Pub Date : 2024-03-01Epub Date: 2024-01-25DOI: 10.1107/S2053273323010690
Budhika Mendis
The strong interaction of high-energy electrons with a crystal results in both dynamical elastic scattering and inelastic events, particularly phonon and plasmon excitation, which have relatively large cross sections. For accurate crystal structure refinement it is therefore important to uncover the impact of inelastic scattering on the Bragg beam intensities. Here a combined Bloch wave-Monte Carlo method is used to simulate phonon and plasmon scattering in crystals. The simulated thermal and plasmon diffuse scattering are consistent with experimental results. The simulations also confirm the empirical observation of a weaker unscattered beam intensity with increasing energy loss in the low-loss regime, while the Bragg-diffracted beam intensities do not change significantly. The beam intensities include the diffuse scattered background and have been normalized to adjust for the inelastic scattering cross section. It is speculated that the random azimuthal scattering angle during inelastic events transfers part of the unscattered beam intensity to the inner Bragg reflections. Inelastic scattering should not significantly influence crystal structure refinement, provided there are no artefacts from any background subtraction, since the relative intensity of the diffracted beams (which includes the diffuse scattering) remains approximately constant in the low energy loss regime.
{"title":"Modelling dynamical 3D electron diffraction intensities. II. The role of inelastic scattering.","authors":"Budhika Mendis","doi":"10.1107/S2053273323010690","DOIUrl":"10.1107/S2053273323010690","url":null,"abstract":"<p><p>The strong interaction of high-energy electrons with a crystal results in both dynamical elastic scattering and inelastic events, particularly phonon and plasmon excitation, which have relatively large cross sections. For accurate crystal structure refinement it is therefore important to uncover the impact of inelastic scattering on the Bragg beam intensities. Here a combined Bloch wave-Monte Carlo method is used to simulate phonon and plasmon scattering in crystals. The simulated thermal and plasmon diffuse scattering are consistent with experimental results. The simulations also confirm the empirical observation of a weaker unscattered beam intensity with increasing energy loss in the low-loss regime, while the Bragg-diffracted beam intensities do not change significantly. The beam intensities include the diffuse scattered background and have been normalized to adjust for the inelastic scattering cross section. It is speculated that the random azimuthal scattering angle during inelastic events transfers part of the unscattered beam intensity to the inner Bragg reflections. Inelastic scattering should not significantly influence crystal structure refinement, provided there are no artefacts from any background subtraction, since the relative intensity of the diffracted beams (which includes the diffuse scattering) remains approximately constant in the low energy loss regime.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"178-188"},"PeriodicalIF":1.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913673/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139544989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-29DOI: 10.1107/S2053273324000950
Nicolas Monge, Alexis Deschamps, Massih Reza Amini
Small-angle X-ray scattering (SAXS) is widely used to analyze the shape and size of nanoparticles in solution. A multitude of models, describing the SAXS intensity resulting from nanoparticles of various shapes, have been developed by the scientific community and are used for data analysis. Choosing the optimal model is a crucial step in data analysis, which can be difficult and time-consuming, especially for non-expert users. An algorithm is proposed, based on machine learning, representation learning and SAXS-specific preprocessing methods, which instantly selects the nanoparticle model best suited to describe SAXS data. The different algorithms compared are trained and evaluated on a simulated database. This database includes 75 000 scattering spectra from nine nanoparticle models, and realistically simulates two distinct device configurations. It will be made freely available to serve as a basis of comparison for future work. Deploying a universal solution for automatic nanoparticle model selection is a challenge made more difficult by the diversity of SAXS instruments and their flexible settings. The poor transferability of classification rules learned on one device configuration to another is highlighted. It is shown that training on several device configurations enables the algorithm to be generalized, without degrading performance compared with configuration-specific training. Finally, the classification algorithm is evaluated on a real data set obtained by performing SAXS experiments on nanoparticles for each of the instrumental configurations, which have been characterized by transmission electron microscopy. This data set, although very limited, allows estimation of the transferability of the classification rules learned on simulated data to real data.
{"title":"Automated selection of nanoparticle models for small-angle X-ray scattering data analysis using machine learning.","authors":"Nicolas Monge, Alexis Deschamps, Massih Reza Amini","doi":"10.1107/S2053273324000950","DOIUrl":"10.1107/S2053273324000950","url":null,"abstract":"<p><p>Small-angle X-ray scattering (SAXS) is widely used to analyze the shape and size of nanoparticles in solution. A multitude of models, describing the SAXS intensity resulting from nanoparticles of various shapes, have been developed by the scientific community and are used for data analysis. Choosing the optimal model is a crucial step in data analysis, which can be difficult and time-consuming, especially for non-expert users. An algorithm is proposed, based on machine learning, representation learning and SAXS-specific preprocessing methods, which instantly selects the nanoparticle model best suited to describe SAXS data. The different algorithms compared are trained and evaluated on a simulated database. This database includes 75 000 scattering spectra from nine nanoparticle models, and realistically simulates two distinct device configurations. It will be made freely available to serve as a basis of comparison for future work. Deploying a universal solution for automatic nanoparticle model selection is a challenge made more difficult by the diversity of SAXS instruments and their flexible settings. The poor transferability of classification rules learned on one device configuration to another is highlighted. It is shown that training on several device configurations enables the algorithm to be generalized, without degrading performance compared with configuration-specific training. Finally, the classification algorithm is evaluated on a real data set obtained by performing SAXS experiments on nanoparticles for each of the instrumental configurations, which have been characterized by transmission electron microscopy. This data set, although very limited, allows estimation of the transferability of the classification rules learned on simulated data to real data.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"202-212"},"PeriodicalIF":1.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913671/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139988763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-01-26DOI: 10.1107/S2053273324000172
Simon J L Billinge, Thomas Proffen
An overview of the virtual collection on machine learning (ML) in crystallography and structural science, as represented in Acta Crystallographica Sections A, B and D, IUCrJ and Journal of Synchrotron Radiation, is presented. Some terms and concepts related to artificial intelligence and machine learning are briefly introduced and described, and a short history of ML in structural science as it appeared in these IUCr journals is given to whet the appetite for the rest of the collection.
{"title":"Machine learning in crystallography and structural science.","authors":"Simon J L Billinge, Thomas Proffen","doi":"10.1107/S2053273324000172","DOIUrl":"10.1107/S2053273324000172","url":null,"abstract":"<p><p>An overview of the virtual collection on machine learning (ML) in crystallography and structural science, as represented in Acta Crystallographica Sections A, B and D, IUCrJ and Journal of Synchrotron Radiation, is presented. Some terms and concepts related to artificial intelligence and machine learning are briefly introduced and described, and a short history of ML in structural science as it appeared in these IUCr journals is given to whet the appetite for the rest of the collection.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"139-145"},"PeriodicalIF":1.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139562755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-09DOI: 10.1107/S2053273324000299
Alexandre Urzhumtsev, Paul Adams, Pavel Afonine
The bulk solvent is a major component of biomacromolecular crystals that contributes significantly to the observed diffraction intensities. Accurate modelling of the bulk solvent has been recognized as important for many crystallographic calculations. Owing to its simplicity and modelling power, the flat (mask-based) bulk-solvent model is used by most modern crystallographic software packages to account for disordered solvent. In this model, the bulk-solvent contribution is defined by a binary mask and a scale (scattering) function. The mask is calculated on a regular grid using the atomic model coordinates and their chemical types. The grid step and two radii, solvent and shrinkage, are the three parameters that govern the mask calculation. They are highly correlated and their choice is a compromise between the computer time needed to calculate the mask and the accuracy of the mask. It is demonstrated here that this choice can be optimized using a unique value of 0.6 Å for the grid step irrespective of the data resolution, and the radii values adjusted correspondingly. The improved values were tested on a large sample of Protein Data Bank entries derived from X-ray diffraction data and are now used in the computational crystallography toolbox (CCTBX) and in Phenix as the default choice.
体溶剂是生物大分子晶体的主要成分,对观察到的衍射强度有很大影响。精确的大体积溶剂建模被认为对许多晶体学计算非常重要。由于其简单性和建模能力,大多数现代晶体学软件包都使用平面(基于掩膜)大体积溶剂模型来计算无序溶剂。在该模型中,体溶剂的贡献由二元掩膜和尺度(散射)函数定义。掩膜在规则网格上使用原子模型坐标及其化学类型进行计算。网格步长和两个半径(溶剂和收缩)是控制掩膜计算的三个参数。这三个参数高度相关,它们的选择是计算掩膜所需的计算机时间和掩膜精度之间的折衷。本文证明,无论数据分辨率如何,都可以使用 0.6 Å 的唯一网格步长值对这一选择进行优化,并相应调整半径值。改进后的值已在从 X 射线衍射数据中提取的大量蛋白质数据库条目样本上进行了测试,现在已作为默认选择用于计算晶体学工具箱(CCTBX)和 Phenix 中。
{"title":"Universal parameters of bulk-solvent masks.","authors":"Alexandre Urzhumtsev, Paul Adams, Pavel Afonine","doi":"10.1107/S2053273324000299","DOIUrl":"10.1107/S2053273324000299","url":null,"abstract":"<p><p>The bulk solvent is a major component of biomacromolecular crystals that contributes significantly to the observed diffraction intensities. Accurate modelling of the bulk solvent has been recognized as important for many crystallographic calculations. Owing to its simplicity and modelling power, the flat (mask-based) bulk-solvent model is used by most modern crystallographic software packages to account for disordered solvent. In this model, the bulk-solvent contribution is defined by a binary mask and a scale (scattering) function. The mask is calculated on a regular grid using the atomic model coordinates and their chemical types. The grid step and two radii, solvent and shrinkage, are the three parameters that govern the mask calculation. They are highly correlated and their choice is a compromise between the computer time needed to calculate the mask and the accuracy of the mask. It is demonstrated here that this choice can be optimized using a unique value of 0.6 Å for the grid step irrespective of the data resolution, and the radii values adjusted correspondingly. The improved values were tested on a large sample of Protein Data Bank entries derived from X-ray diffraction data and are now used in the computational crystallography toolbox (CCTBX) and in Phenix as the default choice.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"194-201"},"PeriodicalIF":1.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913670/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139705389","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-02-22DOI: 10.1107/S2053273323008197
The report of the Executive Committee for 2022 is presented.
现提交 2022 年执行委员会报告。
{"title":"Report of the Executive Committee for 2022.","authors":"","doi":"10.1107/S2053273323008197","DOIUrl":"10.1107/S2053273323008197","url":null,"abstract":"<p><p>The report of the Executive Committee for 2022 is presented.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"221-223"},"PeriodicalIF":1.8,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139928976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-03-01Epub Date: 2024-01-25DOI: 10.1107/S2053273323010689
Budhika Mendis
Three-dimensional electron diffraction (3D-ED) is a powerful technique for crystallographic characterization of nanometre-sized crystals that are too small for X-ray diffraction. For accurate crystal structure refinement, however, it is important that the Bragg diffracted intensities are treated dynamically. Bloch wave simulations are often used in 3D-ED, but can be computationally expensive for large unit cell crystals due to the large number of diffracted beams. Proposed here is an alternative method, the `scattering cluster algorithm' (SCA), that replaces the eigen-decomposition operation in Bloch waves with a simpler matrix multiplication. The underlying principle of SCA is that the intensity of a given Bragg reflection is largely determined by intensity transfer (i.e. `scattering') from a cluster of neighbouring diffracted beams. However, the penalty for using matrix multiplication is that the sample must be divided into a series of thin slices and the diffracted beams calculated iteratively, similar to the multislice approach. Therefore, SCA is more suitable for thin specimens. The accuracy and speed of SCA are demonstrated on tri-isopropyl silane (TIPS) pentacene and rubrene, two exemplar organic materials with large unit cells.
三维电子衍射(3D-ED)是一种功能强大的晶体学表征技术,可用于表征因晶体太小而无法进行 X 射线衍射的纳米级晶体。然而,为了精确地完善晶体结构,必须对布拉格衍射强度进行动态处理。布洛赫波模拟通常用于三维电子衍射,但由于衍射光束数量庞大,对于大单元晶体来说,计算成本会很高。本文提出了一种替代方法,即 "散射簇算法"(SCA),用更简单的矩阵乘法取代布洛赫波中的特征分解操作。SCA 的基本原理是,给定布拉格反射的强度主要由相邻衍射光束簇的强度传递(即 "散射")决定。然而,使用矩阵乘法的代价是必须将样品分成一系列薄片,并对衍射光束进行迭代计算,这与多片方法类似。因此,SCA 更适用于薄样品。我们在三异丙基硅烷(TIPS)五碳烯和红芘这两种具有大单元的有机材料上演示了 SCA 的准确性和速度。
{"title":"Modelling dynamical 3D electron diffraction intensities. I. A scattering cluster algorithm.","authors":"Budhika Mendis","doi":"10.1107/S2053273323010689","DOIUrl":"10.1107/S2053273323010689","url":null,"abstract":"<p><p>Three-dimensional electron diffraction (3D-ED) is a powerful technique for crystallographic characterization of nanometre-sized crystals that are too small for X-ray diffraction. For accurate crystal structure refinement, however, it is important that the Bragg diffracted intensities are treated dynamically. Bloch wave simulations are often used in 3D-ED, but can be computationally expensive for large unit cell crystals due to the large number of diffracted beams. Proposed here is an alternative method, the `scattering cluster algorithm' (SCA), that replaces the eigen-decomposition operation in Bloch waves with a simpler matrix multiplication. The underlying principle of SCA is that the intensity of a given Bragg reflection is largely determined by intensity transfer (i.e. `scattering') from a cluster of neighbouring diffracted beams. However, the penalty for using matrix multiplication is that the sample must be divided into a series of thin slices and the diffracted beams calculated iteratively, similar to the multislice approach. Therefore, SCA is more suitable for thin specimens. The accuracy and speed of SCA are demonstrated on tri-isopropyl silane (TIPS) pentacene and rubrene, two exemplar organic materials with large unit cells.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"167-177"},"PeriodicalIF":1.9,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10913674/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139544987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1107/S2053273323010550
Gunnar Thorkildsen
Parameters in analytical models for X-ray form factors of ions f0(s), based on the inverse Mott-Bethe formula involving a variable number of Gaussians, are determined for a wide range of published data sets {s, f0(s)}. The models reproduce the calculated form-factor values close to what is expected from a uniform statistical distribution with limits determined by their precision. For different ions associated with the same atom, the number of Gaussians in the models decreases with increasing net positive charge.
{"title":"Analytical models representing X-ray form factors of ions.","authors":"Gunnar Thorkildsen","doi":"10.1107/S2053273323010550","DOIUrl":"10.1107/S2053273323010550","url":null,"abstract":"<p><p>Parameters in analytical models for X-ray form factors of ions f<sub>0</sub>(s), based on the inverse Mott-Bethe formula involving a variable number of Gaussians, are determined for a wide range of published data sets {s, f<sub>0</sub>(s)}. The models reproduce the calculated form-factor values close to what is expected from a uniform statistical distribution with limits determined by their precision. For different ions associated with the same atom, the number of Gaussians in the models decreases with increasing net positive charge.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"129-136"},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10833360/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139072707","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1107/S2053273323008665
Montauban Moreira de Oliveira, Jean Guillaume Eon
Löwenstein's avoidance rule in aluminosilicates is reinterpreted on the basis of the fourth Pauling rule. It is shown that avoidance of Si-O-Si bridges may account for avoidance of Al-O-Al bridges. In view of this interpretation, it is proposed that the most favourable distributions of cations entering in substitution of silicon in the framework are associated to maximal independent sets of the respective 3-periodic nets. Among all possible solutions, only those with maximal symmetry are realized. The applicability of the concept is demonstrated for a few natural tectosilicates, which have been analysed through the prism of their labelled quotient graph.
{"title":"Maximal independence and symmetry in crystal chemistry of natural tectosilicates.","authors":"Montauban Moreira de Oliveira, Jean Guillaume Eon","doi":"10.1107/S2053273323008665","DOIUrl":"10.1107/S2053273323008665","url":null,"abstract":"<p><p>Löwenstein's avoidance rule in aluminosilicates is reinterpreted on the basis of the fourth Pauling rule. It is shown that avoidance of Si-O-Si bridges may account for avoidance of Al-O-Al bridges. In view of this interpretation, it is proposed that the most favourable distributions of cations entering in substitution of silicon in the framework are associated to maximal independent sets of the respective 3-periodic nets. Among all possible solutions, only those with maximal symmetry are realized. The applicability of the concept is demonstrated for a few natural tectosilicates, which have been analysed through the prism of their labelled quotient graph.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"52-64"},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89716121","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1107/S2053273323008938
Ma Louise Antonette De Las Peñas, Mark Tomenes, Kristan Liza
This work discusses the symmetry groups of two classes of woven fabrics, two-way twofold fabrics and three-way threefold fabrics. A method to arrive at a design of a fabric is presented, employing methods in color symmetry theory. Geometric representations of all possible layer group or diperiodic symmetry structures of the fabrics are derived. There are 50 layer symmetry groups corresponding to two-way twofold fabrics and 27 layer symmetry groups corresponding to three-way threefold fabrics.
{"title":"Symmetry groups of two-way twofold and three-way threefold fabrics.","authors":"Ma Louise Antonette De Las Peñas, Mark Tomenes, Kristan Liza","doi":"10.1107/S2053273323008938","DOIUrl":"10.1107/S2053273323008938","url":null,"abstract":"<p><p>This work discusses the symmetry groups of two classes of woven fabrics, two-way twofold fabrics and three-way threefold fabrics. A method to arrive at a design of a fabric is presented, employing methods in color symmetry theory. Geometric representations of all possible layer group or diperiodic symmetry structures of the fabrics are derived. There are 50 layer symmetry groups corresponding to two-way twofold fabrics and 27 layer symmetry groups corresponding to three-way threefold fabrics.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"33-51"},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138795871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-01-01DOI: 10.1107/S205327332300949X
Gregory McColm
A crystal net can be derived from a `generalized' voltage graph representing a graph analog of a fundamental domain of that crystal net along with a sufficient collection of its symmetries. The voltage assignments include not only isometries to the (oriented) edges, but also `weight' groups assigned to vertices for generating the vertex figures around those vertices. By varying the voltage assignments, one obtains geometrically distinct - and occasionally topologically distinct - Euclidean graphs. The focus here is on deriving simple graphs, i.e. graphs with no loops or lunes, especially uninodal edge transitive graphs.
{"title":"Realizations of crystal nets. I. (Generalized) derived graphs.","authors":"Gregory McColm","doi":"10.1107/S205327332300949X","DOIUrl":"10.1107/S205327332300949X","url":null,"abstract":"<p><p>A crystal net can be derived from a `generalized' voltage graph representing a graph analog of a fundamental domain of that crystal net along with a sufficient collection of its symmetries. The voltage assignments include not only isometries to the (oriented) edges, but also `weight' groups assigned to vertices for generating the vertex figures around those vertices. By varying the voltage assignments, one obtains geometrically distinct - and occasionally topologically distinct - Euclidean graphs. The focus here is on deriving simple graphs, i.e. graphs with no loops or lunes, especially uninodal edge transitive graphs.</p>","PeriodicalId":106,"journal":{"name":"Acta Crystallographica Section A: Foundations and Advances","volume":" ","pages":"18-32"},"PeriodicalIF":1.8,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138795870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}