Pub Date : 2024-12-08eCollection Date: 2024-12-01DOI: 10.1093/toxres/tfae208
Yihan Ye, Fuyong Song
Background: Sterile alpha and toll interleukin receptor motif-containing protein 1 (SARM1) are primarily expressed in the mammalian nervous system, with their presence in neurons being associated with mitochondrial aggregation. SARM1 functions as a mediator of cell death and morphological changes, while also regulating Waller degeneration in nerve fibers and influencing glial cell formation.
Purpose: Recent reports demonstrate SARM1 serves as a connector in the Toll-like receptor (TLR) pathway and plays a role in regulating inflammation during periods of stress such as infection, trauma, and hypoxia. These findings offer new insights into pathogenesis research and the prevention and treatment of neurodegenerative diseases and pathogen infections.
Methods: This review synthesizes recent findings on the immune-related mechanisms of SARM1, emphasizing its roles in inflammation and its functional impact on the nervous system and other bodily systems.
Conclusions: Understanding the multifaceted roles of SARM1 in immune regulation and neuronal health provides novel insights into its involvement in disease pathogenesis. These insights hold promise for advancing research into the prevention and treatment of neurodegenerative diseases and pathogen-induced conditions.
{"title":"SARM1 in the pathogenesis of immune-related disease.","authors":"Yihan Ye, Fuyong Song","doi":"10.1093/toxres/tfae208","DOIUrl":"10.1093/toxres/tfae208","url":null,"abstract":"<p><strong>Background: </strong>Sterile alpha and toll interleukin receptor motif-containing protein 1 (SARM1) are primarily expressed in the mammalian nervous system, with their presence in neurons being associated with mitochondrial aggregation. SARM1 functions as a mediator of cell death and morphological changes, while also regulating Waller degeneration in nerve fibers and influencing glial cell formation.</p><p><strong>Purpose: </strong>Recent reports demonstrate SARM1 serves as a connector in the Toll-like receptor (TLR) pathway and plays a role in regulating inflammation during periods of stress such as infection, trauma, and hypoxia. These findings offer new insights into pathogenesis research and the prevention and treatment of neurodegenerative diseases and pathogen infections.</p><p><strong>Methods: </strong>This review synthesizes recent findings on the immune-related mechanisms of SARM1, emphasizing its roles in inflammation and its functional impact on the nervous system and other bodily systems.</p><p><strong>Conclusions: </strong>Understanding the multifaceted roles of SARM1 in immune regulation and neuronal health provides novel insights into its involvement in disease pathogenesis. These insights hold promise for advancing research into the prevention and treatment of neurodegenerative diseases and pathogen-induced conditions.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 6","pages":"tfae208"},"PeriodicalIF":2.2,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631086/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-08eCollection Date: 2024-12-01DOI: 10.1093/toxres/tfae204
Xiaoyan Jin, Yong Chen, Gui Wang
Objective: To uncover the role of nuclear receptor-binding protein 2 (NRBP2) in cancer-associated fibroblasts (CAFs), and CAFmediated TAM sensitivity in breast cancer (BC).
Methods: 10 pairs of matched tumor tissues and adjacent normal tissues were collected and CAFs and normal fibroblasts (NFs) were isolated. CCK-8 as well as colony formation assays showed the effects on cell growth. qPCR and Immunoblot showed the expression of NRBP2 in CAFs. FCM as well as Immunoblot assays exhibited the effects on cell apoptosis. Immunoblot further confirmed the mechanism.
Results: CAFs contributed to BC cell growth. In addition, the expression of NRBP2 is downregulated in CAFs. NRBP2 suppressed CAF-induced resistance in BC cells. Further, NRBP2 expression in CAF group increased TAM induced apoptosis. Mechanically, NRBP2 in CAFs inhibited Akt pathway, therefore suppressed resistance in BC cells.
Conclusion: CAFs affected BC cell sensitivity to TAM by regulating NRBP2.
{"title":"Cancer-associated fibroblasts affect breast cancer cell sensitivity to chemotherapeutic agents by regulating NRBP2.","authors":"Xiaoyan Jin, Yong Chen, Gui Wang","doi":"10.1093/toxres/tfae204","DOIUrl":"10.1093/toxres/tfae204","url":null,"abstract":"<p><strong>Objective: </strong>To uncover the role of nuclear receptor-binding protein 2 (NRBP2) in cancer-associated fibroblasts (CAFs), and CAFmediated TAM sensitivity in breast cancer (BC).</p><p><strong>Methods: </strong>10 pairs of matched tumor tissues and adjacent normal tissues were collected and CAFs and normal fibroblasts (NFs) were isolated. CCK-8 as well as colony formation assays showed the effects on cell growth. qPCR and Immunoblot showed the expression of NRBP2 in CAFs. FCM as well as Immunoblot assays exhibited the effects on cell apoptosis. Immunoblot further confirmed the mechanism.</p><p><strong>Results: </strong>CAFs contributed to BC cell growth. In addition, the expression of NRBP2 is downregulated in CAFs. NRBP2 suppressed CAF-induced resistance in BC cells. Further, NRBP2 expression in CAF group increased TAM induced apoptosis. Mechanically, NRBP2 in CAFs inhibited Akt pathway, therefore suppressed resistance in BC cells.</p><p><strong>Conclusion: </strong>CAFs affected BC cell sensitivity to TAM by regulating NRBP2.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 6","pages":"tfae204"},"PeriodicalIF":2.2,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631068/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-05eCollection Date: 2024-12-01DOI: 10.1093/toxres/tfae197
Jae Eun Park, Ji Sook Han
Objective: Increased plasma-free fatty acid (FFA) induced by obesity can trigger insulin resistance and it is a significantly dangerous constituent in the progression of diabetes. Although ferulic acid has various physiological functions, no studies have examined ferulic acid's effects on insulin-resistant muscle cells. This study investigated the effect of ferulic acid on improving palmitic acid-induced insulin resistance in L6 skeletal muscle cells.
Methods: Palmitic acid induces insulin resistance by inhibiting the phosphorylation of IRS-1tyr and stimulating the phosphorylation of IRS-1ser in diabetes. Thus, palmitic acid (0.75 mM) was used as an insulin resistance inducer and ferulic acid was treated at various concentrations (2, 5, 10, and 20 uM) in L6 skeletal muscle cells.
Results: Palmitic acid significantly reduced the cell viability of L6 skeletal muscle cells, whereas ferulic acid treatment significantly increased cell viability in a concentration-dependent manner. Palmitic acid significantly reduced glucose uptake due to insulin resistance in the muscle cells; however, ferulic acid treatment remarkably increased glucose uptake. Ferulic acid promoted the phosphorylation of IRS-1tyr that palmitic acid inhibited, while also suppressing the palmitic acid-induced phosphorylation of IRS-1ser. Ferulic acid activated PI3K and then stimulated the phosphorylation of Akt, which increased PM-GLUT4 expression, thereby stimulating glucose uptake into insulin-resistant muscle cells. Ferulic acid also increased glycogen synthesis by phosphorylating GSK3β via the Akt pathway. Additionally, ferulic acid significantly promoted phosphorylation of AMPK, enhancing PM-GLUT4 levels and glucose uptake.
Conclusions: These results suggest that ferulic acid may improve palmitate-induced insulin resistance by regulating IRS-1/ Akt and the AMPK pathway in L6 skeletal muscle cells.
{"title":"Ferulic acid improves palmitate-induced insulin resistance by regulating IRS-1/Akt and AMPK pathways in L6 skeletal muscle cells.","authors":"Jae Eun Park, Ji Sook Han","doi":"10.1093/toxres/tfae197","DOIUrl":"10.1093/toxres/tfae197","url":null,"abstract":"<p><strong>Objective: </strong>Increased plasma-free fatty acid (FFA) induced by obesity can trigger insulin resistance and it is a significantly dangerous constituent in the progression of diabetes. Although ferulic acid has various physiological functions, no studies have examined ferulic acid's effects on insulin-resistant muscle cells. This study investigated the effect of ferulic acid on improving palmitic acid-induced insulin resistance in L6 skeletal muscle cells.</p><p><strong>Methods: </strong>Palmitic acid induces insulin resistance by inhibiting the phosphorylation of IRS-1<sub>tyr</sub> and stimulating the phosphorylation of IRS-1<sub>ser</sub> in diabetes. Thus, palmitic acid (0.75 mM) was used as an insulin resistance inducer and ferulic acid was treated at various concentrations (2, 5, 10, and 20 uM) in L6 skeletal muscle cells.</p><p><strong>Results: </strong>Palmitic acid significantly reduced the cell viability of L6 skeletal muscle cells, whereas ferulic acid treatment significantly increased cell viability in a concentration-dependent manner. Palmitic acid significantly reduced glucose uptake due to insulin resistance in the muscle cells; however, ferulic acid treatment remarkably increased glucose uptake. Ferulic acid promoted the phosphorylation of IRS-1<sub>tyr</sub> that palmitic acid inhibited, while also suppressing the palmitic acid-induced phosphorylation of IRS-1<sub>ser</sub>. Ferulic acid activated PI3K and then stimulated the phosphorylation of Akt, which increased PM-GLUT4 expression, thereby stimulating glucose uptake into insulin-resistant muscle cells. Ferulic acid also increased glycogen synthesis by phosphorylating GSK3β via the Akt pathway. Additionally, ferulic acid significantly promoted phosphorylation of AMPK, enhancing PM-GLUT4 levels and glucose uptake.</p><p><strong>Conclusions: </strong>These results suggest that ferulic acid may improve palmitate-induced insulin resistance by regulating IRS-1/ Akt and the AMPK pathway in L6 skeletal muscle cells.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 6","pages":"tfae197"},"PeriodicalIF":2.2,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630505/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142811519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04eCollection Date: 2024-12-01DOI: 10.1093/toxres/tfae195
Seda İpek Tekneci, Aylin Üstündağ, Yalçın Duydu
Endogenous and exogenous factors cause DNA damage through chemical changes in the genomic DNA structure. The comet assay is a versatile, rapid, and sensitive method for evaluating DNA integrity at the individual cell level. It is used in human biomonitoring studies, the identification of DNA lesions, and the measurement of DNA repair capacity. Despite its widespread application, variations between studies remain problematic, often due to the lack of a common protocol and appropriate test controls. Using positive controls is essential to assess inter-experimental variability and ensure reliable results. Hydrogen peroxide (H2O2) is the most commonly used positive control, while potassium bromate (KBrO₃), methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), N-ethyl-N-nitrosourea (ENU), and etoposide are used less frequently. However, differences in concentrations and exposure durations prevent the confirmation of test method efficacy. This study investigates the dose-response relationship for H2O2, KBrO3, MMS, EMS, ENU and etoposide in the comet assay for 30 and 60-minute exposure durations in 3T3 cell lines. Accordingly recommended concentrations and exposure durations were found to be 50 μM 30 minutes (H2O2); 500 μM 60 min. (MMS); 10 μM 30 min. (Etoposide); 0.2 mM 30 min. and 2 mM 60 min. (EMS); 2 mM 30 min. (ENU); 500 μM 30 min. and 50 μM 60 min. (KBrO3). Our findings will contribute to reducing inter-laboratory variability by offering guidance on selecting doses and exposure durations for positive controls in the in vitro alkaline comet assay.
内源性和外源性因素通过基因组DNA结构的化学变化引起DNA损伤。彗星分析是一种多功能,快速,灵敏的方法,用于评估DNA完整性在单个细胞水平。它被用于人体生物监测研究、DNA损伤的识别和DNA修复能力的测量。尽管它的广泛应用,研究之间的差异仍然存在问题,往往是由于缺乏一个共同的协议和适当的测试控制。使用阳性对照对于评估实验间的可变性和确保可靠的结果至关重要。过氧化氢(H2O2)是最常用的阳性对照,而溴酸钾(KBrO₃)、甲磺酸甲酯(MMS)、甲磺酸乙酯(EMS)、n -乙基-n -亚硝基脲(ENU)和乙酰基乙苷的使用频率较低。然而,浓度和暴露时间的差异阻碍了测试方法有效性的确认。本研究研究了H2O2、KBrO3、MMS、EMS、ENU和依托波苷在3T3细胞系中暴露30和60分钟的剂量-反应关系。因此,建议的浓度和暴露时间为50 μM 30分钟(H2O2);500 μM 60 min (MMS);10 μM 30 min(依托泊苷);0.2 mM 30分钟和2 mM 60分钟(EMS);2mm 30min (ENU);500 μM 30 min和50 μM 60 min (KBrO3)。我们的研究结果将有助于减少实验室间的差异,为体外碱性彗星试验阳性对照选择剂量和暴露时间提供指导。
{"title":"Optimization of concentrations and exposure durations of commonly used positive controls in the in vitro alkaline comet assay.","authors":"Seda İpek Tekneci, Aylin Üstündağ, Yalçın Duydu","doi":"10.1093/toxres/tfae195","DOIUrl":"10.1093/toxres/tfae195","url":null,"abstract":"<p><p>Endogenous and exogenous factors cause DNA damage through chemical changes in the genomic DNA structure. The comet assay is a versatile, rapid, and sensitive method for evaluating DNA integrity at the individual cell level. It is used in human biomonitoring studies, the identification of DNA lesions, and the measurement of DNA repair capacity. Despite its widespread application, variations between studies remain problematic, often due to the lack of a common protocol and appropriate test controls. Using positive controls is essential to assess inter-experimental variability and ensure reliable results. Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is the most commonly used positive control, while potassium bromate (KBrO₃), methyl methanesulfonate (MMS), ethyl methanesulfonate (EMS), <i>N</i>-ethyl-<i>N</i>-nitrosourea (ENU), and etoposide are used less frequently. However, differences in concentrations and exposure durations prevent the confirmation of test method efficacy. This study investigates the dose-response relationship for H<sub>2</sub>O<sub>2</sub>, KBrO<sub>3</sub>, MMS, EMS, ENU and etoposide in the comet assay for 30 and 60-minute exposure durations in 3T3 cell lines. Accordingly recommended concentrations and exposure durations were found to be 50 μM 30 minutes (H<sub>2</sub>O<sub>2</sub>); 500 μM 60 min. (MMS); 10 μM 30 min. (Etoposide); 0.2 mM 30 min. and 2 mM 60 min. (EMS); 2 mM 30 min. (ENU); 500 μM 30 min. and 50 μM 60 min. (KBrO<sub>3</sub>). Our findings will contribute to reducing inter-laboratory variability by offering guidance on selecting doses and exposure durations for positive controls in the <i>in vitro</i> alkaline comet assay.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 6","pages":"tfae195"},"PeriodicalIF":2.2,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11630343/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142805656","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03eCollection Date: 2024-12-01DOI: 10.1093/toxres/tfae205
Jie Wang, Lan-Gui Xie, Xian-Fu Wu, Zong-Ge Zhao, Yong Lu, Hui-Min Sun
Plastics are the most frequently used materials in people's daily life, and the primary and secondary microplastics generated from them may harm the health of adults. This paper focuses on the summary of the existence of microplastics in many objects most closely related to people in daily life, the toxicological influences it causes in cultured human normal cells and organoids, and the prospects for future research directions. Micro- and nano-plastics (MNPs) are found in almost all of our everyday products, such as food, drink, and daily necessities, etc. It can enter the digestive tract, respiratory system, and body fluids of the human body, and at lower or equal environment concentrations exhibits obvious cytotoxicity and genotoxicity toward cells and organoids, probably becoming a kind of toxin affecting human health. In addition, due to MNPs can be transferred from the placenta to the embryo, long-term growth-tracking studies of newborns should be done vitally. Besides, due to their wide usability in daily products and the ability to penetrate cytomembranes, the toxicological effects of polyethylene and polypropylene nanoplastic particles equal to or lower than environmental (normal exposure to human body) concentrations are recommended to be studied on human health in the future. Finally, for those individuals who carry MNPs, long-term health evaluation must be performed.
{"title":"Impact of micro-nano plastics in daily life on human health: toxicological evaluation from the perspective of normal tissue cells and organoids.","authors":"Jie Wang, Lan-Gui Xie, Xian-Fu Wu, Zong-Ge Zhao, Yong Lu, Hui-Min Sun","doi":"10.1093/toxres/tfae205","DOIUrl":"10.1093/toxres/tfae205","url":null,"abstract":"<p><p>Plastics are the most frequently used materials in people's daily life, and the primary and secondary microplastics generated from them may harm the health of adults. This paper focuses on the summary of the existence of microplastics in many objects most closely related to people in daily life, the toxicological influences it causes in cultured human normal cells and organoids, and the prospects for future research directions. Micro- and nano-plastics (MNPs) are found in almost all of our everyday products, such as food, drink, and daily necessities, etc. It can enter the digestive tract, respiratory system, and body fluids of the human body, and at lower or equal environment concentrations exhibits obvious cytotoxicity and genotoxicity toward cells and organoids, probably becoming a kind of toxin affecting human health. In addition, due to MNPs can be transferred from the placenta to the embryo, long-term growth-tracking studies of newborns should be done vitally. Besides, due to their wide usability in daily products and the ability to penetrate cytomembranes, the toxicological effects of polyethylene and polypropylene nanoplastic particles equal to or lower than environmental (normal exposure to human body) concentrations are recommended to be studied on human health in the future. Finally, for those individuals who carry MNPs, long-term health evaluation must be performed.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 6","pages":"tfae205"},"PeriodicalIF":2.2,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645661/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826762","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03eCollection Date: 2024-12-01DOI: 10.1093/toxres/tfae206
Fuat Karakuş, Burak Kuzu
Background: Per- and polyfluoroalkyl substances (PFAS) are human-made chemicals that accumulate in the human body and the environment over time. Humans are primarily exposed to PFAS through drinking water, food, consumer products, and dust. These exposures can have many adverse health effects, including cardiovascular diseases (CVDs) and factors contributing to CVDs. This study identified the molecular mechanisms of CVDs caused by PFAS.
Methods: For this purpose, various computational tools, such as the Comparative Toxicogenomic Database, ShinyGO, ChEA3, MIENTURNET, GeneMANIA, STRING, and Cytoscape, were used to conduct in silico analyses.
Results: The results showed that 10 genes were common between PFAS and CVDs, and among these common genes, the PPAR signaling pathway, fatty acid metabolic processes, and lipid binding were the most significantly associated gene ontology terms. Among the top 10 transcription factors (TFs) related to these common genes, peroxisome proliferator-activated receptor gamma and androgen receptor were the most prominent. Additionally, hsa-miR-130b-3p, hsa-miR-130a-3p, and hsa-miR-129-5p were featured microRNAs involved in PFAS-induced CVDs. Finally, PPARA and PPARG were identified as core genes involved in PFAS-induced CVDs.
Conclusion: These findings may contribute to a better understanding of the molecular mechanisms and reveal new potential targets in PFAS-induced CVDs.
{"title":"Predicting the molecular mechanisms of cardiovascular toxicity induced by per- and polyfluoroalkyl substances: an In Silico network toxicology perspective.","authors":"Fuat Karakuş, Burak Kuzu","doi":"10.1093/toxres/tfae206","DOIUrl":"10.1093/toxres/tfae206","url":null,"abstract":"<p><strong>Background: </strong>Per- and polyfluoroalkyl substances (PFAS) are human-made chemicals that accumulate in the human body and the environment over time. Humans are primarily exposed to PFAS through drinking water, food, consumer products, and dust. These exposures can have many adverse health effects, including cardiovascular diseases (CVDs) and factors contributing to CVDs. This study identified the molecular mechanisms of CVDs caused by PFAS.</p><p><strong>Methods: </strong>For this purpose, various computational tools, such as the Comparative Toxicogenomic Database, ShinyGO, ChEA3, MIENTURNET, GeneMANIA, STRING, and Cytoscape, were used to conduct in silico analyses.</p><p><strong>Results: </strong>The results showed that 10 genes were common between PFAS and CVDs, and among these common genes, the PPAR signaling pathway, fatty acid metabolic processes, and lipid binding were the most significantly associated gene ontology terms. Among the top 10 transcription factors (TFs) related to these common genes, peroxisome proliferator-activated receptor gamma and androgen receptor were the most prominent. Additionally, hsa-miR-130b-3p, hsa-miR-130a-3p, and hsa-miR-129-5p were featured microRNAs involved in PFAS-induced CVDs. Finally, <i>PPARA</i> and <i>PPARG</i> were identified as core genes involved in PFAS-induced CVDs.</p><p><strong>Conclusion: </strong>These findings may contribute to a better understanding of the molecular mechanisms and reveal new potential targets in PFAS-induced CVDs.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 6","pages":"tfae206"},"PeriodicalIF":2.2,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645662/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-03eCollection Date: 2024-12-01DOI: 10.1093/toxres/tfae199
Yongji Li, Geqiang Wang, Peiran Liu, Lin Zhang, Hai Hu, Xiangjun Yang, Hongpeng Liu
Background: Arthritis is a degenerative joint disease influenced by various environmental factors, including exposure to Benzophenone-3 (BP3), a common UV filter. This study aims to elucidate the toxicological impact of BP3 on arthritis pathogenesis using network toxicology approaches.
Method: We integrated data from the Comparative Toxicogenomics Database (CTD) and Gene Expression Omnibus (GEO) to identify differentially expressed BP3-related toxicological targets in osteoarthritis (OA). Enrichment analyses were conducted to determine the implicated biological processes, cellular components, and molecular functions. Further, the involvement of the PI3K-Akt signaling pathway was investigated, along with correlations with immune cell infiltration and immune-related pathways. Molecular docking analysis was performed to examine BP3 interactions with key PI3K-Akt pathway proteins.
Results: A total of 74 differentially expressed BP3-related targets were identified. Enrichment analysis revealed significant pathways, including PI3K-Akt, MAPK, and HIF-1 signaling. The PI3K-Akt pathway showed notable dysregulation in OA, with reduced activity and differential expression of key genes such as ANGPT1, ITGA4, and PIK3R1. Correlation analysis indicated significant associations between PI3K-Akt pathway activity and various immune cell types and immune pathways. Molecular docking highlighted strong interactions between BP3 and proteins like AREG, suggesting potential disruptions in signaling processes.
Conclusions: BP3 exposure significantly alters the expression of toxicological targets and disrupts the PI3KAkt signaling pathway, contributing to OA pathogenesis. These findings provide insights into the molecular mechanisms of BP3-induced OA and identify potential therapeutic targets for mitigating its effects.
{"title":"The impact of Benzophenone-3 on osteoarthritis pathogenesis: a network toxicology approach.","authors":"Yongji Li, Geqiang Wang, Peiran Liu, Lin Zhang, Hai Hu, Xiangjun Yang, Hongpeng Liu","doi":"10.1093/toxres/tfae199","DOIUrl":"10.1093/toxres/tfae199","url":null,"abstract":"<p><strong>Background: </strong>Arthritis is a degenerative joint disease influenced by various environmental factors, including exposure to Benzophenone-3 (BP3), a common UV filter. This study aims to elucidate the toxicological impact of BP3 on arthritis pathogenesis using network toxicology approaches.</p><p><strong>Method: </strong>We integrated data from the Comparative Toxicogenomics Database (CTD) and Gene Expression Omnibus (GEO) to identify differentially expressed BP3-related toxicological targets in osteoarthritis (OA). Enrichment analyses were conducted to determine the implicated biological processes, cellular components, and molecular functions. Further, the involvement of the PI3K-Akt signaling pathway was investigated, along with correlations with immune cell infiltration and immune-related pathways. Molecular docking analysis was performed to examine BP3 interactions with key PI3K-Akt pathway proteins.</p><p><strong>Results: </strong>A total of 74 differentially expressed BP3-related targets were identified. Enrichment analysis revealed significant pathways, including PI3K-Akt, MAPK, and HIF-1 signaling. The PI3K-Akt pathway showed notable dysregulation in OA, with reduced activity and differential expression of key genes such as ANGPT1, ITGA4, and PIK3R1. Correlation analysis indicated significant associations between PI3K-Akt pathway activity and various immune cell types and immune pathways. Molecular docking highlighted strong interactions between BP3 and proteins like AREG, suggesting potential disruptions in signaling processes.</p><p><strong>Conclusions: </strong>BP3 exposure significantly alters the expression of toxicological targets and disrupts the PI3KAkt signaling pathway, contributing to OA pathogenesis. These findings provide insights into the molecular mechanisms of BP3-induced OA and identify potential therapeutic targets for mitigating its effects.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 6","pages":"tfae199"},"PeriodicalIF":2.2,"publicationDate":"2024-12-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645663/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: This study focused on the nanoliposomal encapsulation of bioactive compounds extracted from Melissa officinalis L. (ME) using ethanol as a strategy to improve the antibacterial activity, anticytotoxic, and antiproliferative properties.
Methods: Nanoliposomes loaded with ME (MEL) were characterized for total phenolic content, particle size, polydispersity, and encapsulation efficiency. The minimum inhibitory concentration (MIC) values for MEL and ME were determined to evaluate antibacterial activity. To examine the toxicity profiles of ME and MEL, tests were conducted on the A549 and BEAS-2B cell lines using the MTT assay. Furthermore, an in vitro sctrach assay was conducted to evaluate the antiproliferative effects of ME and MEL on A549 cells.
Results: Nanoliposomes presented entrapment efficiency higher than 80%, nanometric particle size, and narrow polydispersity. The MIC values for MEL and ME were observed as 93.75 μg/μL against E. coli. MIC values for MEL and ME were achieved as 4.68 μg/μL and 9.375 μg/mL against S. aureus, respectively. The IC50 values for ME were determined to be 1.13 mg/mL and 0.806 mg/mL, while the IC50 values for MEL were found to be 3.5 mg/mL and 0.868 mg/mL on A549 and BEAS-2B cell lines, respectively. Additionally, The MEL showed an antiproliferative effect against A549 cells at 500 μg/mL concentration.
Conclusion: All experimental findings unequivocally demonstrate that the novel nanoliposomal system has effectively augmented the antibacterial activities and antiproliferative effects of ME. The initial findings indicate that nanoliposomes could effectively serve as carriers for ME in pharmaceutical applications.
研究目的本研究的重点是利用乙醇对从 Melissa officinalis L.(ME)中提取的生物活性化合物进行纳米脂质体封装,以提高其抗菌活性、抗毒性和抗增殖特性:方法:研究人员对载入 ME(MEL)的纳米脂质体的总酚含量、粒度、多分散性和封装效率进行了表征。测定了 MEL 和 ME 的最低抑菌浓度 (MIC) 值,以评估其抗菌活性。为了检测 ME 和 MEL 的毒性,使用 MTT 法对 A549 和 BEAS-2B 细胞系进行了测试。此外,还进行了体外 sctrach 试验,以评估 ME 和 MEL 对 A549 细胞的抗增殖作用:结果:纳米脂质体的包载效率高于80%,粒径为纳米级,多分散性较窄。观察到 MEL 和 ME 对大肠杆菌的 MIC 值为 93.75 μg/μL 。MEL 和 ME 对金黄色葡萄球菌的 MIC 值分别为 4.68 μg/μL 和 9.375 μg/mL。在 A549 和 BEAS-2B 细胞系中,ME 的 IC50 值分别为 1.13 毫克/毫升和 0.806 毫克/毫升,而 MEL 的 IC50 值分别为 3.5 毫克/毫升和 0.868 毫克/毫升。此外,在 500 μg/mL 浓度下,MEL 对 A549 细胞有抗增殖作用:所有实验结果都明确表明,新型纳米脂质体系统有效增强了 ME 的抗菌活性和抗增殖作用。初步研究结果表明,纳米脂质体可作为 ME 的载体有效地应用于制药领域。
{"title":"Nanoliposomal system for augmented antibacterial and antiproliferative efficacy of <i>Melissa officinalis</i> L. extract.","authors":"Nagihan Nizam, Gokce Taner, Munevver Muge Cagal","doi":"10.1093/toxres/tfae198","DOIUrl":"10.1093/toxres/tfae198","url":null,"abstract":"<p><strong>Objective: </strong>This study focused on the nanoliposomal encapsulation of bioactive compounds extracted from <i>Melissa officinalis</i> L. (ME) using ethanol as a strategy to improve the antibacterial activity, anticytotoxic, and antiproliferative properties.</p><p><strong>Methods: </strong>Nanoliposomes loaded with ME (MEL) were characterized for total phenolic content, particle size, polydispersity, and encapsulation efficiency. The minimum inhibitory concentration (MIC) values for MEL and ME were determined to evaluate antibacterial activity. To examine the toxicity profiles of ME and MEL, tests were conducted on the A549 and BEAS-2B cell lines using the MTT assay. Furthermore, an <i>in vitro</i> sctrach assay was conducted to evaluate the antiproliferative effects of ME and MEL on A549 cells.</p><p><strong>Results: </strong>Nanoliposomes presented entrapment efficiency higher than 80%, nanometric particle size, and narrow polydispersity. The MIC values for MEL and ME were observed as 93.75 μg/μL against E. coli. MIC values for MEL and ME were achieved as 4.68 μg/μL and 9.375 μg/mL against S. aureus, respectively. The IC50 values for ME were determined to be 1.13 mg/mL and 0.806 mg/mL, while the IC50 values for MEL were found to be 3.5 mg/mL and 0.868 mg/mL on A549 and BEAS-2B cell lines, respectively. Additionally, The MEL showed an antiproliferative effect against A549 cells at 500 μg/mL concentration.</p><p><strong>Conclusion: </strong>All experimental findings unequivocally demonstrate that the novel nanoliposomal system has effectively augmented the antibacterial activities and antiproliferative effects of ME. The initial findings indicate that nanoliposomes could effectively serve as carriers for ME in pharmaceutical applications.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 6","pages":"tfae198"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645532/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ji-Young Kim, Geun-Seup Shin, Mi-Jin An, Hyun-Min Lee, Ah-Ra Jo, Yuna Park, Jinho Kim, Yujeong Hwangbo, Chul-Hong Kim, Jung-Woong Kim
Background: Bisphenols are prevalent in food, plastics, consumer goods, and industrial products. Bisphenol A (BPA) and its substitutes, bisphenol F (BPF) and bisphenol S (BPS), are known to act as estrogen mimics, leading to reproductive disorders, disruptions in fat metabolism, and abnormalities in brain development.
Objectives: Despite numerous studies exploring the adverse effects of bisphenols both in vitro and in vivo, the molecular mechanisms by which these compounds affect lung cells remain poorly understood. This study aims to compare the effects of BPA, BPF, and BPS on the physiological behavior of human nonsmall cell lung cancer (NSCLC) cells.
Materials and methods: Human non-small cell lung cancer (NSCLC) H1299 cells were treated with various concentration of BPA, BPF and BPS during different exposure time. Cellular physiology for viability and cell cycle was assessed by the staining with apoptotic cell makers such as active Caspase-3 and cyclins antibodies. Toxicological effect was quantitatively counted by using flow-cytometry analysis.
Results: Our findings indicate that BPA induces apoptosis by increasing active Caspase-3 levels in H1299 cells, whereas BPF and BPS do not promote late apoptosis. Additionally, BPA was found to upregulate cyclin B1, causing cell cycle arrest at the G0/G1 phase and leading to apoptotic cell death through Caspase-3 activation. Conclusion: These results demonstrate that BPA, BPF, and BPS differentially impact cell viability, cell cycle progression, and cell death in human NSCLC cells.
背景:双酚普遍存在于食品、塑料、消费品和工业产品中。众所周知,双酚 A(BPA)及其替代品双酚 F(BPF)和双酚 S(BPS)可作为雌激素模拟物,导致生殖障碍、脂肪代谢紊乱和大脑发育异常:尽管有大量研究探讨了双酚在体外和体内的不良影响,但人们对这些化合物影响肺细胞的分子机制仍然知之甚少。本研究旨在比较双酚 A、双酚 F 和双酚 S 对人类非小细胞肺癌(NSCLC)细胞生理行为的影响。材料和方法:用不同浓度的双酚 A、双酚 F 和双酚 S 处理人类非小细胞肺癌(NSCLC)H1299 细胞,暴露时间各不相同。用活性 Caspase-3 和细胞周期蛋白抗体等凋亡细胞制造者染色,评估细胞的活力和细胞周期。采用流式细胞仪分析法对毒理效应进行定量计数:结果:我们的研究结果表明,双酚 A 可通过增加 H1299 细胞中活性 Caspase-3 的水平诱导细胞凋亡,而 BPF 和 BPS 不会促进细胞晚期凋亡。此外,研究还发现双酚 A 会上调细胞周期蛋白 B1,导致细胞周期停滞在 G0/G1 期,并通过 Caspase-3 激活导致细胞凋亡。结论这些结果表明,双酚 A、双酚 F 和双酚 S 对人类 NSCLC 细胞的细胞活力、细胞周期进展和细胞死亡有不同程度的影响。
{"title":"Comparative study of cytotoxic Signaling pathways in H1299 cells exposed to alternative Bisphenols: BPA, BPF, and BPS.","authors":"Ji-Young Kim, Geun-Seup Shin, Mi-Jin An, Hyun-Min Lee, Ah-Ra Jo, Yuna Park, Jinho Kim, Yujeong Hwangbo, Chul-Hong Kim, Jung-Woong Kim","doi":"10.1093/toxres/tfae200","DOIUrl":"10.1093/toxres/tfae200","url":null,"abstract":"<p><strong>Background: </strong>Bisphenols are prevalent in food, plastics, consumer goods, and industrial products. Bisphenol A (BPA) and its substitutes, bisphenol F (BPF) and bisphenol S (BPS), are known to act as estrogen mimics, leading to reproductive disorders, disruptions in fat metabolism, and abnormalities in brain development.</p><p><strong>Objectives: </strong>Despite numerous studies exploring the adverse effects of bisphenols both <i>in vitro</i> and <i>in vivo</i>, the molecular mechanisms by which these compounds affect lung cells remain poorly understood. This study aims to compare the effects of BPA, BPF, and BPS on the physiological behavior of human nonsmall cell lung cancer (NSCLC) cells.</p><p><strong>Materials and methods: </strong>Human non-small cell lung cancer (NSCLC) H1299 cells were treated with various concentration of BPA, BPF and BPS during different exposure time. Cellular physiology for viability and cell cycle was assessed by the staining with apoptotic cell makers such as active Caspase-3 and cyclins antibodies. Toxicological effect was quantitatively counted by using flow-cytometry analysis.</p><p><strong>Results: </strong>Our findings indicate that BPA induces apoptosis by increasing active Caspase-3 levels in H1299 cells, whereas BPF and BPS do not promote late apoptosis. Additionally, BPA was found to upregulate cyclin B1, causing cell cycle arrest at the G0/G1 phase and leading to apoptotic cell death through Caspase-3 activation. Conclusion: These results demonstrate that BPA, BPF, and BPS differentially impact cell viability, cell cycle progression, and cell death in human NSCLC cells.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 6","pages":"tfae200"},"PeriodicalIF":2.2,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645530/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142826759","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27eCollection Date: 2024-12-01DOI: 10.1093/toxres/tfae203
Heba Mohamed Abdou, Alaa Mohamed Saad, Heba-Tallah Abd Elrahim Abd Elkader, Amina E Essawy
Arsenic is associated with various neurological disorders, notably affecting memory and cognitive functions. The current study examined the protective effects of vitamin D3 (Vit. D3) in countering oxidative stress, neuroinflammation and apoptosis induced by sodium arsenite (SA) in the cerebral cortex of rats. Male Wistar rats were subjected to a daily oral administration of sodium arsenite (NaAsO2, SA) at a dosage of 5 mg/kg, along with 500 IU/kg of Vit. D3, and a combination of both substances for four weeks. The results indicated that Vit. D3 effectively mitigated the SA-induced increase in oxidative stress markers, thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO), the decrease in antioxidants (reduced glutathione; GSH, superoxide dismutase; SOD, catalase; CAT, and glutathione peroxidase; GPx), as well as the increase in pro-inflammatory markers including, tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and amyloid-beta (Aβ)1-42. Furthermore, Vit. D3 reversed the alterations in the neurochemicals acetylcholinesterase (AchE), monoamine oxidase (MAO), dopamine (DA), and acetylcholine (Ach) and ameliorated the histopathological changes in the cerebral cortex. Moreover, immunohistochemical analyses revealed that Vit. D3 reduced the SA-induced overexpression of cerebral cysteine aspartate-specific protease-3 (caspase-3) and glial fibrillary acidic protein (GFAP) in the cerebral cortex of male rats. Consequently, the co-administration of Vit. D3 can protect the cerebral cortex against SA-induced neurotoxicity, primarily through its antioxidant, anti-inflammatory, anti-apoptotic, and anti-astrogliosis effects.
{"title":"Role of vitamin D<sub>3</sub> in mitigating sodium arsenite-induced neurotoxicity in male rats.","authors":"Heba Mohamed Abdou, Alaa Mohamed Saad, Heba-Tallah Abd Elrahim Abd Elkader, Amina E Essawy","doi":"10.1093/toxres/tfae203","DOIUrl":"10.1093/toxres/tfae203","url":null,"abstract":"<p><p>Arsenic is associated with various neurological disorders, notably affecting memory and cognitive functions. The current study examined the protective effects of vitamin D<sub>3</sub> (Vit. D<sub>3</sub>) in countering oxidative stress, neuroinflammation and apoptosis induced by sodium arsenite (SA) in the cerebral cortex of rats. Male Wistar rats were subjected to a daily oral administration of sodium arsenite (NaAsO<sub>2</sub>, SA) at a dosage of 5 mg/kg, along with 500 IU/kg of Vit. D<sub>3</sub>, and a combination of both substances for four weeks. The results indicated that Vit. D<sub>3</sub> effectively mitigated the SA-induced increase in oxidative stress markers, thiobarbituric acid reactive substances (TBARS) and nitric oxide (NO), the decrease in antioxidants (reduced glutathione; GSH, superoxide dismutase; SOD, catalase; CAT, and glutathione peroxidase; GPx), as well as the increase in pro-inflammatory markers including, tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and amyloid-beta (Aβ)1-42. Furthermore, Vit. D<sub>3</sub> reversed the alterations in the neurochemicals acetylcholinesterase (AchE), monoamine oxidase (MAO), dopamine (DA), and acetylcholine (Ach) and ameliorated the histopathological changes in the cerebral cortex. Moreover, immunohistochemical analyses revealed that Vit. D<sub>3</sub> reduced the SA-induced overexpression of cerebral cysteine aspartate-specific protease-3 (caspase-3) and glial fibrillary acidic protein (GFAP) in the cerebral cortex of male rats. Consequently, the co-administration of Vit. D<sub>3</sub> can protect the cerebral cortex against SA-induced neurotoxicity, primarily through its antioxidant, anti-inflammatory, anti-apoptotic, and anti-astrogliosis effects.</p>","PeriodicalId":105,"journal":{"name":"Toxicology Research","volume":"13 6","pages":"tfae203"},"PeriodicalIF":2.2,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749453","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}