首页 > 最新文献

Toxicology Research最新文献

英文 中文
Silencing CircHIPK3 improves sevoflurane-explore learning and memory dysfunction and nerve damage via enhancing miR-338-3p. 沉默CircHIPK3可通过增强miR-338-3p改善七氟醚探索中的学习和记忆功能障碍以及神经损伤。
IF 2.2 4区 医学 Q3 TOXICOLOGY Pub Date : 2024-08-19 eCollection Date: 2024-08-01 DOI: 10.1093/toxres/tfae132
Xiuli Li, Xuefei Li, Yinan Liang

Background: Sevoflurane (Sev), a widely used volatile anesthetic, can cause neurotoxicity, and impair learning and memory.

Objective: This study investigates the role and mechanisms of circHIPK3 in Sev-exposed neurotoxicity and learning and memory impairment.

Methods: SD rats and hippocampal neuronal cells were exposed to Sev. RT-qPCR analysis of circHIPK3 and miR-338-3p levels. MWM test was performed to examine the behavioral changes in rats. The levels of circHIPK3 and miR-338-3p levels were investigated using RT-qPCR. ELISA assay to analyze the expression of pro-inflammatory factors. CCK-8, flow cytometry, and commercial ROS assay kits were analyzed to detect cell viability, apoptosis, and ROS production. DLR and RIP assays validate circHIPK3 binding to miR-338-3p.

Results: Sev increased circHIPK3 expression in rat hippocampal tissue as well as in neuronal cells but decreased miR-338-3p levels compared to controls. circHIPK3 binding to miR-338-3p. Furthermore, silencing of circHIPK3 rats attenuated Sev-induced decline in learning and memory functions . silencing circHIPK3 also reduced Sev-induced secretion of inflammatory factors in rat and neuronal cells. Reducing circHIPK3 partially reversed the Sev-induced decrease in cell viability, increased apoptosis, and overproduction of ROS. However, the inhibitory effect of circHIPK3 on Sev neurotoxicity was restored upon downregulation of miR-338-3p.

Conclusion: Collectively, silencing circHIPK3 alleviates Sev exposure-induced learning and memory deficits and neurotoxicity by enhancing miR-338-3p expression.

背景:七氟烷(Sev七氟醚(Sev)是一种广泛使用的挥发性麻醉剂,可引起神经毒性,并损害学习和记忆:本研究探讨circHIPK3在Sev暴露的神经毒性和学习记忆损伤中的作用和机制:方法:将 SD 大鼠和海马神经元细胞暴露于 Sev。RT-qPCR分析circHIPK3和miR-338-3p的水平。进行MWM测试以检测大鼠的行为变化。使用 RT-qPCR 分析 circHIPK3 和 miR-338-3p 的水平。通过 ELISA 检测分析促炎因子的表达。CCK-8、流式细胞术和商用 ROS 检测试剂盒用于检测细胞活力、凋亡和 ROS 生成。DLR和RIP检测验证了circHIPK3与miR-338-3p的结合:与对照组相比,Sev 增加了大鼠海马组织和神经细胞中 circHIPK3 的表达,但降低了 miR-338-3p 的水平。此外,沉默大鼠的 circHIPK3 可减轻 Sev 诱导的学习和记忆功能下降。减少 circHIPK3 可部分逆转 Sev 诱导的细胞活力下降、细胞凋亡增加和 ROS 过度产生。然而,下调 miR-338-3p 后,circHIPK3 对 Sev 神经毒性的抑制作用得以恢复:总之,沉默circHIPK3可通过增强miR-338-3p的表达缓解Sev暴露诱导的学习和记忆缺陷以及神经毒性。
{"title":"Silencing CircHIPK3 improves sevoflurane-explore learning and memory dysfunction and nerve damage via enhancing miR-338-3p.","authors":"Xiuli Li, Xuefei Li, Yinan Liang","doi":"10.1093/toxres/tfae132","DOIUrl":"10.1093/toxres/tfae132","url":null,"abstract":"<p><strong>Background: </strong>Sevoflurane (Sev), a widely used volatile anesthetic, can cause neurotoxicity, and impair learning and memory.</p><p><strong>Objective: </strong>This study investigates the role and mechanisms of circHIPK3 in Sev-exposed neurotoxicity and learning and memory impairment.</p><p><strong>Methods: </strong>SD rats and hippocampal neuronal cells were exposed to Sev. RT-qPCR analysis of circHIPK3 and miR-338-3p levels. MWM test was performed to examine the behavioral changes in rats. The levels of circHIPK3 and miR-338-3p levels were investigated using RT-qPCR. ELISA assay to analyze the expression of pro-inflammatory factors. CCK-8, flow cytometry, and commercial ROS assay kits were analyzed to detect cell viability, apoptosis, and ROS production. DLR and RIP assays validate circHIPK3 binding to miR-338-3p.</p><p><strong>Results: </strong>Sev increased circHIPK3 expression in rat hippocampal tissue as well as in neuronal cells but decreased miR-338-3p levels compared to controls. circHIPK3 binding to miR-338-3p. Furthermore, silencing of circHIPK3 rats attenuated Sev-induced decline in learning and memory functions . silencing circHIPK3 also reduced Sev-induced secretion of inflammatory factors in rat and neuronal cells. Reducing circHIPK3 partially reversed the Sev-induced decrease in cell viability, increased apoptosis, and overproduction of ROS. However, the inhibitory effect of circHIPK3 on Sev neurotoxicity was restored upon downregulation of miR-338-3p.</p><p><strong>Conclusion: </strong>Collectively, silencing circHIPK3 alleviates Sev exposure-induced learning and memory deficits and neurotoxicity by enhancing miR-338-3p expression.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 4","pages":"tfae132"},"PeriodicalIF":2.2,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11331635/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142007883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Magnolin alleviates cyclophosphamide-induced oxidative stress, inflammation, and apoptosis via Nrf2/HO-1 signaling pathway. 木兰脂素可通过Nrf2/HO-1信号通路减轻环磷酰胺诱导的氧化应激、炎症和细胞凋亡。
IF 2.2 4区 医学 Q3 TOXICOLOGY Pub Date : 2024-08-14 eCollection Date: 2024-08-01 DOI: 10.1093/toxres/tfae129
Sinan Ince, Hasan Huseyin Demirel, Ezgi Nur Demirkapi, Ismail Kucukkurt, Abdullah Eryavuz, Damla Arslan-Acaroz, Ulas Acaroz, Ali Tureyen

In the present study, we investigated the protective effect of magnolin (MAG) against oxidative stress induced by cyclophosphamide (CP) and its role in the Nrf2/HO-1 signaling pathway. Rats were administered MAG (1 mg/kg, i.p.) for 14 days and CP (75 mg/kg, i.p.) on the 14th day. CP administration increased tissue damage, as evidenced by elevated levels of transaminases (aspartate and alanine), alkaline phosphatase, and renal parameters (blood urea nitrogen and creatinine). Additionally, 8-hydroxy-2'-deoxyguanosine and malondialdehyde levels were increased, whereas glutathione levels, along with catalase and superoxide dismutase activities, decreased in CP-treated rats. CP also down-regulated the expression of Bcl-2, HO-1, Nrf2, and NQO-1, while up-regulating Bax, Cas-3, TNF-α, Cox-2, iNOS, IL-6, IL-1β, and NFκB in liver and kidney tissues. In addition, CP treatment caused histopathological changes in heart, lung, liver, kidney, brain, and testis tissues. Treatment with MAG improved biochemical and oxidative stress parameters and prevented histopathological changes in CP-treated rats. Moreover, MAG suppressed the expression of inflammatory cytokines and apoptosis markers. In conclusion, MAG effectively prevented CP-induced toxicity by reducing oxidative stress, inflammation, and apoptosis, with its protective efficacy associated with the up-regulation of Nrf2/HO-1 signaling.

在本研究中,我们探讨了木兰脂素(MAG)对环磷酰胺(CP)诱导的氧化应激的保护作用及其在Nrf2/HO-1信号通路中的作用。大鼠连续14天服用MAG(1毫克/千克,静注),第14天服用CP(75毫克/千克,静注)。氯化石蜡会增加组织损伤,表现为转氨酶(天门冬氨酸和丙氨酸)、碱性磷酸酶和肾参数(血尿素氮和肌酐)水平升高。此外,CP 处理的大鼠体内 8- 羟基-2'-脱氧鸟苷和丙二醛水平升高,而谷胱甘肽水平以及过氧化氢酶和超氧化物歧化酶活性降低。CP 还下调肝脏和肾脏组织中 Bcl-2、HO-1、Nrf2 和 NQO-1 的表达,同时上调 Bax、Cas-3、TNF-α、Cox-2、iNOS、IL-6、IL-1β 和 NFκB 的表达。此外,氯化石蜡还导致心、肺、肝、肾、脑和睾丸组织发生组织病理学变化。用 MAG 治疗可改善 CP 处理大鼠的生化和氧化应激参数,并防止组织病理学变化。此外,MAG 还能抑制炎症细胞因子和细胞凋亡标志物的表达。总之,MAG 通过降低氧化应激、炎症和细胞凋亡,有效预防了 CP 诱导的毒性,其保护功效与 Nrf2/HO-1 信号的上调有关。
{"title":"Magnolin alleviates cyclophosphamide-induced oxidative stress, inflammation, and apoptosis via <i>Nrf2/HO-1</i> signaling pathway.","authors":"Sinan Ince, Hasan Huseyin Demirel, Ezgi Nur Demirkapi, Ismail Kucukkurt, Abdullah Eryavuz, Damla Arslan-Acaroz, Ulas Acaroz, Ali Tureyen","doi":"10.1093/toxres/tfae129","DOIUrl":"10.1093/toxres/tfae129","url":null,"abstract":"<p><p>In the present study, we investigated the protective effect of magnolin (MAG) against oxidative stress induced by cyclophosphamide (CP) and its role in the <i>Nrf2/HO-1</i> signaling pathway. Rats were administered MAG (1 mg/kg, i.p.) for 14 days and CP (75 mg/kg, i.p.) on the 14th day. CP administration increased tissue damage, as evidenced by elevated levels of transaminases (aspartate and alanine), alkaline phosphatase, and renal parameters (blood urea nitrogen and creatinine). Additionally, 8-hydroxy-2'-deoxyguanosine and malondialdehyde levels were increased, whereas glutathione levels, along with catalase and superoxide dismutase activities, decreased in CP-treated rats. CP also down-regulated the expression of <i>Bcl-2, HO-1, Nrf2,</i> and <i>NQO-1</i>, while up-regulating <i>Bax, Cas-3, TNF-</i>α<i>, Cox-2, iNOS, IL-6, IL-1β,</i> and <i>NFκB</i> in liver and kidney tissues. In addition, CP treatment caused histopathological changes in heart, lung, liver, kidney, brain, and testis tissues. Treatment with MAG improved biochemical and oxidative stress parameters and prevented histopathological changes in CP-treated rats. Moreover, MAG suppressed the expression of inflammatory cytokines and apoptosis markers. In conclusion, MAG effectively prevented CP-induced toxicity by reducing oxidative stress, inflammation, and apoptosis, with its protective efficacy associated with the up-regulation of <i>Nrf2/HO-1</i> signaling.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 4","pages":"tfae129"},"PeriodicalIF":2.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11323662/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141986835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
N-acetylcysteine attenuates sodium arsenite-induced oxidative stress and apoptosis in embryonic fibroblast cells. N-乙酰半胱氨酸可减轻亚砷酸钠诱导的胚胎成纤维细胞氧化应激和凋亡。
IF 2.2 4区 医学 Q3 TOXICOLOGY Pub Date : 2024-08-13 eCollection Date: 2024-08-01 DOI: 10.1093/toxres/tfae128
Tunahan Tasci, Banu Orta-Yilmaz, Yasemin Aydin, Mahmut Caliskan

In recent years, the increase in environmental pollutants has been one of the most important factors threatening human and environmental health. Arsenic, a naturally occurring element found in soil, water, and air, easily enters the human body and leads to many metabolic disorders. In this study, we focused on the possible protective effects of N-acetylcysteine (NAC) against sodium arsenite (As)-induced toxic effects on embryonic fibroblast cells. The effects of As and NAC treatment on cells were evaluated, including cytotoxicity, oxidative stress, and apoptosis. Embryonic fibroblast cells were exposed to As (ranging from 0.01 μM to 10 μM) and NAC (at a concentration of 2 mM) for 24 h. The assessment of cytotoxicity markers, such as cell viability and lactate dehydrogenase (LDH), showed that As significantly reduced cell viability and increased LDH levels. Furthermore, we observed that As increased the amount of reactive oxygen species (ROS) in the cell, decreased the activity of antioxidant enzymes, and triggered apoptosis in cells. Additionally, our research revealed that the administration of NAC mitigates the detrimental effects of As. The results showed that As exerted hazardous effects on embryonic fibroblast cells through the induction of oxidative stress and apoptosis. In this context, our study provides evidence that NAC may have a protective effect against the toxicity of As in embryonic fibroblast cells.

近年来,环境污染物的增加已成为威胁人类和环境健康的最重要因素之一。砷是一种存在于土壤、水和空气中的天然元素,很容易进入人体并导致多种代谢紊乱。在这项研究中,我们重点研究了 N-乙酰半胱氨酸(NAC)对亚砷酸钠(As)诱导的胚胎成纤维细胞毒性效应的可能保护作用。我们评估了亚砷酸和 NAC 处理对细胞的影响,包括细胞毒性、氧化应激和细胞凋亡。胚胎成纤维细胞暴露于 As(浓度从 0.01 μM 到 10 μM)和 NAC(浓度为 2 mM)24 小时后,细胞毒性标志物(如细胞活力和乳酸脱氢酶(LDH))的评估结果显示,As 显著降低了细胞活力,增加了 LDH 水平。此外,我们还观察到 As 增加了细胞中活性氧(ROS)的含量,降低了抗氧化酶的活性,并引发细胞凋亡。此外,我们的研究还发现,服用 NAC 可减轻砷的有害影响。研究结果表明,砷通过诱导氧化应激和细胞凋亡对胚胎成纤维细胞产生有害影响。在这种情况下,我们的研究提供了证据,证明 NAC 可能对胚胎成纤维细胞的 As 毒性具有保护作用。
{"title":"N-acetylcysteine attenuates sodium arsenite-induced oxidative stress and apoptosis in embryonic fibroblast cells.","authors":"Tunahan Tasci, Banu Orta-Yilmaz, Yasemin Aydin, Mahmut Caliskan","doi":"10.1093/toxres/tfae128","DOIUrl":"10.1093/toxres/tfae128","url":null,"abstract":"<p><p>In recent years, the increase in environmental pollutants has been one of the most important factors threatening human and environmental health. Arsenic, a naturally occurring element found in soil, water, and air, easily enters the human body and leads to many metabolic disorders. In this study, we focused on the possible protective effects of N-acetylcysteine (NAC) against sodium arsenite (As)-induced toxic effects on embryonic fibroblast cells. The effects of As and NAC treatment on cells were evaluated, including cytotoxicity, oxidative stress, and apoptosis. Embryonic fibroblast cells were exposed to As (ranging from 0.01 μM to 10 μM) and NAC (at a concentration of 2 mM) for 24 h. The assessment of cytotoxicity markers, such as cell viability and lactate dehydrogenase (LDH), showed that As significantly reduced cell viability and increased LDH levels. Furthermore, we observed that As increased the amount of reactive oxygen species (ROS) in the cell, decreased the activity of antioxidant enzymes, and triggered apoptosis in cells. Additionally, our research revealed that the administration of NAC mitigates the detrimental effects of As. The results showed that As exerted hazardous effects on embryonic fibroblast cells through the induction of oxidative stress and apoptosis. In this context, our study provides evidence that NAC may have a protective effect against the toxicity of As in embryonic fibroblast cells.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 4","pages":"tfae128"},"PeriodicalIF":2.2,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11319482/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141974528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative in silico and in vitro evaluation of possible toxic effects of bisphenol derivatives in HepG2 cells. 对双酚衍生物在 HepG2 细胞中可能产生的毒性效应进行硅学和体外比较评估。
IF 2.2 4区 医学 Q3 TOXICOLOGY Pub Date : 2024-08-11 eCollection Date: 2024-08-01 DOI: 10.1093/toxres/tfae127
Aylin Balci-Ozyurt, Anıl Yirun, Deniz Arca Cakır, İbrahim Ozcelik, Merve Bacanli, Gizem Ozkemahli, Suna Sabuncuoglu, Nursen Basaran, Pınar Erkekoglu

Introduction: Bisphenols are widely used in the production of polycarbonate plastics and resin coatings. Bisphenol A (BPA) is suggested to cause a wide range of unwanted effects and "low dose toxicity". With the search for alternative substances to BPA, the use of other bisphenol derivatives namely bisphenol F (BPF) and bisphenol S (BPS) has increased.

Methods: In the current study, we aimed to evaluate the in silico predicted inhibitory concentration 50s (pIC50s) of bisphenol derivatives on immune and apoptotic markers and DNA damage on HepG2 cells. Moreover, apoptotic, genotoxic and immunotoxic effects of BPA, BPF and BPS were determined comparatively. Effects of bisphenols on apoptosis were evaluated by detecting different caspase activities. The genotoxic effects of bisphenols were evaluated by measuring the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-oxoguanine glycosylase (OGG1). To determine the immunotoxic effect of bisphenol derivatives, the levels of interleukin 4 (IL-4) and interleukin 10 (IL-10), transforming growth factor beta (TGF-β) and tumor necrosis factor-alpha (TNF-α), which are known to be expressed by HepG2 cells, were measured. Results: In silico data indicate that all of the bisphenols may cause alterations in immune and apoptotic markers as well as DNA damage at low doses. İn vitro data revealed that all bisphenol derivatives could affect immune markers at inhibitory concentration 30s (IC30s). In addition, BPF and BPS may also have apoptotic immunotoxic effects.

Conclusion: Both in silico and in vivo research are needed further to examine the toxic effects of alternative bisphenol derivatives.

简介:双酚被广泛用于生产聚碳酸酯塑料和树脂涂料。双酚 A(BPA)被认为会导致多种不良影响和 "低剂量毒性"。随着人们寻找双酚 A 的替代物质,其他双酚衍生物(即双酚 F(BPF)和双酚 S(BPS))的使用也在增加:在本研究中,我们旨在评估双酚衍生物对 HepG2 细胞免疫和凋亡标志物以及 DNA 损伤的硅学预测抑制浓度 50s(pIC50s)。此外,还比较测定了双酚 A、双酚 F 和双酚 S 对细胞凋亡、基因毒性和免疫毒性的影响。通过检测不同的 Caspase 活性来评估双酚对细胞凋亡的影响。通过测量 8-hydroxy-2'-deoxyguanosine (8-OHdG) 和 8-oxoguanine glycosylase (OGG1) 的水平,评估了双酚的遗传毒性效应。为了确定双酚衍生物的免疫毒性作用,测量了白细胞介素 4(IL-4)和白细胞介素 10(IL-10)、转化生长因子 beta(TGF-β)和肿瘤坏死因子-α(TNF-α)的水平。结果显示硅学数据表明,所有双酚在低剂量时都可能导致免疫和细胞凋亡标志物的改变以及 DNA 损伤。体外数据显示,所有双酚衍生物在抑制浓度为 30s (IC30s)时都会影响免疫标记物。此外,BPF 和 BPS 还可能具有凋亡免疫毒性作用:结论:要进一步研究替代性双酚衍生物的毒性效应,还需要进行硅学和体内研究。
{"title":"Comparative in silico and in vitro evaluation of possible toxic effects of bisphenol derivatives in HepG2 cells.","authors":"Aylin Balci-Ozyurt, Anıl Yirun, Deniz Arca Cakır, İbrahim Ozcelik, Merve Bacanli, Gizem Ozkemahli, Suna Sabuncuoglu, Nursen Basaran, Pınar Erkekoglu","doi":"10.1093/toxres/tfae127","DOIUrl":"10.1093/toxres/tfae127","url":null,"abstract":"<p><strong>Introduction: </strong>Bisphenols are widely used in the production of polycarbonate plastics and resin coatings. Bisphenol A (BPA) is suggested to cause a wide range of unwanted effects and \"low dose toxicity\". With the search for alternative substances to BPA, the use of other bisphenol derivatives namely bisphenol F (BPF) and bisphenol S (BPS) has increased.</p><p><strong>Methods: </strong>In the current study, we aimed to evaluate the in silico predicted inhibitory concentration 50s (pIC50s) of bisphenol derivatives on immune and apoptotic markers and DNA damage on HepG2 cells. Moreover, apoptotic, genotoxic and immunotoxic effects of BPA, BPF and BPS were determined comparatively. Effects of bisphenols on apoptosis were evaluated by detecting different caspase activities. The genotoxic effects of bisphenols were evaluated by measuring the levels of 8-hydroxy-2'-deoxyguanosine (8-OHdG) and 8-oxoguanine glycosylase (OGG1). To determine the immunotoxic effect of bisphenol derivatives, the levels of interleukin 4 (IL-4) and interleukin 10 (IL-10), transforming growth factor beta (TGF-β) and tumor necrosis factor-alpha (TNF-α), which are known to be expressed by HepG2 cells, were measured. Results: In silico data indicate that all of the bisphenols may cause alterations in immune and apoptotic markers as well as DNA damage at low doses. İn vitro data revealed that all bisphenol derivatives could affect immune markers at inhibitory concentration 30s (IC<sub>30</sub>s). In addition, BPF and BPS may also have apoptotic immunotoxic effects.</p><p><strong>Conclusion: </strong>Both in silico and in vivo research are needed further to examine the toxic effects of alternative bisphenol derivatives.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 4","pages":"tfae127"},"PeriodicalIF":2.2,"publicationDate":"2024-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11316955/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of synthetic food dye erythrosine induced cytotoxicity, genotoxicity, biochemical and molecular alterations in Allium cepa root meristematic cells: insights from in silico study. 评估合成食用染料赤藓红在薤白根分生组织细胞中诱导的细胞毒性、遗传毒性、生化和分子变化:来自硅学研究的启示。
IF 2.2 4区 医学 Q3 TOXICOLOGY Pub Date : 2024-08-09 eCollection Date: 2024-08-01 DOI: 10.1093/toxres/tfae126
Mandeep Singh, Pooja Chadha

Background: Synthetic food dyes are being exponentially used in food products and scarce studies regarding their toxicities and safety raise concern. Erythrosine is one of the synthetic food dyes being used in jams, fig, pineapple marmalades, dairy products, soft drinks, pickles, relishes, smoked fish, cheese, ketchup, maraschino cherries and a variety of other foods.

Methodology: In this study the cyto-genotoxic effect of erythrosine was evaluated, using root meristematic cells of Allium cepa for the cellular and molecular alternations at concentrations 0.1, 0.25, 0.5 and 1 mg/mL.

Results: The results revealed a significant decrease of 57.81% in the mitotic index after 96 h at the 0.1 mg/mL concentration. In biochemical analysis, the malondialdehyde content increased significantly (5.47-fold), while proline content, catalase activity and superoxide dismutase activity decreased gradually in a concentration-dependent manner showing a maximum decrease of 78.11%, 64.68% and 61.73% respectively at the highest concentration after 96 h duration. The comet assay revealed increased DNA damage with increasing concentration and attenuated total reflectance- Fourier transform infrared spectroscopy (ATR-FTIR) analysis showed significant alterations in biomolecules as indicated by multivariate analysis, i.e. Principal Component Analysis (PCA). Furthermore, molecular docking demonstrated a strong binding energy (Gbest = -11.46 kcal/mol) and an inhibition constant (Ki) of 3.96 nM between erythrosine and the DNA minor groove.

Conclusion: The present study's findings revealed the cytotoxic and genotoxic potential of erythrosine on A. cepa root cells. Further, the study also proposed the usefulness of A. cepa as a model system for studying the toxicity of food additives.

背景:合成食用染料在食品中的使用呈指数级增长,有关其毒性和安全性的研究很少,这引起了人们的关注。赤藓红是合成食品染料之一,被用于果酱、无花果、菠萝果酱、乳制品、软饮料、腌菜、调味品、熏鱼、奶酪、番茄酱、马拉希诺樱桃和其他各种食品中:在这项研究中,使用浓度为 0.1、0.25、0.5 和 1 毫克/毫升的薤白根分生组织细胞,评估了赤藓红的细胞遗传毒性作用,以观察细胞和分子的变化:结果表明,浓度为 0.1 毫克/毫升时,有丝分裂指数在 96 小时后大幅下降了 57.81%。在生化分析中,丙二醛含量显著增加(5.47 倍),而脯氨酸含量、过氧化氢酶活性和超氧化物歧化酶活性则以浓度依赖的方式逐渐下降,在最高浓度下,96 小时后的最大降幅分别为 78.11%、64.68% 和 61.73%。彗星试验表明,随着浓度的增加,DNA 的损伤也在增加;衰减全反射-傅立叶变换红外光谱(ATR-FTIR)分析表明,多变量分析(即主成分分析)显示生物大分子发生了显著变化。此外,分子对接表明赤藓红与 DNA 小沟之间的结合能很强(Gbest = -11.46 kcal/mol),抑制常数(Ki)为 3.96 nM:本研究结果揭示了赤藓红对牛肝菌根细胞的细胞毒性和基因毒性潜力。此外,该研究还提出了将牛肝菌作为研究食品添加剂毒性的模型系统的实用性。
{"title":"Assessment of synthetic food dye erythrosine induced cytotoxicity, genotoxicity, biochemical and molecular alterations in <i>Allium cepa</i> root meristematic cells: insights from in silico study.","authors":"Mandeep Singh, Pooja Chadha","doi":"10.1093/toxres/tfae126","DOIUrl":"10.1093/toxres/tfae126","url":null,"abstract":"<p><strong>Background: </strong>Synthetic food dyes are being exponentially used in food products and scarce studies regarding their toxicities and safety raise concern. Erythrosine is one of the synthetic food dyes being used in jams, fig, pineapple marmalades, dairy products, soft drinks, pickles, relishes, smoked fish, cheese, ketchup, maraschino cherries and a variety of other foods.</p><p><strong>Methodology: </strong>In this study the cyto-genotoxic effect of erythrosine was evaluated, using root meristematic cells of <i>Allium cepa</i> for the cellular and molecular alternations at concentrations 0.1, 0.25, 0.5 and 1 mg/mL.</p><p><strong>Results: </strong>The results revealed a significant decrease of 57.81% in the mitotic index after 96 h at the 0.1 mg/mL concentration. In biochemical analysis, the malondialdehyde content increased significantly (5.47-fold), while proline content, catalase activity and superoxide dismutase activity decreased gradually in a concentration-dependent manner showing a maximum decrease of 78.11%, 64.68% and 61.73% respectively at the highest concentration after 96 h duration. The comet assay revealed increased DNA damage with increasing concentration and attenuated total reflectance- Fourier transform infrared spectroscopy (ATR-FTIR) analysis showed significant alterations in biomolecules as indicated by multivariate analysis, i.e. Principal Component Analysis (PCA). Furthermore, molecular docking demonstrated a strong binding energy (G<sub>best</sub> = -11.46 kcal/mol) and an inhibition constant (Ki) of 3.96 nM between erythrosine and the DNA minor groove.</p><p><strong>Conclusion: </strong>The present study's findings revealed the cytotoxic and genotoxic potential of erythrosine on <i>A. cepa</i> root cells. Further, the study also proposed the usefulness of <i>A. cepa</i> as a model system for studying the toxicity of food additives.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 4","pages":"tfae126"},"PeriodicalIF":2.2,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11311706/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toxicological evaluation of copper oxide nanoparticles following their intraperitoneal injection to Wistar rats. 给 Wistar 大鼠腹腔注射纳米氧化铜颗粒后的毒理学评估。
IF 2.2 4区 医学 Q3 TOXICOLOGY Pub Date : 2024-08-08 eCollection Date: 2024-08-01 DOI: 10.1093/toxres/tfae125
Nisha Shareef, Shairyar Abid, Aqsa Amir, Amir Ismail, Abd Ullah, Adnan Ahmad, Samir Ibenmoussa, Yousef A Bin Jardan, Mohammed Bourhia, Ather Ibrahim, Furhan Iqbal

Background: Copper oxide (Cu2O) nanoparticles (CO NPs) are in extensive use during our everyday life as antimicrobial agent, lubricant, in manufacturing electrodes of lithium ion batteries as well as for photo catalytic degradation of organic pollutants. Due to extensive and diverse use Cu2O NPs, they are likely to accumulate in the environment and to affect the live forms. Present investigation was aimed to report the biocompatibility of CO NPs in Wistar rats in sex specific manner. CO NPs, having average diameter of 14.06 nm, were synthesized by co-precipitation method and scanning electron microscopy and X ray diffraction were used for their characterization.

Methods: For 14 consecutive days, Wistar rats (6 weeks old) of both sexes were intraperitoneally injected with 10 mg/mL saline/Kg body weight of CO NPs, while the control groups intraperitoneally received saline solution for same duration. Behavioral tests (open field and novel object recognition), complete blood count, selected biomarkers of oxidative stress and Copper concentration in brain and liver were determined in all subjects.

Results: High mortality rates [male 40% and female 60%] were observed in rats exposed to CO NPs. A sever decrease in body weight was also observed in both male and female rats exposed to CO NPs. Female rats treated with CO NPs spent significantly more time with novel object as compared to control [P = 0.05] during second trial of novel object test. CO NPs treated female rats had higher mean corpuscular hemoglobin [P < 0.001] levels and Copper concentration in liver [P = 0.04] than control. Male rats exposed to CO NPs had significantly higher mean corpuscular volume [P = 0.02] and superoxide dismutase [SOD] [P = 0.04] in lungs than their control group. All other studied parameters non significantly varied upon comparison between CO NPs treated and untreated rats of both sex.

Conclusion: In conclusion, we are reporting that intraperitoneal injections of CO NPs for 14 days can disturb complete blood count and biomarkers of oxidative stress in lungs of Wistar rats.

背景:氧化铜(Cu2O)纳米粒子(CO NPs)在日常生活中被广泛用作抗菌剂、润滑剂、锂离子电池电极的制造以及有机污染物的光催化降解。由于 Cu2O NPs 的广泛和多样化使用,它们很可能会在环境中积累,并对生物体造成影响。本次研究旨在报告 CO NPs 在 Wistar 大鼠体内的生物相容性。采用共沉淀法合成了平均直径为 14.06 nm 的 CO NPs,并利用扫描电子显微镜和 X 射线衍射法对其进行了表征:连续 14 天向 Wistar 大鼠(6 周大)腹腔注射 10 mg/mL 生理盐水/Kg 体重的 CO NPs,对照组腹腔注射生理盐水 14 天。对所有受试者进行了行为测试(开阔地和新物体识别)、全血细胞计数、选定的氧化应激生物标志物以及脑和肝中铜的浓度测定:结果:观察发现,暴露于 CO NPs 的大鼠死亡率很高 [雄性为 40%,雌性为 60%]。还观察到接触 CO NPs 的雄性和雌性大鼠体重严重下降。与对照组相比,经 CO NPs 处理的雌性大鼠在第二次新物体测试中花费在新物体上的时间明显更长 [P = 0.05]。经 CO NPs 处理的雌性大鼠的平均血红蛋白[P P = 0.04]高于对照组。与对照组相比,暴露于 CO NPs 的雄性大鼠肺部的平均血球容积 [P = 0.02] 和超氧化物歧化酶 [SOD] [P = 0.04] 明显更高。经 CO NPs 处理和未处理的雌雄大鼠相比,所有其他研究参数均无明显变化:总之,我们报告了连续 14 天腹腔注射 CO NPs 会干扰 Wistar 大鼠肺部的全血细胞计数和氧化应激生物标志物。
{"title":"Toxicological evaluation of copper oxide nanoparticles following their intraperitoneal injection to Wistar rats.","authors":"Nisha Shareef, Shairyar Abid, Aqsa Amir, Amir Ismail, Abd Ullah, Adnan Ahmad, Samir Ibenmoussa, Yousef A Bin Jardan, Mohammed Bourhia, Ather Ibrahim, Furhan Iqbal","doi":"10.1093/toxres/tfae125","DOIUrl":"10.1093/toxres/tfae125","url":null,"abstract":"<p><strong>Background: </strong>Copper oxide (Cu<sub>2</sub>O) nanoparticles (CO NPs) are in extensive use during our everyday life as antimicrobial agent, lubricant, in manufacturing electrodes of lithium ion batteries as well as for photo catalytic degradation of organic pollutants. Due to extensive and diverse use Cu<sub>2</sub>O NPs, they are likely to accumulate in the environment and to affect the live forms. Present investigation was aimed to report the biocompatibility of CO NPs in Wistar rats in sex specific manner. CO NPs, having average diameter of 14.06 nm, were synthesized by co-precipitation method and scanning electron microscopy and X ray diffraction were used for their characterization.</p><p><strong>Methods: </strong>For 14 consecutive days, Wistar rats (6 weeks old) of both sexes were intraperitoneally injected with 10 mg/mL saline/Kg body weight of CO NPs, while the control groups intraperitoneally received saline solution for same duration. Behavioral tests (open field and novel object recognition), complete blood count, selected biomarkers of oxidative stress and Copper concentration in brain and liver were determined in all subjects.</p><p><strong>Results: </strong>High mortality rates [male 40% and female 60%] were observed in rats exposed to CO NPs. A sever decrease in body weight was also observed in both male and female rats exposed to CO NPs. Female rats treated with CO NPs spent significantly more time with novel object as compared to control [<i>P</i> = 0.05] during second trial of novel object test. CO NPs treated female rats had higher mean corpuscular hemoglobin [<i>P</i> < 0.001] levels and Copper concentration in liver [<i>P</i> = 0.04] than control. Male rats exposed to CO NPs had significantly higher mean corpuscular volume [<i>P</i> = 0.02] and superoxide dismutase [SOD] [<i>P</i> = 0.04] in lungs than their control group. All other studied parameters non significantly varied upon comparison between CO NPs treated and untreated rats of both sex.</p><p><strong>Conclusion: </strong>In conclusion, we are reporting that intraperitoneal injections of CO NPs for 14 days can disturb complete blood count and biomarkers of oxidative stress in lungs of Wistar rats.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 4","pages":"tfae125"},"PeriodicalIF":2.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306316/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141915526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study on the mechanism of hepatotoxicity of Aucklandiae radix through liver metabolomics and network pharmacology. 通过肝脏代谢组学和网络药理学研究金银花的肝毒性机制
IF 2.2 4区 医学 Q3 TOXICOLOGY Pub Date : 2024-08-07 eCollection Date: 2024-08-01 DOI: 10.1093/toxres/tfae123
Shen Song, Rongli Qiu, Yan Huang, Zhuxiu Zhou, Jin Yan, Qiaochan Ou, Donghui Wei, Jingxuan He, Yi Liang, Xingyue Du, Weifeng Yao, Tulin Lu

Background: Aucklandiae Radix (CAR) and its roasted processed products (PAR) are extensively used in various Chinese patent medicines due to their diverse pharmacological activities. However, numerous side effects of CAR have been reported and the hepatotoxicity and the corresponding mechanisms have not been thoroughly investigated. Our study aims to explore the underlying mechanism of the hepatotoxic impacts of CAR.

Methods: In this study, metabolomic analysis was performed using liver tissue from the mice administered with different dosages of CAR/PAR extracts to examine the hepatotoxic impacts of CAR and elucidate the underlying mechanism. Network pharmacology was employed to predict the potential molecular targets and associated signaling pathways based on the distinctive compounds between CAR and PAR. A composition-target-GO-Bio process-metabolic pathway network was constructed by integrating the hepatotoxicity-related metabolic pathways. Finally, the target proteins related with the hepatotoxic effect of CAR were identified and validated in vivo.

Results: The metabolomics analysis revealed that 33 related metabolic pathways were significantly altered in the high-dose CAR group, four of which were associated with the hepatotoxicity and could be alleviated by PAR. The network identified NQO1 as the primary target of the hepatotoxic effect induced by CAR exposure, which was subsequently verified by Western Blotting. Further evidence in vivo demonstrated that Nrf2 and HO-1, closely related to NQO1, were also the main targets through which CAR induced the liver injury, and that oxidative stress should be the primary mechanism for the CAR-induced hepatotoxicity.

Conclusions: This preliminary study on the hepatic toxic injury of CAR provides a theoretical basis for the rational and safe use of CAR rationally and safely in clinical settings.

背景:白头翁(CAR)及其焙烤加工品(PAR)具有多种药理活性,被广泛用于各种中成药中。然而,关于金银花副作用的报道不胜枚举,其中的肝毒性及其机制尚未得到深入研究。我们的研究旨在探索CAR肝毒性影响的内在机制:本研究使用不同剂量的 CAR/PAR 提取物对小鼠肝组织进行了代谢组学分析,以研究 CAR 的肝毒性影响并阐明其潜在机制。根据 CAR 和 PAR 的不同化合物,采用网络药理学预测了潜在的分子靶点和相关信号通路。通过整合与肝毒性相关的代谢通路,构建了成分-靶点-GO-生物过程-代谢通路网络。最后,确定了与CAR肝毒性效应相关的靶蛋白,并在体内进行了验证:代谢组学分析表明,33条相关代谢通路在大剂量CAR组中发生了显著改变,其中4条与肝毒性相关,可通过PAR缓解肝毒性。该网络确定NQO1是CAR暴露诱导肝毒性效应的主要靶点,这一点随后通过Western印迹法得到了验证。进一步的体内证据表明,与NQO1密切相关的Nrf2和HO-1也是CAR诱导肝损伤的主要靶点,氧化应激应是CAR诱导肝毒性的主要机制:这项关于CAR肝毒性损伤的初步研究为临床合理、安全地使用CAR提供了理论依据。
{"title":"Study on the mechanism of hepatotoxicity of Aucklandiae radix through liver metabolomics and network pharmacology.","authors":"Shen Song, Rongli Qiu, Yan Huang, Zhuxiu Zhou, Jin Yan, Qiaochan Ou, Donghui Wei, Jingxuan He, Yi Liang, Xingyue Du, Weifeng Yao, Tulin Lu","doi":"10.1093/toxres/tfae123","DOIUrl":"10.1093/toxres/tfae123","url":null,"abstract":"<p><strong>Background: </strong>Aucklandiae Radix (CAR) and its roasted processed products (PAR) are extensively used in various Chinese patent medicines due to their diverse pharmacological activities. However, numerous side effects of CAR have been reported and the hepatotoxicity and the corresponding mechanisms have not been thoroughly investigated. Our study aims to explore the underlying mechanism of the hepatotoxic impacts of CAR.</p><p><strong>Methods: </strong>In this study, metabolomic analysis was performed using liver tissue from the mice administered with different dosages of CAR/PAR extracts to examine the hepatotoxic impacts of CAR and elucidate the underlying mechanism. Network pharmacology was employed to predict the potential molecular targets and associated signaling pathways based on the distinctive compounds between CAR and PAR. A composition-target-GO-Bio process-metabolic pathway network was constructed by integrating the hepatotoxicity-related metabolic pathways. Finally, the target proteins related with the hepatotoxic effect of CAR were identified and validated in vivo.</p><p><strong>Results: </strong>The metabolomics analysis revealed that 33 related metabolic pathways were significantly altered in the high-dose CAR group, four of which were associated with the hepatotoxicity and could be alleviated by PAR. The network identified NQO1 as the primary target of the hepatotoxic effect induced by CAR exposure, which was subsequently verified by Western Blotting. Further evidence in vivo demonstrated that Nrf2 and HO-1, closely related to NQO1, were also the main targets through which CAR induced the liver injury, and that oxidative stress should be the primary mechanism for the CAR-induced hepatotoxicity.</p><p><strong>Conclusions: </strong>This preliminary study on the hepatic toxic injury of CAR provides a theoretical basis for the rational and safe use of CAR rationally and safely in clinical settings.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 4","pages":"tfae123"},"PeriodicalIF":2.2,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11303830/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141905102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Drug-induced kidney injury: challenges and opportunities. 药物引起的肾损伤:挑战与机遇。
IF 2.2 4区 医学 Q3 TOXICOLOGY Pub Date : 2024-08-05 eCollection Date: 2024-08-01 DOI: 10.1093/toxres/tfae119
Skylar Connor, Ruth A Roberts, Weida Tong

Drug-induced kidney injury (DIKI) is a frequently reported adverse event, associated with acute kidney injury, chronic kidney disease, and end-stage renal failure. Prospective cohort studies on acute injuries suggest a frequency of around 14%-26% in adult populations and a significant concern in pediatrics with a frequency of 16% being attributed to a drug. In drug discovery and development, renal injury accounts for 8 and 9% of preclinical and clinical failures, respectively, impacting multiple therapeutic areas. Currently, the standard biomarkers for identifying DIKI are serum creatinine and blood urea nitrogen. However, both markers lack the sensitivity and specificity to detect nephrotoxicity prior to a significant loss of renal function. Consequently, there is a pressing need for the development of alternative methods to reliably predict drug-induced kidney injury (DIKI) in early drug discovery. In this article, we discuss various aspects of DIKI and how it is assessed in preclinical models and in the clinical setting, including the challenges posed by translating animal data to humans. We then examine the urinary biomarkers accepted by both the US Food and Drug Administration (FDA) and the European Medicines Agency for monitoring DIKI in preclinical studies and on a case-by-case basis in clinical trials. We also review new approach methodologies (NAMs) and how they may assist in developing novel biomarkers for DIKI that can be used earlier in drug discovery and development.

药物性肾损伤(DIKI)是一种经常报告的不良事件,与急性肾损伤、慢性肾病和终末期肾衰竭有关。有关急性肾损伤的前瞻性队列研究表明,在成年人群中,急性肾损伤的发生率约为 14%-26%,而在儿科中,由药物引起的急性肾损伤的发生率高达 16%,这也是一个值得关注的问题。在药物研发过程中,肾损伤分别占临床前和临床失败的 8% 和 9%,影响到多个治疗领域。目前,识别 DIKI 的标准生物标记物是血清肌酐和血尿素氮。然而,这两种标志物都缺乏灵敏度和特异性,无法在肾功能显著丧失之前检测出肾毒性。因此,亟需开发替代方法,以便在早期药物发现过程中可靠地预测药物诱发肾损伤(DIKI)。在本文中,我们将讨论 DIKI 的各个方面以及如何在临床前模型和临床环境中对其进行评估,包括将动物数据转化为人类数据所带来的挑战。然后,我们研究了美国食品药品管理局(FDA)和欧洲药品管理局认可的尿液生物标志物,用于监测临床前研究中的 DIKI 以及临床试验中的个案。我们还回顾了新方法学 (NAM),以及这些方法学如何帮助开发可在药物发现和开发早期使用的 DIKI 新型生物标记物。
{"title":"Drug-induced kidney injury: challenges and opportunities.","authors":"Skylar Connor, Ruth A Roberts, Weida Tong","doi":"10.1093/toxres/tfae119","DOIUrl":"10.1093/toxres/tfae119","url":null,"abstract":"<p><p>Drug-induced kidney injury (DIKI) is a frequently reported adverse event, associated with acute kidney injury, chronic kidney disease, and end-stage renal failure. Prospective cohort studies on acute injuries suggest a frequency of around 14%-26% in adult populations and a significant concern in pediatrics with a frequency of 16% being attributed to a drug. In drug discovery and development, renal injury accounts for 8 and 9% of preclinical and clinical failures, respectively, impacting multiple therapeutic areas. Currently, the standard biomarkers for identifying DIKI are serum creatinine and blood urea nitrogen. However, both markers lack the sensitivity and specificity to detect nephrotoxicity prior to a significant loss of renal function. Consequently, there is a pressing need for the development of alternative methods to reliably predict drug-induced kidney injury (DIKI) in early drug discovery. In this article, we discuss various aspects of DIKI and how it is assessed in preclinical models and in the clinical setting, including the challenges posed by translating animal data to humans. We then examine the urinary biomarkers accepted by both the US Food and Drug Administration (FDA) and the European Medicines Agency for monitoring DIKI in preclinical studies and on a case-by-case basis in clinical trials. We also review new approach methodologies (NAMs) and how they may assist in developing novel biomarkers for DIKI that can be used earlier in drug discovery and development.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 4","pages":"tfae119"},"PeriodicalIF":2.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299199/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141892404","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Escin induces cell death in human skin melanoma cells through apoptotic mechanisms. Escin 通过凋亡机制诱导人类皮肤黑色素瘤细胞死亡。
IF 2.2 4区 医学 Q3 TOXICOLOGY Pub Date : 2024-08-05 eCollection Date: 2024-08-01 DOI: 10.1093/toxres/tfae124
Canan Vejselova Sezer

Natural products based on their significant anti-cancer potencies have been used in cancer treatment. A natural blend of triterpenoid saponins derived from the horse chestnut (Aesculus hippocastanum L.), has been investigated in various diseases based on its main active ingredient escin. Herein, we examined the potential antiproliferative, proapoptotic, and cytotoxic activities of escin on human skin melanoma (CHL-1) cells. Cytotoxicity of escin was determined by MTT assay. Morphological changes were detected by confocal microscopy and ultrastructural changes by transmission electron microscopy studies. Phosphatidylserine translocation assay, Bcl-2 activation assessment, and oxidative stress analysis were used to determine the cell death mode of the cells. The results showed that escin reduced cell viability in a dose-dependent manner within 24 h of exposure and was highly cytotoxic at lower concentrations (IC50 value 6 μg/mL). Escin inactivated Bcl-2 signaling and triggered apoptosis by increasing the reactive oxygen species and by causing morphological and ultrastructural changes that implicate to the proapoptotic activity. Escin has been found to exert high potential for an anti-cancer drug following further in vitro and in vivo investigations.

天然产品具有显著的抗癌功效,已被用于癌症治疗。从七叶树(Aesculus hippocastanum L.)中提取的一种三萜类皂苷天然混合物的主要活性成分逸辛已被用于各种疾病的研究。在此,我们研究了 escin 对人类皮肤黑色素瘤(CHL-1)细胞的潜在抗增殖、促凋亡和细胞毒性活性。细胞毒性采用 MTT 法测定。共聚焦显微镜检测了细胞的形态变化,透射电子显微镜研究了细胞的超微结构变化。磷脂酰丝氨酸转位检测、Bcl-2 激活评估和氧化应激分析用于确定细胞的死亡模式。结果表明,在暴露 24 小时内,埃辛以剂量依赖的方式降低了细胞活力,在较低浓度下具有很强的细胞毒性(IC50 值为 6 μg/mL)。埃辛能使 Bcl-2 信号失活,并通过增加活性氧以及引起形态学和超微结构的变化引发细胞凋亡,这些变化都与促凋亡活性有关。经过进一步的体外和体内研究发现,Escin 具有很高的抗癌潜力。
{"title":"Escin induces cell death in human skin melanoma cells through apoptotic mechanisms.","authors":"Canan Vejselova Sezer","doi":"10.1093/toxres/tfae124","DOIUrl":"10.1093/toxres/tfae124","url":null,"abstract":"<p><p>Natural products based on their significant anti-cancer potencies have been used in cancer treatment. A natural blend of triterpenoid saponins derived from the horse chestnut (<i>Aesculus hippocastanum</i> L.), has been investigated in various diseases based on its main active ingredient escin. Herein, we examined the potential antiproliferative, proapoptotic, and cytotoxic activities of escin on human skin melanoma (CHL-1) cells. Cytotoxicity of escin was determined by MTT assay. Morphological changes were detected by confocal microscopy and ultrastructural changes by transmission electron microscopy studies. Phosphatidylserine translocation assay, Bcl-2 activation assessment, and oxidative stress analysis were used to determine the cell death mode of the cells. The results showed that escin reduced cell viability in a dose-dependent manner within 24 h of exposure and was highly cytotoxic at lower concentrations (IC<sub>50</sub> value 6 μg/mL). Escin inactivated Bcl-2 signaling and triggered apoptosis by increasing the reactive oxygen species and by causing morphological and ultrastructural changes that implicate to the proapoptotic activity. Escin has been found to exert high potential for an anti-cancer drug following further <i>in vitro</i> and <i>in vivo</i> investigations.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 4","pages":"tfae124"},"PeriodicalIF":2.2,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11299196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141896162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of B-type natriuretic peptide as an early predictor of mortality in acutely poisoned patients with cardiotoxicities. 评估 B 型钠尿肽作为心脏毒性急性中毒患者死亡率的早期预测指标。
IF 2.2 4区 医学 Q3 TOXICOLOGY Pub Date : 2024-08-04 eCollection Date: 2024-08-01 DOI: 10.1093/toxres/tfae122
Shaimaa Ali Elgendy, Osama Shoeib, Doaa Elgharbawy, Mona M Abo El-Noor, Abdelmoty Kabbash

Background: Cardiotoxicity is a major toxic effect induced by several types of drugs. An electrocardiogram is done routinely in cardiovascular drug exposures. Cardiac troponin I (cTnI) is the usual biomarker for diagnosing myocardial injury. B-type natriuretic peptide (BNP) is a well-established predictor of disease state in suspected heart failure.

Aim: The study aimed to assess BNP's role as an early predictor of mortality compared with cTnI and ECG changes in acutely poisoned patients with cardiotoxicities.

Methodology: This study enrolled 70 patients with acute cardiotoxicity by drugs and toxins known to cause cardiac injury admitted to Tanta University Poison Control Center (TUPCC). Collected data included socio-demographic data, toxicological history, vital signs, ECG changes, Poison Severity Score (PSS), BNP, and cTnI serum levels.

Result: Patients were classified as survivors and non-survivors. Significantly more delay time was recorded in non-survivors. Moreover, vital signs were significantly abnormal in non-survivors. There was no statistical significance regarding the initial ECG abnormalities between survivors and non-survivors. BNP and cTnI levels were significantly higher among non-survivors. For mortality prediction, BNP had good predictive power (AUC = 0.841) with 100% sensitivity and 79.7% specificity while cTnI had an acceptable predictive power (AUC = 0.786), with 83.3% sensitivity and 78.1% specificity with insignificant difference between both biomarkers.

Conclusion: BNP and cTnI levels can predict mortality in acute cardiotoxicity compared to ECG which has no statistically significant prediction. BNP has a higher discriminatory power than cTnI for the prediction of mortality.

背景:心脏毒性是多种药物诱发的主要毒性反应。心电图是心血管药物暴露的常规检查。心肌肌钙蛋白 I(cTnI)是诊断心肌损伤的常用生物标志物。目的:本研究旨在评估 BNP 与 cTnI 和心电图变化相比,在急性中毒心脏病患者中作为死亡率早期预测指标的作用:本研究招募了 70 名坦塔大学毒物控制中心(TUPCC)收治的已知可导致心脏损伤的药物和毒素引起的急性心脏毒性患者。收集的数据包括社会人口学数据、毒物史、生命体征、心电图变化、中毒严重程度评分(PSS)、BNP 和 cTnI 血清水平:结果:患者分为幸存者和非幸存者。非幸存者的延迟时间明显较长。此外,非存活患者的生命体征明显异常。幸存者和非幸存者的初始心电图异常没有统计学意义。非幸存者的 BNP 和 cTnI 水平明显较高。在预测死亡率方面,BNP具有良好的预测能力(AUC = 0.841),灵敏度为100%,特异性为79.7%,而cTnI的预测能力可接受(AUC = 0.786),灵敏度为83.3%,特异性为78.1%,两种生物标志物之间的差异不显著:结论:BNP和cTnI水平可预测急性心脏毒性患者的死亡率,而心电图在统计学上没有显著的预测作用。在预测死亡率方面,BNP 的鉴别力高于 cTnI。
{"title":"Assessment of B-type natriuretic peptide as an early predictor of mortality in acutely poisoned patients with cardiotoxicities.","authors":"Shaimaa Ali Elgendy, Osama Shoeib, Doaa Elgharbawy, Mona M Abo El-Noor, Abdelmoty Kabbash","doi":"10.1093/toxres/tfae122","DOIUrl":"10.1093/toxres/tfae122","url":null,"abstract":"<p><strong>Background: </strong>Cardiotoxicity is a major toxic effect induced by several types of drugs. An electrocardiogram is done routinely in cardiovascular drug exposures. Cardiac troponin I (cTnI) is the usual biomarker for diagnosing myocardial injury. B-type natriuretic peptide (BNP) is a well-established predictor of disease state in suspected heart failure.</p><p><strong>Aim: </strong>The study aimed to assess BNP's role as an early predictor of mortality compared with cTnI and ECG changes in acutely poisoned patients with cardiotoxicities.</p><p><strong>Methodology: </strong>This study enrolled 70 patients with acute cardiotoxicity by drugs and toxins known to cause cardiac injury admitted to Tanta University Poison Control Center (TUPCC). Collected data included socio-demographic data, toxicological history, vital signs, ECG changes, Poison Severity Score (PSS), BNP, and cTnI serum levels.</p><p><strong>Result: </strong>Patients were classified as survivors and non-survivors. Significantly more delay time was recorded in non-survivors. Moreover, vital signs were significantly abnormal in non-survivors. There was no statistical significance regarding the initial ECG abnormalities between survivors and non-survivors. BNP and cTnI levels were significantly higher among non-survivors. For mortality prediction, BNP had good predictive power (AUC = 0.841) with 100% sensitivity and 79.7% specificity while cTnI had an acceptable predictive power (AUC = 0.786), with 83.3% sensitivity and 78.1% specificity with insignificant difference between both biomarkers.</p><p><strong>Conclusion: </strong>BNP and cTnI levels can predict mortality in acute cardiotoxicity compared to ECG which has no statistically significant prediction. BNP has a higher discriminatory power than cTnI for the prediction of mortality.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 4","pages":"tfae122"},"PeriodicalIF":2.2,"publicationDate":"2024-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297542/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141892403","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Toxicology Research
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1