and NONMEM was performed on 4 gentamicin and 3 tobramycin population pharmacokinetic models. Compared to NONMEM, for gentamicin and tobramycin clearance and central volume of distribution, nlmixr2 produced individual pharmacokinetic parameters with bias values ranging from −32.5% to 5.67% and imprecision values ranging from 6.33% to 32.5%. Despite these differences, population bias and imprecision for sparse concentrations were low and ranged from 0% to 5.3% and 0.2% to 6.5%, respectively. The external evaluations performed with both software packages resulted in the same interpretation in terms of population predictive performance for all 7 models. Nlmxir2 showed comparable predictive performance with NONMEM with sparse concentrations that are, at most, sampled twice within a single dose administration (peak and trough).
{"title":"Nlmixr2 Versus NONMEM: An Evaluation of Maximum A Posteriori Bayesian Estimates Following External Evaluation of Gentamicin and Tobramycin Population Pharmacokinetic Models","authors":"Alexandre Duong, Amélie Marsot","doi":"10.1002/cpdd.1395","DOIUrl":"10.1002/cpdd.1395","url":null,"abstract":"<p>The objective of this project is to compare the results of the same study carried out on NONMEM and nlmixr2. This analysis consists of evaluating previously published population pharmacokinetic models of gentamicin and tobramycin in our population of interest with sparse concentrations. A literature review was performed to determine the gentamicin and tobramycin models in critically ill adult patients. In parallel, gentamicin and tobramycin dosing data, information on the treatment, the patient, and the bacteria were collected retrospectively in 2 Quebec establishments. The external evaluations were previously performed using NONMEM Version 7.5. Model equations were rewritten with R, and external evaluations were performed using nlmixr2. Predictive performance was assessed based on the estimation of bias and imprecision of the prediction error for maximum a posteriori (MAP) Bayesian PK parameter and observed concentrations. Comparison between nlmixr2 and NONMEM was performed on 4 gentamicin and 3 tobramycin population pharmacokinetic models. Compared to NONMEM, for gentamicin and tobramycin clearance and central volume of distribution, nlmixr2 produced individual pharmacokinetic parameters with bias values ranging from −32.5% to 5.67% and imprecision values ranging from 6.33% to 32.5%. Despite these differences, population bias and imprecision for sparse concentrations were low and ranged from 0% to 5.3% and 0.2% to 6.5%, respectively. The external evaluations performed with both software packages resulted in the same interpretation in terms of population predictive performance for all 7 models. Nlmxir2 showed comparable predictive performance with NONMEM with sparse concentrations that are, at most, sampled twice within a single dose administration (peak and trough).</p>","PeriodicalId":10495,"journal":{"name":"Clinical Pharmacology in Drug Development","volume":"13 7","pages":"739-747"},"PeriodicalIF":1.5,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpdd.1395","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140093554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Borje Darpo, Kalvin Connor, Christopher H. Cabell, John S. Grundy
Etrasimod is an investigational, once-daily, oral, selective sphingosine 1-phosphate receptor 1,4,5 modulator used as an oral treatment option for immune-mediated inflammatory disorders. This randomized, double-blind, placebo- and positive-controlled, parallel-group, healthy adult study investigated etrasimod's effect on the QT interval and other electrocardiogram parameters. All participants received etrasimod-matched placebo on day 1. Group A received once-daily, multiple ascending doses of etrasimod (2-4 mg) on days 1-14 and moxifloxacin-matched placebo on days 1 and 15. Group B received etrasimod-matched placebo on days 1-14 and either moxifloxacin 400 mg or moxifloxacin-matched placebo on days 1 and 15. The primary analysis was a concentration-QTc analysis using a corrected QT interval by Fridericia (QTcF). The etrasimod concentration-QTc analysis predicted placebo-corrected change from baseline QTcF (ΔΔQTcF) values and associated 90% confidence intervals remained <10 milliseconds over the observed etrasimod plasma concentration range (≤279 ng/mL). Etrasimod was associated with mild, transient, asymptomatic heart rate slowing that was most pronounced on day 1 (2 mg, first dose). The largest-by-time point mean placebo-corrected changes in heart rate from time-matched day −1 baseline (∆∆HR) on days 1, 7 (2 mg, last dose), and 14 (4 mg, last dose) were −15.1, −8.5, and −6.0 bpm, respectively. Etrasimod's effects on PR interval were small, with the largest least squares mean placebo-corrected change from baseline in PR interval (∆∆PR) being 6.6 milliseconds. No episodes of atrioventricular block were observed. Thus, multiple ascending doses of etrasimod were not associated with clinically relevant QT/QTc effects in healthy adults and only had a mild, transient, and asymptomatic impact on heart rate.
{"title":"Cardiovascular Evaluation of Etrasimod, a Selective Sphingosine 1-phosphate Receptor Modulator, in Healthy Adults: Results of a Randomized, Thorough QT/QTc Study","authors":"Borje Darpo, Kalvin Connor, Christopher H. Cabell, John S. Grundy","doi":"10.1002/cpdd.1388","DOIUrl":"10.1002/cpdd.1388","url":null,"abstract":"<p>Etrasimod is an investigational, once-daily, oral, selective sphingosine 1-phosphate receptor 1,4,5 modulator used as an oral treatment option for immune-mediated inflammatory disorders. This randomized, double-blind, placebo- and positive-controlled, parallel-group, healthy adult study investigated etrasimod's effect on the QT interval and other electrocardiogram parameters. All participants received etrasimod-matched placebo on day 1. Group A received once-daily, multiple ascending doses of etrasimod (2-4 mg) on days 1-14 and moxifloxacin-matched placebo on days 1 and 15. Group B received etrasimod-matched placebo on days 1-14 and either moxifloxacin 400 mg or moxifloxacin-matched placebo on days 1 and 15. The primary analysis was a concentration-QTc analysis using a corrected QT interval by Fridericia (QTcF). The etrasimod concentration-QTc analysis predicted placebo-corrected change from baseline QTcF (ΔΔQTcF) values and associated 90% confidence intervals remained <10 milliseconds over the observed etrasimod plasma concentration range (≤279 ng/mL). Etrasimod was associated with mild, transient, asymptomatic heart rate slowing that was most pronounced on day 1 (2 mg, first dose). The largest-by-time point mean placebo-corrected changes in heart rate from time-matched day −1 baseline (∆∆HR) on days 1, 7 (2 mg, last dose), and 14 (4 mg, last dose) were −15.1, −8.5, and −6.0 bpm, respectively. Etrasimod's effects on PR interval were small, with the largest least squares mean placebo-corrected change from baseline in PR interval (∆∆PR) being 6.6 milliseconds. No episodes of atrioventricular block were observed. Thus, multiple ascending doses of etrasimod were not associated with clinically relevant QT/QTc effects in healthy adults and only had a mild, transient, and asymptomatic impact on heart rate.</p>","PeriodicalId":10495,"journal":{"name":"Clinical Pharmacology in Drug Development","volume":"13 4","pages":"326-340"},"PeriodicalIF":2.0,"publicationDate":"2024-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140027593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sotorasib is a small molecule that irreversibly inhibits the Kirsten rat sarcoma viral oncogene homolog (KRAS) protein with a G12C amino acid substitution mutant protein. The impact of cytochrome P450 (CYP) 3A4 inhibition and induction on sotorasib pharmacokinetics (PKs) was evaluated in 2 separate studies in healthy volunteers (N = 14/study). The impact of CYP3A4 inhibition was interrogated utilizing repeat doses of 200 mg of itraconazole, a strong CYP3A4 inhibitor, on 360 mg of sotorasib PKs. The impact of CYP3A4 induction was interrogated utilizing multiple doses of 600 mg of rifampin, a strong CYP3A4 inducer. Additionally, the impact of organic anion transporting polypeptide (OATP) 1B1/3 inhibition on 960 mg of sotorasib PKs was interrogated after a single dose of 600 mg of rifampin. CYP3A4 inhibition did not significantly impact sotorasib Cmax but did lead to a 26% increase in sotorasib AUCinf. CYP3A4 induction decreased sotorasib Cmax by 35% and AUCinf by 51%. OATP1B1/3 inhibition decreased sotorasib Cmax and AUCinf by 16% and 23%, respectively. These results support that sotorasib can be given together with strong CYP3A4 and OATP1B1/3 inhibitors but the co-administration of sotorasib and strong CYP3A4 inducers should be avoided.
{"title":"Effect of Strong CYP3A4 Inhibition, CYP3A4 Induction, and OATP1B1/3 Inhibition on the Pharmacokinetics of a Single Oral Dose of Sotorasib","authors":"Panli Cardona, Sandeep Dutta, Brett Houk","doi":"10.1002/cpdd.1392","DOIUrl":"10.1002/cpdd.1392","url":null,"abstract":"<p>Sotorasib is a small molecule that irreversibly inhibits the Kirsten rat sarcoma viral oncogene homolog (KRAS) protein with a G12C amino acid substitution mutant protein. The impact of cytochrome P450 (CYP) 3A4 inhibition and induction on sotorasib pharmacokinetics (PKs) was evaluated in 2 separate studies in healthy volunteers (N = 14/study). The impact of CYP3A4 inhibition was interrogated utilizing repeat doses of 200 mg of itraconazole, a strong CYP3A4 inhibitor, on 360 mg of sotorasib PKs. The impact of CYP3A4 induction was interrogated utilizing multiple doses of 600 mg of rifampin, a strong CYP3A4 inducer. Additionally, the impact of organic anion transporting polypeptide (OATP) 1B1/3 inhibition on 960 mg of sotorasib PKs was interrogated after a single dose of 600 mg of rifampin. CYP3A4 inhibition did not significantly impact sotorasib C<sub>max</sub> but did lead to a 26% increase in sotorasib AUC<sub>inf</sub>. CYP3A4 induction decreased sotorasib C<sub>max</sub> by 35% and AUC<sub>inf</sub> by 51%. OATP1B1/3 inhibition decreased sotorasib C<sub>max</sub> and AUC<sub>inf</sub> by 16% and 23%, respectively. These results support that sotorasib can be given together with strong CYP3A4 and OATP1B1/3 inhibitors but the co-administration of sotorasib and strong CYP3A4 inducers should be avoided.</p>","PeriodicalId":10495,"journal":{"name":"Clinical Pharmacology in Drug Development","volume":"13 7","pages":"810-818"},"PeriodicalIF":1.5,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139989551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shichang Miao, Pirow Bekker, Danielle Armas, Mary Lor, Yanyan Han, Kenneth Webster, Ashit Trivedi
Avacopan, a complement 5a receptor (C5aR) antagonist approved for treating severe active antineutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis, was evaluated in 2 clinical drug-drug interaction studies. The studies assessed the impact of avacopan on the pharmacokinetics (PK) of CYP3A4 substrates midazolam and simvastatin and CYP2C9 substrate celecoxib, and the influence of CYP3A4 inhibitor itraconazole and inducer rifampin on the PKs of avacopan. The results indicated that twice-daily oral administration of 30 mg of avacopan increased the area under the curve (AUC) of midazolam by 1.81-fold and celecoxib by 1.15-fold when administered without food, and twice-daily oral administration of 30 or 60 mg of avacopan increased the AUC of simvastatin by approximately 2.6-3.5-fold and the AUC of the active metabolite β-hydroxy-simvastatin acid by approximately 1.4-1.7-fold when co-administered with food. Furthermore, the AUC of avacopan increased by approximately 2.19-fold when co-administered with itraconazole and decreased by approximately 13.5-fold when co-administered with rifampin. These findings provide critical insights into the potential drug-drug interactions involving avacopan, which could have significant implications for patient care and treatment planning. (NCT06207682)
{"title":"Pharmacokinetic Evaluation of the CYP3A4 and CYP2C9 Drug-Drug Interaction of Avacopan in 2 Open-Label Studies in Healthy Participants","authors":"Shichang Miao, Pirow Bekker, Danielle Armas, Mary Lor, Yanyan Han, Kenneth Webster, Ashit Trivedi","doi":"10.1002/cpdd.1389","DOIUrl":"10.1002/cpdd.1389","url":null,"abstract":"<p>Avacopan, a complement 5a receptor (C5aR) antagonist approved for treating severe active antineutrophil cytoplasmic autoantibody (ANCA)-associated vasculitis, was evaluated in 2 clinical drug-drug interaction studies. The studies assessed the impact of avacopan on the pharmacokinetics (PK) of CYP3A4 substrates midazolam and simvastatin and CYP2C9 substrate celecoxib, and the influence of CYP3A4 inhibitor itraconazole and inducer rifampin on the PKs of avacopan. The results indicated that twice-daily oral administration of 30 mg of avacopan increased the area under the curve (AUC) of midazolam by 1.81-fold and celecoxib by 1.15-fold when administered without food, and twice-daily oral administration of 30 or 60 mg of avacopan increased the AUC of simvastatin by approximately 2.6-3.5-fold and the AUC of the active metabolite β-hydroxy-simvastatin acid by approximately 1.4-1.7-fold when co-administered with food. Furthermore, the AUC of avacopan increased by approximately 2.19-fold when co-administered with itraconazole and decreased by approximately 13.5-fold when co-administered with rifampin. These findings provide critical insights into the potential drug-drug interactions involving avacopan, which could have significant implications for patient care and treatment planning. (NCT06207682)</p>","PeriodicalId":10495,"journal":{"name":"Clinical Pharmacology in Drug Development","volume":"13 5","pages":"517-533"},"PeriodicalIF":2.0,"publicationDate":"2024-02-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139995813","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohamed-Eslam F Mohamed, Yuli Qian, Ronilda D'Cunha, Shuai Hao, Roberto Carcereri De Prati, Gweneth F Levy, Kinjal Hew, Wei Liu
Cedirogant is an inverse agonist of retinoic acid-related orphan receptor gamma, thymus (RORγt) developed for treatment of psoriasis. This study aimed to characterize pharmacokinetics, pharmacodynamics, safety, and tolerability of cedirogant following a single oral dose in Japanese participants and multiple oral doses in Japanese and Chinese participants. The single doses evaluated in healthy Japanese participants were 75, 225, and 395 mg. The multiple doses evaluated in both healthy Japanese and Chinese participants was 375 mg once daily for 14 days. Cedirogant plasma exposure increased dose proportionally with administration of single doses. Maximum cedirogant plasma concentration was reached within a median time of 4-5 hours after dosing. The harmonic mean elimination half-life ranged from 19 to 25 hours. Cedirogant pharmacokinetics were similar between Japanese and Chinese participants. Compared with healthy Western participants in a cross-study analysis, steady-state cedirogant plasma exposure was 38%-73% higher in Japanese or Chinese participants. Ex vivo interleukin-17 inhibition increased in a dose-dependent manner and was maximized by 375 mg once-daily doses. The cedirogant regimens tested were generally well tolerated, and no new safety issues were identified. The results supported enrollment of Japanese and Chinese subjects in subsequent clinical trials for cedirogant.
{"title":"Pharmacokinetics, Safety, and Tolerability of Cedirogant in Healthy Japanese and Chinese Adults","authors":"Mohamed-Eslam F Mohamed, Yuli Qian, Ronilda D'Cunha, Shuai Hao, Roberto Carcereri De Prati, Gweneth F Levy, Kinjal Hew, Wei Liu","doi":"10.1002/cpdd.1386","DOIUrl":"10.1002/cpdd.1386","url":null,"abstract":"<p>Cedirogant is an inverse agonist of retinoic acid-related orphan receptor gamma, thymus (RORγt) developed for treatment of psoriasis. This study aimed to characterize pharmacokinetics, pharmacodynamics, safety, and tolerability of cedirogant following a single oral dose in Japanese participants and multiple oral doses in Japanese and Chinese participants. The single doses evaluated in healthy Japanese participants were 75, 225, and 395 mg. The multiple doses evaluated in both healthy Japanese and Chinese participants was 375 mg once daily for 14 days. Cedirogant plasma exposure increased dose proportionally with administration of single doses. Maximum cedirogant plasma concentration was reached within a median time of 4-5 hours after dosing. The harmonic mean elimination half-life ranged from 19 to 25 hours. Cedirogant pharmacokinetics were similar between Japanese and Chinese participants. Compared with healthy Western participants in a cross-study analysis, steady-state cedirogant plasma exposure was 38%-73% higher in Japanese or Chinese participants. Ex vivo interleukin-17 inhibition increased in a dose-dependent manner and was maximized by 375 mg once-daily doses. The cedirogant regimens tested were generally well tolerated, and no new safety issues were identified. The results supported enrollment of Japanese and Chinese subjects in subsequent clinical trials for cedirogant.</p>","PeriodicalId":10495,"journal":{"name":"Clinical Pharmacology in Drug Development","volume":"13 7","pages":"801-809"},"PeriodicalIF":1.5,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpdd.1386","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139971171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This study evaluated the bioequivalence of the newly developed dapoxetine hydrochloride tablet relative to the marketed reference product by comparing their pharmacokinetic profiles under fasted and fed conditions. A total of 60 healthy Chinese male subjects participated in a single-center, 2-period, 2-sequence, randomized, open-label, self-crossover study with a washout period of 14 days, 30 in the fasted group and 30 in the fed group. Following a single 30-mg oral dose of the test or reference dapoxetine formulation, blood samples were collected before dosing to 72 hours after dosing. Liquid chromatography-tandem mass spectrometry was performed to measure plasma concentration of dapoxetine and determine pharmacokinetic parameters through noncompartmental analysis. The vital signs and adverse events were also monitored during the study. The 90% confidence intervals of the geometric mean ratios for maximum plasma concentration, area under the plasma concentration-time curve from time 0 to the last concentration time, and area under the plasma concentration-time curve from time 0 extrapolated to infinity of the 2 dapoxetine formulations completely fell within the regulatory criteria for bioequivalence of 80%-125%. In addition, both dapoxetine hydrochloride formulations were generally well tolerated. The generic dapoxetine hydrochloride tablet was bioequivalent to the marketed reference product in healthy Chinese men with no discernible safety differences.
{"title":"Bioequivalence Assessment of Two Dapoxetine Hydrochloride Formulations in Healthy Chinese Males Under Fasted and Fed Conditions","authors":"Yumin Li, Zhen Zhang, Jizhen Xie, Xianghua Lian, Guangtao Zhang, Cheng Wang","doi":"10.1002/cpdd.1393","DOIUrl":"10.1002/cpdd.1393","url":null,"abstract":"<p>This study evaluated the bioequivalence of the newly developed dapoxetine hydrochloride tablet relative to the marketed reference product by comparing their pharmacokinetic profiles under fasted and fed conditions. A total of 60 healthy Chinese male subjects participated in a single-center, 2-period, 2-sequence, randomized, open-label, self-crossover study with a washout period of 14 days, 30 in the fasted group and 30 in the fed group. Following a single 30-mg oral dose of the test or reference dapoxetine formulation, blood samples were collected before dosing to 72 hours after dosing. Liquid chromatography-tandem mass spectrometry was performed to measure plasma concentration of dapoxetine and determine pharmacokinetic parameters through noncompartmental analysis. The vital signs and adverse events were also monitored during the study. The 90% confidence intervals of the geometric mean ratios for maximum plasma concentration, area under the plasma concentration-time curve from time 0 to the last concentration time, and area under the plasma concentration-time curve from time 0 extrapolated to infinity of the 2 dapoxetine formulations completely fell within the regulatory criteria for bioequivalence of 80%-125%. In addition, both dapoxetine hydrochloride formulations were generally well tolerated. The generic dapoxetine hydrochloride tablet was bioequivalent to the marketed reference product in healthy Chinese men with no discernible safety differences.</p>","PeriodicalId":10495,"journal":{"name":"Clinical Pharmacology in Drug Development","volume":"13 8","pages":"861-869"},"PeriodicalIF":1.5,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139939773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shintaro Nakayama, Viera Lukacova, Shuichi Tanabe, Akiko Watanabe, Jim Mullin, Sandra Suarez-Sharp, Takako Shimizu
Pexidartinib is a systemic treatment for patients with tenosynovial giant cell tumor not amenable to surgery. Oral absorption of pexidartinib is affected by food; administration with a high-fat meal (HFM) or low-fat meal (LFM) increases absorption by approximately 100% and approximately 60%, respectively, compared with the fasted state. Pexidartinib is currently dosed 250 mg orally twice daily with an LFM (approximately 11-14 g of total fat). We developed a physiologically based pharmacokinetic model to determine the impact on drug exposure of dose timing with respect to meals, meal type, and caloric content. A 15%-16% increase in plasma exposure was predicted when consuming an HFM 1 hour after dosing with an LFM, but almost no effect on pharmacokinetics was predicted when an HFM was consumed 3 hours or more before or after pexidartinib dosing with an LFM. Exposure was not significantly affected when pexidartinib was taken with a 500-kcal LFM over the range of fat (approximately 11-14 g of total fat; 20%-25% calories from fat) for an LFM. These findings on timing of pexidartinib dose with respect to meals should be considered by patients and physicians to reduce the potential for side effects.
{"title":"Physiologically Based Pharmacokinetic Absorption Model for Pexidartinib to Evaluate the Impact of Meal Contents and Intake Timing on Drug Exposure","authors":"Shintaro Nakayama, Viera Lukacova, Shuichi Tanabe, Akiko Watanabe, Jim Mullin, Sandra Suarez-Sharp, Takako Shimizu","doi":"10.1002/cpdd.1385","DOIUrl":"10.1002/cpdd.1385","url":null,"abstract":"<p>Pexidartinib is a systemic treatment for patients with tenosynovial giant cell tumor not amenable to surgery. Oral absorption of pexidartinib is affected by food; administration with a high-fat meal (HFM) or low-fat meal (LFM) increases absorption by approximately 100% and approximately 60%, respectively, compared with the fasted state. Pexidartinib is currently dosed 250 mg orally twice daily with an LFM (approximately 11-14 g of total fat). We developed a physiologically based pharmacokinetic model to determine the impact on drug exposure of dose timing with respect to meals, meal type, and caloric content. A 15%-16% increase in plasma exposure was predicted when consuming an HFM 1 hour after dosing with an LFM, but almost no effect on pharmacokinetics was predicted when an HFM was consumed 3 hours or more before or after pexidartinib dosing with an LFM. Exposure was not significantly affected when pexidartinib was taken with a 500-kcal LFM over the range of fat (approximately 11-14 g of total fat; 20%-25% calories from fat) for an LFM. These findings on timing of pexidartinib dose with respect to meals should be considered by patients and physicians to reduce the potential for side effects.</p>","PeriodicalId":10495,"journal":{"name":"Clinical Pharmacology in Drug Development","volume":"13 4","pages":"440-448"},"PeriodicalIF":2.0,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpdd.1385","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139939774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Omalizumab is an anti-IgE monoclonal antibody currently approved for the treatment of asthma, nasal polyps/chronic rhinosinusitis with nasal polyps, and chronic spontaneous urticaria. Omalizumab is available as an injection in a prefilled syringe (PFS) with a needle safety device (NSD). New product configurations were developed to reduce the number of injections per dose administration, improve patient convenience and treatment compliance. The objective of this randomized open-label 12-week study was to demonstrate pharmacokinetic bioequivalence between (1) new PFS with autoinjector (PFS-AI), (2) new PFS-NSD configuration, and (3) current PFS-NSD configuration. Each new configuration was considered bioequivalent to the current configuration if the confidence intervals (CIs) for the geometric mean ratios (GMR) were contained in the 0.80-1.25 range for maximum concentration (Cmax), area under the concentration-time curve until the last quantifiable measurement (AUClast), and AUC extrapolated to infinity (AUCinf). Safety was assessed throughout the study. In total, 193 healthy volunteers were randomized at 1:1:1 ratio to omalizumab 1×300 mg/2 mL via new PFS-AI (n = 66), omalizumab 1×300 mg/2 mL via new PFS-NSD (n = 64), or omalizumab 2×150 mg/1 mL via current PFS-NSD (n = 63). Comparing new PFS-AI versus current PFS-NSD, the GMRs were: Cmax, 1.085; AUClast, 1.093; AUCinf, 1.100. Comparing new PFS-NSD versus current PFS-NSD, the GMRs were: Cmax, 1.006; AUClast, 1.016; AUCinf, 1.027. The 95% CIs for all GMR parameters were contained within the 0.80-1.25 range. Safety findings were consistent with the known safety profile of omalizumab. Single-dose omalizumab administered as the new PFS-AI or new PFS-NSD was bioequivalent to the current PFS-NSD.
{"title":"Bioequivalence Between a New Omalizumab Prefilled Syringe With an Autoinjector or with a Needle Safety Device Compared with the Current Prefilled Syringe: A Randomized Controlled Trial in Healthy Volunteers","authors":"Ramachandra Sangana, Yan Xu, Bharti Shah, Xianbin Tian, Julia Zack, Kasra Shakeri-Nejad, Sampath Kalluri, Ieuan Jones, Monica Ligueros-Saylan, Angel Fowler Taylor, Devendra Kumar Jain, Emil Scosyrev, Alkaz Uddin, Nathalie Laurent, Paola Paganoni","doi":"10.1002/cpdd.1373","DOIUrl":"10.1002/cpdd.1373","url":null,"abstract":"<p>Omalizumab is an anti-IgE monoclonal antibody currently approved for the treatment of asthma, nasal polyps/chronic rhinosinusitis with nasal polyps, and chronic spontaneous urticaria. Omalizumab is available as an injection in a prefilled syringe (PFS) with a needle safety device (NSD). New product configurations were developed to reduce the number of injections per dose administration, improve patient convenience and treatment compliance. The objective of this randomized open-label 12-week study was to demonstrate pharmacokinetic bioequivalence between (1) new PFS with autoinjector (PFS-AI), (2) new PFS-NSD configuration, and (3) current PFS-NSD configuration. Each new configuration was considered bioequivalent to the current configuration if the confidence intervals (CIs) for the geometric mean ratios (GMR) were contained in the 0.80-1.25 range for maximum concentration (C<sub>max</sub>), area under the concentration-time curve until the last quantifiable measurement (AUC<sub>last</sub>), and AUC extrapolated to infinity (AUC<sub>inf</sub>). Safety was assessed throughout the study. In total, 193 healthy volunteers were randomized at 1:1:1 ratio to omalizumab 1×300 mg/2 mL via new PFS-AI (n = 66), omalizumab 1×300 mg/2 mL via new PFS-NSD (n = 64), or omalizumab 2×150 mg/1 mL via current PFS-NSD (n = 63). Comparing new PFS-AI versus current PFS-NSD, the GMRs were: C<sub>max</sub>, 1.085; AUC<sub>last</sub>, 1.093; AUC<sub>inf</sub>, 1.100. Comparing new PFS-NSD versus current PFS-NSD, the GMRs were: C<sub>max</sub>, 1.006; AUC<sub>last</sub>, 1.016; AUC<sub>inf</sub>, 1.027. The 95% CIs for all GMR parameters were contained within the 0.80-1.25 range. Safety findings were consistent with the known safety profile of omalizumab. Single-dose omalizumab administered as the new PFS-AI or new PFS-NSD was bioequivalent to the current PFS-NSD.</p>","PeriodicalId":10495,"journal":{"name":"Clinical Pharmacology in Drug Development","volume":"13 6","pages":"611-620"},"PeriodicalIF":2.0,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpdd.1373","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139930371","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michael Babcock, Jianhong Zheng, Jessica Gail Shurr, Li Li, Bing Wang, Pedro Huertas, Philip John Ryan, Yuqiao Shen, Marvin Garovoy
Glycosphingolipid (GSL) storage diseases are caused by deficiencies in the enzymes that metabolize different GSLs in the lysosome. Glucosylceramide synthase (GCS) inhibitors reduce GSL production and have potential to treat multiple GSL storage diseases. AL01211 is a potent, oral GCS inhibitor being developed for the treatment of Type 1 Gaucher disease and Fabry disease. AL01211 has minimal central nervous system penetration, allowing for treatment of peripheral organs without risking CNS-associated adverse effects. AL01211 was evaluated in a Phase 1 healthy volunteer study with single ascending dose (SAD) and multiple ascending dose (MAD) arms, to determine safety, pharmacokinetics including food effect, and pharmacodynamic effects on associated GSLs. In the SAD arm, AL01211 showed a Tmax of approximately 3.5 hours, mean clearance (CL/F) of 130.1 L/h, and t1/2 of 39.3 hours. Consuming a high-fat meal prior to dose administration reduced exposures 3.5-5.5-fold, indicating a food effect. In the MAD arm, AL01211 had an approximately 2-fold accumulation, reaching steady-state levels by 10 days. Increasing exposure inversely correlated with a decrease in GSL with plasma glucosylceramide and globotriacylceramide reduction from baseline levels, reaching 78% and 52% by day 14, respectively. AL01211 was generally well-tolerated with no AL01211 associated serious adverse events, thus supporting its further clinical development.
{"title":"Phase 1 Healthy Volunteer Study of AL01211, an Oral, Non-brain Penetrant Glucosylceramide Synthase Inhibitor, to Treat Fabry Disease and Type 1 Gaucher Disease","authors":"Michael Babcock, Jianhong Zheng, Jessica Gail Shurr, Li Li, Bing Wang, Pedro Huertas, Philip John Ryan, Yuqiao Shen, Marvin Garovoy","doi":"10.1002/cpdd.1375","DOIUrl":"10.1002/cpdd.1375","url":null,"abstract":"<p>Glycosphingolipid (GSL) storage diseases are caused by deficiencies in the enzymes that metabolize different GSLs in the lysosome. Glucosylceramide synthase (GCS) inhibitors reduce GSL production and have potential to treat multiple GSL storage diseases. AL01211 is a potent, oral GCS inhibitor being developed for the treatment of Type 1 Gaucher disease and Fabry disease. AL01211 has minimal central nervous system penetration, allowing for treatment of peripheral organs without risking CNS-associated adverse effects. AL01211 was evaluated in a Phase 1 healthy volunteer study with single ascending dose (SAD) and multiple ascending dose (MAD) arms, to determine safety, pharmacokinetics including food effect, and pharmacodynamic effects on associated GSLs. In the SAD arm, AL01211 showed a Tmax of approximately 3.5 hours, mean clearance (CL/F) of 130.1 L/h, and t<sub>1/2</sub> of 39.3 hours. Consuming a high-fat meal prior to dose administration reduced exposures 3.5-5.5-fold, indicating a food effect. In the MAD arm, AL01211 had an approximately 2-fold accumulation, reaching steady-state levels by 10 days. Increasing exposure inversely correlated with a decrease in GSL with plasma glucosylceramide and globotriacylceramide reduction from baseline levels, reaching 78% and 52% by day 14, respectively. AL01211 was generally well-tolerated with no AL01211 associated serious adverse events, thus supporting its further clinical development.</p>","PeriodicalId":10495,"journal":{"name":"Clinical Pharmacology in Drug Development","volume":"13 6","pages":"696-709"},"PeriodicalIF":2.0,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpdd.1375","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139740587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elijah J. Weber, Islam R. Younis, Lulu Wang, Deqing Xiao, William T. Barchuk, Ahmed A. Othman
Cilofexor is a nonsteroidal farnesoid X receptor agonist being developed in combination with firsocostat/semaglutide for the treatment of nonalcoholic steatohepatitis. This phase 1 study evaluated the effects of food and acid-reducing agents (ARAs) on the pharmacokinetics of cilofexor (100- or 30-mg fixed-dose combination with firsocostat) in healthy participants. Cohorts 1 (n = 20, 100 mg) and 2 (n = 30, 30 mg) followed a 3-period, 2-sequence crossover design and evaluated effects of light-fat and high-fat meals. Cohort 3 (n = 30, 100 mg fasting) followed a 2-period, 2-sequence crossover design and evaluated the effects of a 40-mg single dose of famotidine. Cohort 4 (n = 18, 100 mg) followed a 3-period, 2-sequence crossover design and evaluated the effects of a 40-mg once-daily regimen of omeprazole administered under fasting conditions or following a light-fat meal. Administration with light-fat or high-fat meals resulted in no change and an ∼35% reduction in cilofexor AUC, respectively, relative to the fasting conditions. Under fasting conditions, famotidine increased cilofexor AUC by 3.2-fold and Cmax by 6.1-fold, while omeprazole increased cilofexor AUC by 3.1-fold and Cmax by 4.8-fold. With a low-fat meal, omeprazole increased cilofexor exposure to a lesser extent (Cmax 2.5-fold, AUC 2.1-fold) than fasting conditions. This study suggests that caution should be exercised when cilofexor is administered with ARAs under fed conditions; coadministration of cilofexor (100 or 30 mg) with ARAs under fasting conditions is not recommended with the current clinical trial formulations.
{"title":"Evaluation of the Effects of Meal Type and Acid-Reducing Agents on the Pharmacokinetics of Cilofexor, a Selective Nonsteroidal Farnesoid X Receptor Agonist","authors":"Elijah J. Weber, Islam R. Younis, Lulu Wang, Deqing Xiao, William T. Barchuk, Ahmed A. Othman","doi":"10.1002/cpdd.1384","DOIUrl":"10.1002/cpdd.1384","url":null,"abstract":"<p>Cilofexor is a nonsteroidal farnesoid X receptor agonist being developed in combination with firsocostat/semaglutide for the treatment of nonalcoholic steatohepatitis. This phase 1 study evaluated the effects of food and acid-reducing agents (ARAs) on the pharmacokinetics of cilofexor (100- or 30-mg fixed-dose combination with firsocostat) in healthy participants. Cohorts 1 (n = 20, 100 mg) and 2 (n = 30, 30 mg) followed a 3-period, 2-sequence crossover design and evaluated effects of light-fat and high-fat meals. Cohort 3 (n = 30, 100 mg fasting) followed a 2-period, 2-sequence crossover design and evaluated the effects of a 40-mg single dose of famotidine. Cohort 4 (n = 18, 100 mg) followed a 3-period, 2-sequence crossover design and evaluated the effects of a 40-mg once-daily regimen of omeprazole administered under fasting conditions or following a light-fat meal. Administration with light-fat or high-fat meals resulted in no change and an ∼35% reduction in cilofexor AUC, respectively, relative to the fasting conditions. Under fasting conditions, famotidine increased cilofexor AUC by 3.2-fold and C<sub>max</sub> by 6.1-fold, while omeprazole increased cilofexor AUC by 3.1-fold and C<sub>max</sub> by 4.8-fold. With a low-fat meal, omeprazole increased cilofexor exposure to a lesser extent (C<sub>max</sub> 2.5-fold, AUC 2.1-fold) than fasting conditions. This study suggests that caution should be exercised when cilofexor is administered with ARAs under fed conditions; coadministration of cilofexor (100 or 30 mg) with ARAs under fasting conditions is not recommended with the current clinical trial formulations.</p>","PeriodicalId":10495,"journal":{"name":"Clinical Pharmacology in Drug Development","volume":"13 6","pages":"677-687"},"PeriodicalIF":2.0,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpdd.1384","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139721957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}