Background: Asthma is one of chronic inflammatory lung diseases in world. The important role of macrophage polarization and glycolysis in lung inflammation has attracted considerable attention. Ephedrine (EP) is a compound isolated from Ephedra and plays a regulatory role in inflammatory response, but its role in asthma and mechanism involved are not clear. Therefore, the purpose of this study was to investigate the molecular mechanism and effect of EP on lipopolysaccharide (LPS)-induced alveolar macrophage polarization and glycolysis.
Methods: We investigated the expression of Tnf-a, Nos2, Il10, and Arg1 using RT-PCR, as well as PKM2 and LDHA protein expression with Western blot. A CCK-8 assay was performed to determine the viability of the cells. The extracellular acidification rate (ECAR), ATP and lactate level were detected using commercial kits.
Results: The results revealed that EP alleviated LPS-induced NR8383 cell glycolysis and M1 polarization. Further studies found that EP enhanced the effect of 2-DG on NR8383 cell glycolysis and M1 polarization. More importantly, PKM2 inhibitor alleviated LPS-induced NR8383 cell glycolysis and M1 polarization. In addition, EP alleviated LPS-induced NR8383 cell glycolysis and M1 polarization by targeting PKM2.
Conclusion: It is suggested that EP alleviates LPS-induced glycolysis and M1 polarization in NR8383 cells by regulating PKM2, thereby alleviating lung injury, suggesting the involvment of alveolar macrophage polarization and glycolysis in the role of EP in asthma.
{"title":"Ephedrine attenuates LPS-induced M1 polarization of alveolar macrophages via the PKM2-mediated glycolysis.","authors":"Yijin Xiang, Zaifeng Jiang, Zhigang Yang, Shaomin Gong, Weiran Niu","doi":"10.1093/toxres/tfae166","DOIUrl":"https://doi.org/10.1093/toxres/tfae166","url":null,"abstract":"<p><strong>Background: </strong>Asthma is one of chronic inflammatory lung diseases in world. The important role of macrophage polarization and glycolysis in lung inflammation has attracted considerable attention. Ephedrine (EP) is a compound isolated from Ephedra and plays a regulatory role in inflammatory response, but its role in asthma and mechanism involved are not clear. Therefore, the purpose of this study was to investigate the molecular mechanism and effect of EP on lipopolysaccharide (LPS)-induced alveolar macrophage polarization and glycolysis.</p><p><strong>Methods: </strong>We investigated the expression of Tnf-a, Nos2, Il10, and Arg1 using RT-PCR, as well as PKM2 and LDHA protein expression with Western blot. A CCK-8 assay was performed to determine the viability of the cells. The extracellular acidification rate (ECAR), ATP and lactate level were detected using commercial kits.</p><p><strong>Results: </strong>The results revealed that EP alleviated LPS-induced NR8383 cell glycolysis and M1 polarization. Further studies found that EP enhanced the effect of 2-DG on NR8383 cell glycolysis and M1 polarization. More importantly, PKM2 inhibitor alleviated LPS-induced NR8383 cell glycolysis and M1 polarization. In addition, EP alleviated LPS-induced NR8383 cell glycolysis and M1 polarization by targeting PKM2.</p><p><strong>Conclusion: </strong>It is suggested that EP alleviates LPS-induced glycolysis and M1 polarization in NR8383 cells by regulating PKM2, thereby alleviating lung injury, suggesting the involvment of alveolar macrophage polarization and glycolysis in the role of EP in asthma.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11465183/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453738","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-10eCollection Date: 2024-10-01DOI: 10.1093/toxres/tfae171
Karol Ferreira Honatel, Aline Mocellin Conte, Solange Cristina Garcia, Bruno Dutra Arbo, Marcelo Dutra Arbo
Background: Neonicotinoid insecticides are used worldwide for crop protection. They act as agonists at postsynaptic nicotinic acetylcholine receptors (nAChRs), disrupting normal neurotransmission in target insects. Human exposure is high due to the widespread use of neonicotinoids and their residues in food. This study aimed to evaluate the in vitro neurotoxicity of three neonicotinoid commercial formulations Much 600 FS® (imidacloprid 600 g L-1), Evidence 700 WG® (imidacloprid 700 g kg-1), and Actara 250 WG® (thiamethoxam 250 g kg-1) in differentiated human neuroblastoma SH-SY5Y cell line.
Methods: Cells were incubated with the pesticides for 96 h, and the cytotoxicity was evaluated through the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium·bromide (MTT) reduction and neutral red (NR) uptake assays. Toxicological pathways such as reactive oxygen (ROS) and nitrogen species (RNS) production, mitochondrial membrane potential, cell death mode, and the expression of the pro-apoptotic protein Bax were also evaluated.
Results: EC50 values of 266.4, 4,175, and 653.2 mg L-1 were found for Much®, Evidence® and Actara®, respectively. Significant increases in ROS and RNS generation were observed for all pesticides, while mitochondrial membrane potential and Bax protein expression showed no significant changes. Analysis of cell death mode revealed an increase in early apoptotic cells.
Conclusion: Therefore, neonicotinoid insecticides are potentially neurotoxic, reinforcing concerns about human exposure to these commercial formulations.
{"title":"Cytotoxicity induced by three commercial neonicotinoid insecticide formulations in differentiated human neuroblastoma SH-SY5Y cells.","authors":"Karol Ferreira Honatel, Aline Mocellin Conte, Solange Cristina Garcia, Bruno Dutra Arbo, Marcelo Dutra Arbo","doi":"10.1093/toxres/tfae171","DOIUrl":"https://doi.org/10.1093/toxres/tfae171","url":null,"abstract":"<p><strong>Background: </strong>Neonicotinoid insecticides are used worldwide for crop protection. They act as agonists at postsynaptic nicotinic acetylcholine receptors (nAChRs), disrupting normal neurotransmission in target insects. Human exposure is high due to the widespread use of neonicotinoids and their residues in food. This study aimed to evaluate the in vitro neurotoxicity of three neonicotinoid commercial formulations Much 600 FS® (imidacloprid 600 g L<sup>-1</sup>), Evidence 700 WG® (imidacloprid 700 g kg<sup>-1</sup>), and Actara 250 WG® (thiamethoxam 250 g kg<sup>-1</sup>) in differentiated human neuroblastoma SH-SY5Y cell line.</p><p><strong>Methods: </strong>Cells were incubated with the pesticides for 96 h, and the cytotoxicity was evaluated through the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium·bromide (MTT) reduction and neutral red (NR) uptake assays. Toxicological pathways such as reactive oxygen (ROS) and nitrogen species (RNS) production, mitochondrial membrane potential, cell death mode, and the expression of the pro-apoptotic protein Bax were also evaluated.</p><p><strong>Results: </strong>EC<sub>50</sub> values of 266.4, 4,175, and 653.2 mg L<sup>-1</sup> were found for Much®, Evidence® and Actara®, respectively. Significant increases in ROS and RNS generation were observed for all pesticides, while mitochondrial membrane potential and Bax protein expression showed no significant changes. Analysis of cell death mode revealed an increase in early apoptotic cells.</p><p><strong>Conclusion: </strong>Therefore, neonicotinoid insecticides are potentially neurotoxic, reinforcing concerns about human exposure to these commercial formulations.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11464667/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453736","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Radon ( 222 Rn) is a naturally occurring radioactive gas that has been closely linked with the development of lung cancer. In this study, we investigated the radon-induced DNA strand breaks, a critical event in lung carcinogenesis, and the corresponding DNA damage response (DDR) in mice and human bronchial epithelial (BEAS-2B) cells.
Methods: Biomarkers of DNA double-strand breaks (DSBs), DNA repair response to DSBs, ataxia-telangiectasia mutated (ATM) kinase, autophagy, and a cell apoptosis signaling pathway as well as cell-cycle arrest and the rate of apoptosis were determined in mouse lung and BEAS-2B cells after radon exposure.
Results: Repeated radon exposure induced DSBs indicated by the increasing expressions of γ-Histone 2AX (H2AX) protein and H2AX gene in a time and dose-dependent manner. Additionally, a panel of ATM-dependent repair cascades [i.e. non-homologous DNA end joining (NHEJ), cell-cycle arrest and the p38 mitogen activated protein kinase (p38MAPK)/Bax apoptosis signaling pathway] as well as the autophagy process were activated. Inhibition of autophagy by 3-methyladenine pre-treatment partially reversed the expression of NHEJ-related genes induced by radon exposure in BEAS-2B cells.
Conclusions: The findings demonstrated that long-term exposure to radon gas induced DNA lesions in the form of DSBs and a series of ATM-dependent DDR pathways. Activation of the ATM-mediated autophagy may provide a protective and pro-survival effect on radon-induced DSBs.
目的:氡(222 Rn)是一种天然放射性气体,与肺癌的发生密切相关。本研究调查了氡诱导的 DNA 链断裂(肺癌发生的一个关键事件)以及小鼠和人类支气管上皮细胞(BEAS-2B)中相应的 DNA 损伤反应(DDR):方法:测定氡照射后小鼠肺细胞和BEAS-2B细胞中DNA双链断裂(DSB)的生物标志物、DSB的DNA修复反应、共济失调-特朗吉赛突变(ATM)激酶、自噬、细胞凋亡信号通路以及细胞周期停滞和细胞凋亡率:结果:重复氡照射可诱导DSB,表现为γ-组蛋白2AX(H2AX)蛋白和H2AX基因的表达增加,且呈时间和剂量依赖性。此外,一系列依赖于ATM的修复级联[即非同源DNA末端连接(NHEJ)、细胞周期停滞和p38丝裂原活化蛋白激酶(p38MAPK)/Bax凋亡信号通路]以及自噬过程也被激活。通过3-甲基腺嘌呤预处理抑制自噬,可部分逆转氡暴露在BEAS-2B细胞中诱导的NHEJ相关基因的表达:研究结果表明,长期暴露于氡气可诱导DSB形式的DNA损伤和一系列依赖于ATM的DDR途径。激活ATM介导的自噬可对氡诱导的DSB起到保护和促进生存的作用。
{"title":"Repeated radon exposure induced ATM kinase-mediated DNA damage response and protective autophagy in mice and human bronchial epithelial cells.","authors":"Xiaoyu Chen, Shan Shan, Aiqing Wang, Cheng Tu, Jianmei Wan, Chengjiao Hong, Xiaohan Li, Xueying Wang, Jieyun Yin, Jian Tong, Hailin Tian, Lili Xin","doi":"10.1093/toxres/tfae165","DOIUrl":"https://doi.org/10.1093/toxres/tfae165","url":null,"abstract":"<p><strong>Objective: </strong>Radon ( <sup><b>222</b></sup> Rn) is a naturally occurring radioactive gas that has been closely linked with the development of lung cancer. In this study, we investigated the radon-induced DNA strand breaks, a critical event in lung carcinogenesis, and the corresponding DNA damage response (DDR) in mice and human bronchial epithelial (BEAS-2B) cells.</p><p><strong>Methods: </strong>Biomarkers of DNA double-strand breaks (DSBs), DNA repair response to DSBs, ataxia-telangiectasia mutated (ATM) kinase, autophagy, and a cell apoptosis signaling pathway as well as cell-cycle arrest and the rate of apoptosis were determined in mouse lung and BEAS-2B cells after radon exposure.</p><p><strong>Results: </strong>Repeated radon exposure induced DSBs indicated by the increasing expressions of γ-Histone 2AX (H2AX) protein and <i>H2AX</i> gene in a time and dose-dependent manner. Additionally, a panel of ATM-dependent repair cascades [i.e. non-homologous DNA end joining (NHEJ), cell-cycle arrest and the p38 mitogen activated protein kinase (p38MAPK)/Bax apoptosis signaling pathway] as well as the autophagy process were activated. Inhibition of autophagy by 3-methyladenine pre-treatment partially reversed the expression of NHEJ-related genes induced by radon exposure in BEAS-2B cells.</p><p><strong>Conclusions: </strong>The findings demonstrated that long-term exposure to radon gas induced DNA lesions in the form of DSBs and a series of ATM-dependent DDR pathways. Activation of the ATM-mediated autophagy may provide a protective and pro-survival effect on radon-induced DSBs.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457374/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386487","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07eCollection Date: 2024-10-01DOI: 10.1093/toxres/tfae162
Guangyang Liu, Xiaoyun Shen, Yuanfeng Li
Food safety is closely related to environmental pollution. It is worth noting that the long-term accumulation of Cd, a toxic heavy metal, in animals may pose a threat to human health through food chain. Previous studies have found that Cd exposure may cause liver metabolic disorders of black goats, but the mechanism of its impact on liver proteome of goats has not been widely studied. Therefore, in this study, ten male goats (Nubian black goat × native black goat) were exposed to Cd via drinking water containing CdCl2 (20 mg Cd·kg - 1·BW) for 30 days (five male goats per group). Blood physiology and liver antioxidant indices in black goats were determined and differentially expressed proteins (DEPs) in the livers of Cd-exposed goats were profiled by using TMT-labelled proteomics. It was found that plasma Hb and RBC levels as well as PCV values were decreased, liver SOD, GSH-Px, T-AOC and CAT levels were decreased, and MDA level was increased in Cd-treated goats, and 630 DEPs (up 326, down 304) in the livers of Cd-treated goats. Proteomics analysis revealed that Cd exposure affected glutathione metabolism and drug metabolism-cytochrome P450. We identified GP×2, GSTM3, and TBXAS1 as potential protein markers of early Cd toxicity in goats. This study provided theoretical basis for early diagnosis of Cd poisoning in goats.
{"title":"Proteomic analysis of toxic effects of short-term cadmium exposure on goat livers.","authors":"Guangyang Liu, Xiaoyun Shen, Yuanfeng Li","doi":"10.1093/toxres/tfae162","DOIUrl":"https://doi.org/10.1093/toxres/tfae162","url":null,"abstract":"<p><p>Food safety is closely related to environmental pollution. It is worth noting that the long-term accumulation of Cd, a toxic heavy metal, in animals may pose a threat to human health through food chain. Previous studies have found that Cd exposure may cause liver metabolic disorders of black goats, but the mechanism of its impact on liver proteome of goats has not been widely studied. Therefore, in this study, ten male goats (Nubian black goat × native black goat) were exposed to Cd via drinking water containing CdCl2 (20 mg Cd·kg - 1·BW) for 30 days (five male goats per group). Blood physiology and liver antioxidant indices in black goats were determined and differentially expressed proteins (DEPs) in the livers of Cd-exposed goats were profiled by using TMT-labelled proteomics. It was found that plasma Hb and RBC levels as well as PCV values were decreased, liver SOD, GSH-Px, T-AOC and CAT levels were decreased, and MDA level was increased in Cd-treated goats, and 630 DEPs (up 326, down 304) in the livers of Cd-treated goats. Proteomics analysis revealed that Cd exposure affected glutathione metabolism and drug metabolism-cytochrome P450. We identified GP×2, GSTM3, and TBXAS1 as potential protein markers of early Cd toxicity in goats. This study provided theoretical basis for early diagnosis of Cd poisoning in goats.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457375/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386486","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-07eCollection Date: 2024-10-01DOI: 10.1093/toxres/tfae168
Alshaimma Mahmoud Elmansy, Dalia Mustafa Hannora, Heba K Khalifa
Background: Carbon monoxide (CO) poisoning is a major health problem associated with a high rate of severe morbidity and mortality.
Aims: This study aimed to evaluate the validity of the serum glucose/potassium (Glu/K) ratio as a quick predictor of both early and delayed unfavorable outcomes following acute CO poisoning.
Patients and methods: This prospective cohort study included 136 patients with acute CO poisoning admitted at Tanta Poison Control Center, Egypt, between January 2023 and June 2024. The serum Glu/K ratio was calculated for all patients. The primary outcome was a prediction of mortality. Secondary outcomes were the prediction of delayed neurological sequelae (DNS) within six months after CO exposure, the need for mechanical ventilation, and the need for hyperbaric oxygen. A receiver operating curve analysis was applied to test the performance of the Glu/K ratio in predicting acute CO poisoning outcomes.
Results: The mortality rate was 12.5% of patients with acute CO poisoning. Meanwhile, 14.7% of patients developed DNS. Furthermore, mechanical ventilation was required in 16.9% of patients. An elevated Glu/K ratio was significantly associated with the severity of acute CO poisoning. At a cut-off value of >31.62, the Glu/K ratio demonstrated an AUC of 0.649 for predicting mortality. The Glu/K ratio was employed to predict DNS at a cut-off value of 33.10, with a sensitivity of 60.0%, a specificity of 82.76%, and an AUC of 0.692.
Conclusions: Early Glu/K ratio may be an effective, reliable, and convenient laboratory predictor of mortality, DNS, and the need for mechanical ventilation in patients with acute CO poisoning.
{"title":"Serum glucose/potassium ratio as an indicator of early and delayed outcomes of acute carbon monoxide poisoning.","authors":"Alshaimma Mahmoud Elmansy, Dalia Mustafa Hannora, Heba K Khalifa","doi":"10.1093/toxres/tfae168","DOIUrl":"https://doi.org/10.1093/toxres/tfae168","url":null,"abstract":"<p><strong>Background: </strong>Carbon monoxide (CO) poisoning is a major health problem associated with a high rate of severe morbidity and mortality.</p><p><strong>Aims: </strong>This study aimed to evaluate the validity of the serum glucose/potassium (Glu/K) ratio as a quick predictor of both early and delayed unfavorable outcomes following acute CO poisoning.</p><p><strong>Patients and methods: </strong>This prospective cohort study included 136 patients with acute CO poisoning admitted at Tanta Poison Control Center, Egypt, between January 2023 and June 2024. The serum Glu/K ratio was calculated for all patients. The primary outcome was a prediction of mortality. Secondary outcomes were the prediction of delayed neurological sequelae (DNS) within six months after CO exposure, the need for mechanical ventilation, and the need for hyperbaric oxygen. A receiver operating curve analysis was applied to test the performance of the Glu/K ratio in predicting acute CO poisoning outcomes.</p><p><strong>Results: </strong>The mortality rate was 12.5% of patients with acute CO poisoning. Meanwhile, 14.7% of patients developed DNS. Furthermore, mechanical ventilation was required in 16.9% of patients. An elevated Glu/K ratio was significantly associated with the severity of acute CO poisoning. At a cut-off value of >31.62, the Glu/K ratio demonstrated an AUC of 0.649 for predicting mortality. The Glu/K ratio was employed to predict DNS at a cut-off value of 33.10, with a sensitivity of 60.0%, a specificity of 82.76%, and an AUC of 0.692.</p><p><strong>Conclusions: </strong>Early Glu/K ratio may be an effective, reliable, and convenient laboratory predictor of mortality, DNS, and the need for mechanical ventilation in patients with acute CO poisoning.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11457236/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142386488","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03eCollection Date: 2024-10-01DOI: 10.1093/toxres/tfae160
Saurabh Dilip Bhandare
This study examines the therapeutic potential and toxicological profiles of Cuscuta species based on recent pharmacological investigations: "a therapeutic potential vs. toxicological risks of Cuscuta species: a pharmacological-toxicology dilemma." The study encompasses diverse research areas, including the mitigation of Bisphenol A (BPA)-induced ovarian damage using Cuscuta chinensis flavonoids (CCFs), acute and sub-acute toxicity assessments of Cuscuta chinensis Lam. water extract (CLW), and observations on Cuscuta campestris toxicity in horses. In addition, this scientific study discusses the interplant communication dynamics between soybean and the parasitic dodder (Cuscuta australis) under nutrient deficiency conditions. Key significant findings highlight the efficacy of CCFs in alleviating BPA-induced ovarian damage, the safety profile of CLW within specified doses, and clinical manifestations of C. campestris toxicity in horses. Moreover, insights into interplant communication mechanisms emphasise the significance of protein-mediated interactions in nutrient-deficient environments. The report illustrates the potential toxicity of Dodder in humans, and further research findings into its chemical composition and toxicological profiles reveal great data on its phytotoxicity. Greater awareness and understanding of the risks associated with consuming Dodder and other similar plant species are crucial for preventing plant intoxication and have been a significant major focus of the present toxicology study of Cuscuta species. Hence, by addressing these objectives, the scientific study aims to balance the therapeutic benefits of Cuscuta species with their potential toxicological risks, contributing to a more nuanced understanding of their role in pharmacology and toxicology. This dual focus is crucial for guiding future research and informing safe usage practices.
{"title":"\"Exploring therapeutic potential and toxicological profiles of <i>Cuscuta</i> species: insights from pharmacological studies and an anti-cholinergic toxicity report.\"","authors":"Saurabh Dilip Bhandare","doi":"10.1093/toxres/tfae160","DOIUrl":"10.1093/toxres/tfae160","url":null,"abstract":"<p><p>This study examines the therapeutic potential and toxicological profiles of <i>Cuscuta</i> species based on recent pharmacological investigations: \"a therapeutic potential vs. toxicological risks of <i>Cuscuta</i> species: a pharmacological-toxicology dilemma.\" The study encompasses diverse research areas, including the mitigation of Bisphenol A (BPA)-induced ovarian damage using <i>Cuscuta chinensis</i> flavonoids (CCFs), acute and sub-acute toxicity assessments of <i>Cuscuta chinensis Lam.</i> water extract (CLW), and observations on <i>Cuscuta campestris</i> toxicity in horses. In addition, this scientific study discusses the interplant communication dynamics between soybean and the parasitic dodder (<i>Cuscuta australis</i>) under nutrient deficiency conditions. Key significant findings highlight the efficacy of CCFs in alleviating BPA-induced ovarian damage, the safety profile of CLW within specified doses, and clinical manifestations of <i>C. campestris</i> toxicity in horses. Moreover, insights into interplant communication mechanisms emphasise the significance of protein-mediated interactions in nutrient-deficient environments. The report illustrates the potential toxicity of Dodder in humans, and further research findings into its chemical composition and toxicological profiles reveal great data on its phytotoxicity. Greater awareness and understanding of the risks associated with consuming Dodder and other similar plant species are crucial for preventing plant intoxication and have been a significant major focus of the present toxicology study of <i>Cuscuta</i> species. Hence, by addressing these objectives, the scientific study aims to balance the therapeutic benefits of Cuscuta species with their potential toxicological risks, contributing to a more nuanced understanding of their role in pharmacology and toxicology. This dual focus is crucial for guiding future research and informing safe usage practices.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447373/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03eCollection Date: 2024-10-01DOI: 10.1093/toxres/tfae167
Adel Qlayel Alkhedaide
Gentamicin is a widely used aminoglycosidic antibiotic since its discovery. Like any other medication gentamicin causes unwanted side effects such as hepatotoxicity and nephrotoxicity. This study aims to examine the antioxidant effect of the guarana seed extract in protecting renal tissue. Forty male mice were divided into four groups (group one was control with free access to food and water, group two was treated orally with 300 mg/kg of guarana seed extract daily, group three was injected intraperitoneally with 100 mg/kg of gentamicin daily and the fourth group was co-treated with both 300 mg/kg of guarana seed extract orally and injected intraperitoneally with 100 mg/kg of gentamicin daily) for two weeks. Serum levels of urea, creatinine, AST, ALT, IL-1β and IL-6 have significantly elevated in the gentamicin treated group and those changes were not found in the guarana co-treated group. In gentamicin treated mice, a significant reduction was observed in two antioxidants SOD and GPX accompanied by downregulation of Ho-1 and Nrf2 while, that did not happen in the guarana seed extract co-treated group. Histopathology and immunohistochemistry slides show that the guarana seed extract prevents degenerative and necrotic events in tubular epithelial tissues caused by gentamicin toxicity. In conclusion, current data suggest that gentamicin can damage renal tissues when given at 100 mg/kg/day, however, the guarana seed extract may be capable of preventing that event when cotreated with the gentamicin as a supplement.
{"title":"Impacts of gentamycin toxicity: nephroprotective role of guarana through different signaling pathways.","authors":"Adel Qlayel Alkhedaide","doi":"10.1093/toxres/tfae167","DOIUrl":"10.1093/toxres/tfae167","url":null,"abstract":"<p><p>Gentamicin is a widely used aminoglycosidic antibiotic since its discovery. Like any other medication gentamicin causes unwanted side effects such as hepatotoxicity and nephrotoxicity. This study aims to examine the antioxidant effect of the guarana seed extract in protecting renal tissue. Forty male mice were divided into four groups (group one was control with free access to food and water, group two was treated orally with 300 mg/kg of guarana seed extract daily, group three was injected intraperitoneally with 100 mg/kg of gentamicin daily and the fourth group was co-treated with both 300 mg/kg of guarana seed extract orally and injected intraperitoneally with 100 mg/kg of gentamicin daily) for two weeks. Serum levels of urea, creatinine, AST, ALT, IL-1β and IL-6 have significantly elevated in the gentamicin treated group and those changes were not found in the guarana co-treated group. In gentamicin treated mice, a significant reduction was observed in two antioxidants SOD and GPX accompanied by downregulation of Ho-1 and Nrf2 while, that did not happen in the guarana seed extract co-treated group. Histopathology and immunohistochemistry slides show that the guarana seed extract prevents degenerative and necrotic events in tubular epithelial tissues caused by gentamicin toxicity. In conclusion, current data suggest that gentamicin can damage renal tissues when given at 100 mg/kg/day, however, the guarana seed extract may be capable of preventing that event when cotreated with the gentamicin as a supplement.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447377/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379554","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In view of the rapidly expanding medical and commercial applications of silver nanoparticles (AgNPs), their potential health risks and environmental effects are a significant growing concern. Earlier research by our group uncovered the embryotoxic potential of AgNPs, showing detrimental impacts of these nanoparticles on both pre- and post-implantation embryonic development. In the current study, we showed that low (50-100 μM) and high (200-400 μM) dose ranges of AgNPs trigger distinct cell death programs affecting mouse embryo development and further explored the underlying mechanisms. Treatment with low concentrations of AgNPs (50-100 μM) triggered ROS generation, in turn, inducing mitochondria-dependent apoptosis, and ultimately, harmful effects on embryo implantation, post-implantation development, and fetal development. Notably, high concentrations of AgNPs (200-400 μM) evoked more high-level ROS generation and endoplasmic reticulum (ER) stress-mediated necrosis. Interestingly, pre-incubation with Trolox, a strong antioxidant, reduced ROS generation in the group treated with 200-400 μM AgNPs to the level induced by 50-100 μM AgNPs, resulting in switching of the cell death mode from necrosis to apoptosis and a significant improvement in the impairment of embryonic development. Our findings additionally indicate that activation of PAK2 is a crucial step in AgNP-triggered apoptosis and sequent detrimental effects on embryonic development. Based on the collective results, we propose that the levels of ROS generated by AgNP treatment of embryos serve as a critical regulator of cell death type, leading to differential degrees of damage to embryo implantation, post-implantation development and fetal development through triggering apoptosis, necrosis or other cell death signaling cascades.
{"title":"Dose-dependent effects of silver nanoparticles on cell death modes in mouse blastocysts induced via endoplasmic reticulum stress and mitochondrial apoptosis.","authors":"Cheng-Kai Lee, Fu-Ting Wang, Chien-Hsun Huang, Wen-Hsiung Chan","doi":"10.1093/toxres/tfae158","DOIUrl":"10.1093/toxres/tfae158","url":null,"abstract":"<p><p>In view of the rapidly expanding medical and commercial applications of silver nanoparticles (AgNPs), their potential health risks and environmental effects are a significant growing concern. Earlier research by our group uncovered the embryotoxic potential of AgNPs, showing detrimental impacts of these nanoparticles on both pre- and post-implantation embryonic development. In the current study, we showed that low (50-100 μM) and high (200-400 μM) dose ranges of AgNPs trigger distinct cell death programs affecting mouse embryo development and further explored the underlying mechanisms. Treatment with low concentrations of AgNPs (50-100 μM) triggered ROS generation, in turn, inducing mitochondria-dependent apoptosis, and ultimately, harmful effects on embryo implantation, post-implantation development, and fetal development. Notably, high concentrations of AgNPs (200-400 μM) evoked more high-level ROS generation and endoplasmic reticulum (ER) stress-mediated necrosis. Interestingly, pre-incubation with Trolox, a strong antioxidant, reduced ROS generation in the group treated with 200-400 μM AgNPs to the level induced by 50-100 μM AgNPs, resulting in switching of the cell death mode from necrosis to apoptosis and a significant improvement in the impairment of embryonic development. Our findings additionally indicate that activation of PAK2 is a crucial step in AgNP-triggered apoptosis and sequent detrimental effects on embryonic development. Based on the collective results, we propose that the levels of ROS generated by AgNP treatment of embryos serve as a critical regulator of cell death type, leading to differential degrees of damage to embryo implantation, post-implantation development and fetal development through triggering apoptosis, necrosis or other cell death signaling cascades.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447381/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03eCollection Date: 2024-10-01DOI: 10.1093/toxres/tfae163
Jin Hee Kim, Jae Hoon Lee, Zhengyu Nan, Ja Woo Choi, Jong Wook Song
Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer that has adverse health effects. Most phthalates exhibit reproductive toxicity and are associated with diseases such as cardiovascular disorders. However, the effect of DEHP exposure on acute hypoxia/reperfusion injury remains unknown. Therefore, we assessed whether hypoxia/reperfusion injury is aggravated by exposure to DEHP and investigated plausible underlying mechanisms, including oxidative stress and expression of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) and endothelial junctional proteins. bEnd.3 cells were exposed to DEHP and subsequently subjected to oxygen-glucose deprivation (OGD). Cell viability was analyzed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) proliferation assay. The effect of DEHP/OGD/reoxygenation (R) was evaluated by assessing the levels of NO, reactive oxygen species (ROS), and PGE2. The expression of COX-2, cleaved caspase-3, cleaved PARP, inducible nitric oxide synthase (iNOS), and the endothelial tight junction proteins claudin-5 and ZO-1 was evaluated using quantitative polymerase chain reaction and western blotting. OGD/R decreased cell viability, and DEHP exposure before OGD/R further aggravated cell viability. DEHP/OGD/R significantly increased NO, PGE2, and ROS production following OGD/R. In the DEHP/OGD/R group, iNOS, COX-2, cleaved caspase-3, and cleaved PARP expression increased, and claudin-5 and ZO-1 levels decreased compared with those in the OGD/R group. E-Cadherin expression decreased significantly after DEHP/OGD/R exposure compared with that after OGD/R; this decrease in expression was recovered by treatment with the COX-2 inhibitor indomethacin and antioxidant N-acetylcysteine. Exposure to DEHP exacerbated hypoxia-reoxygenation injury. The enhanced damage upon DEHP exposure was associated with increased oxidative stress and COX-2 expression, leading to E-cadherin downregulation and increased apoptosis.
{"title":"Di(2-ethylhexyl) phthalate exposure aggravates hypoxia/reoxygenation injury in cerebral endothelial cells by downregulating epithelial cadherin expression.","authors":"Jin Hee Kim, Jae Hoon Lee, Zhengyu Nan, Ja Woo Choi, Jong Wook Song","doi":"10.1093/toxres/tfae163","DOIUrl":"10.1093/toxres/tfae163","url":null,"abstract":"<p><p>Di-(2-ethylhexyl) phthalate (DEHP) is a widely used plasticizer that has adverse health effects. Most phthalates exhibit reproductive toxicity and are associated with diseases such as cardiovascular disorders. However, the effect of DEHP exposure on acute hypoxia/reperfusion injury remains unknown. Therefore, we assessed whether hypoxia/reperfusion injury is aggravated by exposure to DEHP and investigated plausible underlying mechanisms, including oxidative stress and expression of cyclooxygenase-2 (COX-2)/prostaglandin E2 (PGE2) and endothelial junctional proteins. bEnd.3 cells were exposed to DEHP and subsequently subjected to oxygen-glucose deprivation (OGD). Cell viability was analyzed using 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) proliferation assay. The effect of DEHP/OGD/reoxygenation (R) was evaluated by assessing the levels of NO, reactive oxygen species (ROS), and PGE2. The expression of COX-2, cleaved caspase-3, cleaved PARP, inducible nitric oxide synthase (iNOS), and the endothelial tight junction proteins claudin-5 and ZO-1 was evaluated using quantitative polymerase chain reaction and western blotting. OGD/R decreased cell viability, and DEHP exposure before OGD/R further aggravated cell viability. DEHP/OGD/R significantly increased NO, PGE2, and ROS production following OGD/R. In the DEHP/OGD/R group, iNOS, COX-2, cleaved caspase-3, and cleaved PARP expression increased, and claudin-5 and ZO-1 levels decreased compared with those in the OGD/R group. E-Cadherin expression decreased significantly after DEHP/OGD/R exposure compared with that after OGD/R; this decrease in expression was recovered by treatment with the COX-2 inhibitor indomethacin and antioxidant N-acetylcysteine. Exposure to DEHP exacerbated hypoxia-reoxygenation injury. The enhanced damage upon DEHP exposure was associated with increased oxidative stress and COX-2 expression, leading to E-cadherin downregulation and increased apoptosis.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447374/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379552","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03eCollection Date: 2024-10-01DOI: 10.1093/toxres/tfae159
Doaa R I Abdel-Gawad, Fatma Khalil, Olfat Shehata, Marwa A Ibrahim, SalmaI El-Samannoudy, Emad A Mahdi, Nema S Shaban
Background: Doxorubicin (DOX) is a broad-spectrum antitumor drug while its use is limited nowadays due to its neurobiological side effects associated with depression. Bone marrow mesenchymal stem cells (BM-MSCs) derived exosomes are a promising regenerative therapy. In this study, we investigated the therapeutic potentiality of BM-MSCs derived exosomes against the neurotoxicity induced by DOX.
Methods: Twenty-four male albino rats were divided equally in to three groups as follow: group 1 (control), group 2 (rats injected intraperitoneally (i.p|) with DOX at a dose 2.5mg/Kg), and group 3 (rats injected with DOX and BM-MSCs derived exosomes i.p at a dose 1.5ml/Kg). During the experiment the behavior tests were noted, after three weeks rats were sacrificed, serum and brain samples were collected for biochemical, molecular and histopathological examinations.
Results: The results revealed that DOX causing impairment of the locomotor and increasing the anxiety like behavior of rats, marked neuropathological changes, significant elevation of MDA content and TNF-α concentration, reduction of phospholipase (PLD) and acetylcholinesterase (AChE) protein concentration in addition, there were up regulation of JNK, NF-κB and p38 genes and down regulation of Erk1.
Conclusion: Exosomal therapy improved the substantial neurotoxicity of DOX through modulating the markers involved in the neurotoxic signalling pathway of DOX that resulting in improving the pathological lesions and the animal behaviours.
{"title":"Role of bone marrow mesenchymal stem cell-derived exosomes in reducing neurotoxicity and depression-like behaviors induced by doxorubicin in rats.","authors":"Doaa R I Abdel-Gawad, Fatma Khalil, Olfat Shehata, Marwa A Ibrahim, SalmaI El-Samannoudy, Emad A Mahdi, Nema S Shaban","doi":"10.1093/toxres/tfae159","DOIUrl":"10.1093/toxres/tfae159","url":null,"abstract":"<p><strong>Background: </strong>Doxorubicin (DOX) is a broad-spectrum antitumor drug while its use is limited nowadays due to its neurobiological side effects associated with depression. Bone marrow mesenchymal stem cells (BM-MSCs) derived exosomes are a promising regenerative therapy. In this study, we investigated the therapeutic potentiality of BM-MSCs derived exosomes against the neurotoxicity induced by DOX.</p><p><strong>Methods: </strong>Twenty-four male albino rats were divided equally in to three groups as follow: group 1 (control), group 2 (rats injected intraperitoneally (i.p|) with DOX at a dose 2.5mg/Kg), and group 3 (rats injected with DOX and BM-MSCs derived exosomes i.p at a dose 1.5ml/Kg). During the experiment the behavior tests were noted, after three weeks rats were sacrificed, serum and brain samples were collected for biochemical, molecular and histopathological examinations.</p><p><strong>Results: </strong>The results revealed that DOX causing impairment of the locomotor and increasing the anxiety like behavior of rats, marked neuropathological changes, significant elevation of MDA content and TNF-α concentration, reduction of phospholipase (PLD) and acetylcholinesterase (AChE) protein concentration in addition, there were up regulation of JNK, NF-κB and p38 genes and down regulation of Erk1.</p><p><strong>Conclusion: </strong>Exosomal therapy improved the substantial neurotoxicity of DOX through modulating the markers involved in the neurotoxic signalling pathway of DOX that resulting in improving the pathological lesions and the animal behaviours.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11447378/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142379555","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}