首页 > 最新文献

Contributions to Plasma Physics最新文献

英文 中文
Microwave atmospheric pressure plasma jet: A review 微波大气压等离子体射流:综述
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-08-22 DOI: 10.1002/ctpp.202400036
Suryasunil Rath, Satyananda Kar

Considerable interest has emerged in atmospheric pressure discharges within the microwave frequency range over the past decade, driven by the growing potential applications such as material processing, CO2 dissociation, waste treatment, hydrogen production, water treatment, and so forth. This review delves into the diverse types of atmospheric pressure plasma jets (APPJs) operated at microwave frequencies. The analysis integrates insights from an overall review that encapsulates the different types of geometry, characterizations, modeling, and various applications of microwave atmospheric plasma jets (MW-APPJs). This paper will contribute to a comprehensive understanding of microwave plasma generated in the ambient atmosphere. The fundamental insights into these discharges are emerging, but there are still numerous unexplained phenomena in these inherently complex plasmas that need to be studied. The properties of these MW-APPJs encompass a higher range of electron densities (ne), gas temperatures (Tg), electron temperatures (Te), and reactive oxygen and nitrogen species (RONS). This review provides an overview of the key underlying processes crucial for generating and stabilizing MW-APPJs. Additionally, the unique physical and chemical properties of these discharges are summarized. In the initial section, we aim to introduce the primary scientific characterizations of different types of waveguide-based and non-waveguide-based MW-APPJs. The subsequent part focuses on the diverse modeling approaches for different MW-APPJs and the outcomes derived from these models. The final section describes the potential applications of MW-APPJs in various domains.

过去十年来,由于材料加工、二氧化碳解离、废物处理、制氢、水处理等潜在应用日益增多,人们对微波频率范围内的大气压放电产生了浓厚的兴趣。本综述深入探讨了在微波频率下运行的各种类型的大气压等离子体射流(APPJ)。分析综合了全面综述中的见解,包括微波大气等离子体射流(MW-APPJs)的不同几何类型、特性、建模和各种应用。本文将有助于全面了解环境大气中产生的微波等离子体。对这些放电的基本认识正在形成,但在这些固有的复杂等离子体中仍有许多无法解释的现象需要研究。这些 MW-APPJ 的特性包括较高范围的电子密度 (ne)、气体温度 (Tg)、电子温度 (Te) 以及活性氧和氮物种 (RONS)。本综述概述了生成和稳定 MW-APPJs 的关键基本过程。此外,还总结了这些放电的独特物理和化学特性。在第一部分,我们旨在介绍不同类型波导型和非波导型 MW-APPJ 的主要科学特征。随后的部分重点介绍了针对不同 MW-APPJ 的各种建模方法以及从这些模型中得出的结果。最后一部分介绍了 MW-APPJ 在各个领域的潜在应用。
{"title":"Microwave atmospheric pressure plasma jet: A review","authors":"Suryasunil Rath,&nbsp;Satyananda Kar","doi":"10.1002/ctpp.202400036","DOIUrl":"10.1002/ctpp.202400036","url":null,"abstract":"<p>Considerable interest has emerged in atmospheric pressure discharges within the microwave frequency range over the past decade, driven by the growing potential applications such as material processing, CO<sub>2</sub> dissociation, waste treatment, hydrogen production, water treatment, and so forth. This review delves into the diverse types of atmospheric pressure plasma jets (APPJs) operated at microwave frequencies. The analysis integrates insights from an overall review that encapsulates the different types of geometry, characterizations, modeling, and various applications of microwave atmospheric plasma jets (MW-APPJs). This paper will contribute to a comprehensive understanding of microwave plasma generated in the ambient atmosphere. The fundamental insights into these discharges are emerging, but there are still numerous unexplained phenomena in these inherently complex plasmas that need to be studied. The properties of these MW-APPJs encompass a higher range of electron densities (<i>n</i><sub><i>e</i></sub>), gas temperatures (<i>T</i><sub><i>g</i></sub>), electron temperatures (<i>T</i><sub><i>e</i></sub>), and reactive oxygen and nitrogen species (RONS). This review provides an overview of the key underlying processes crucial for generating and stabilizing MW-APPJs. Additionally, the unique physical and chemical properties of these discharges are summarized. In the initial section, we aim to introduce the primary scientific characterizations of different types of waveguide-based and non-waveguide-based MW-APPJs. The subsequent part focuses on the diverse modeling approaches for different MW-APPJs and the outcomes derived from these models. The final section describes the potential applications of MW-APPJs in various domains.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 2","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bound and resonance states of highly charged H- and He-like ions under weakly coupled plasma environment 弱耦合等离子体环境下高电荷氢离子和类氢离子的束缚态和共振态
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-08-20 DOI: 10.1002/ctpp.202400041
S. Mondal, A. N. Sil, S. Dutta, S. Nandi, T. K. Mukhopadhyay, J. K. Saha
<p>The position of bound <span></span><math> <semantics> <mrow> <mn>1</mn> <mi>sns</mi> </mrow> <annotation>$$ 1 sns $$</annotation> </semantics></math> (<span></span><math> <semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>−</mo> <mn>5</mn> </mrow> <annotation>$$ n=1-5 $$</annotation> </semantics></math>) states as well as doubly excited resonance <span></span><math> <semantics> <mrow> <mn>2</mn> <mi>sns</mi> </mrow> <annotation>$$ 2 sns $$</annotation> </semantics></math>, <span></span><math> <semantics> <mrow> <mn>2</mn> <mi>pnp</mi> </mrow> <annotation>$$ 2 pnp $$</annotation> </semantics></math> (<span></span><math> <semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>2</mn> <mo>−</mo> <mn>3</mn> </mrow> <annotation>$$ n=2-3 $$</annotation> </semantics></math>) states of <span></span><math> <semantics> <mrow> <msup> <mo> </mo> <mn>1</mn> </msup> <msup> <mi>S</mi> <mi>e</mi> </msup> </mrow> <annotation>$$ {}^1{mathrm{S}}^e $$</annotation> </semantics></math> symmetry has been determined for highly charged He-like ions (<span></span><math> <semantics> <mrow> <msup> <mi>C</mi> <mrow> <mn>4</mn> <mo>+</mo> </mrow> </msup> </mrow> <annotation>$$ {mathrm{C}}^{4+} $$</annotation> </semantics></math>, <span></span><math> <semantics> <mrow> <msup> <mi>Mg</mi> <mrow> <mn>10</mn> <mo>+</mo> </mrow> </msup> </mrow> <annotation>$$ {mathrm{Mg}}^{10+} $$</annotation> </semantics></math>, <span></span><math> <semantics> <mrow> <msup> <mi>Al</mi> <mrow> <mn>11</mn> <mo>+</mo> </mrow> </msup> </mrow>
在弱耦合等离子体环境下,测定了高电荷类氦离子(、、、、和Ar16+)的束缚()态和双激发共振对称态()的位置及其各自的单电子阈值(、、和)。之所以选择这些特定离子及其各自的电荷状态,是因为它们经常出现在天体物理和实验室等离子体中。在处理氦离子和类氦离子时,分别采用了具有多分量明确相关的海勒拉斯(Hylleraas)类型基础和纯指数基础集的里兹变分法。在不同等离子体条件下,采用稳定法测定了几个低洼共振态的共振宽度。等离子体嵌入离子的束缚态和共振态的电离电位都有所降低。很明显,来自不同主导构型的共振态的宽度(或寿命)随等离子体屏蔽长度的变化而变化。
{"title":"Bound and resonance states of highly charged H- and He-like ions under weakly coupled plasma environment","authors":"S. Mondal,&nbsp;A. N. Sil,&nbsp;S. Dutta,&nbsp;S. Nandi,&nbsp;T. K. Mukhopadhyay,&nbsp;J. K. Saha","doi":"10.1002/ctpp.202400041","DOIUrl":"10.1002/ctpp.202400041","url":null,"abstract":"&lt;p&gt;The position of bound &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mi&gt;sns&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ 1 sns $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;5&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ n=1-5 $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;) states as well as doubly excited resonance &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mi&gt;sns&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ 2 sns $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mi&gt;pnp&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ 2 pnp $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ n=2-3 $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;) states of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mo&gt; &lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {}^1{mathrm{S}}^e $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; symmetry has been determined for highly charged He-like ions (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {mathrm{C}}^{4+} $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;Mg&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;10&lt;/mn&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {mathrm{Mg}}^{10+} $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;Al&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;11&lt;/mn&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 ","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 10","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure and melting of strongly coupled dusty plasma 强耦合尘埃等离子体的结构与熔化
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-08-20 DOI: 10.1002/ctpp.202400057
Mohamed Issaad

The structure and phase transition of a two-dimensional (2D)$$ left(2mathrm{D}right) $$ dusty plasma, confined by an anisotropic power-law potential and interacting via a screened Coulomb potential, were investigated using Monte Carlo simulations. The study varied the number of particles (N$$ N $$), screening strength (k$$ k $$), eccentricity parameter (α$$ alpha $$), and confinement power parameter (n$$ n $$) to characterize the system's structural properties. According to the simulation results, the melting temperature is influenced by the eccentricity parameter. Reducing the eccentricity results in a corresponding decrease in the melting temperature. However, the confinement power parameter does not appear to have any impact on the melting temperature.

利用蒙特卡洛模拟研究了由各向异性幂律势能约束并通过屏蔽库仑势能相互作用的二维尘埃等离子体的结构和相变。研究改变了粒子数量()、屏蔽强度()、偏心率参数()和约束功率参数(),以描述系统的结构特性。
{"title":"Structure and melting of strongly coupled dusty plasma","authors":"Mohamed Issaad","doi":"10.1002/ctpp.202400057","DOIUrl":"10.1002/ctpp.202400057","url":null,"abstract":"<p>The structure and phase transition of a two-dimensional <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mrow>\u0000 <mo>(</mo>\u0000 <mrow>\u0000 <mn>2</mn>\u0000 <mi>D</mi>\u0000 </mrow>\u0000 <mo>)</mo>\u0000 </mrow>\u0000 </mrow>\u0000 <annotation>$$ left(2mathrm{D}right) $$</annotation>\u0000 </semantics></math> dusty plasma, confined by an anisotropic power-law potential and interacting via a screened Coulomb potential, were investigated using Monte Carlo simulations. The study varied the number of particles (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>N</mi>\u0000 </mrow>\u0000 <annotation>$$ N $$</annotation>\u0000 </semantics></math>), screening strength (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>k</mi>\u0000 </mrow>\u0000 <annotation>$$ k $$</annotation>\u0000 </semantics></math>), eccentricity parameter (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>α</mi>\u0000 </mrow>\u0000 <annotation>$$ alpha $$</annotation>\u0000 </semantics></math>), and confinement power parameter (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>n</mi>\u0000 </mrow>\u0000 <annotation>$$ n $$</annotation>\u0000 </semantics></math>) to characterize the system's structural properties. According to the simulation results, the melting temperature is influenced by the eccentricity parameter. Reducing the eccentricity results in a corresponding decrease in the melting temperature. However, the confinement power parameter does not appear to have any impact on the melting temperature.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 2","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HL-2A's ELM cycle simulations by integrating BOUT++'s drift MHD and transport code 通过整合 BOUT++ 的漂移 MHD 和传输代码进行 HL-2A 的 ELM 循环模拟
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-08-15 DOI: 10.1002/ctpp.202300144
Xinliang Xu, Zhanhui Wang, Nami Li, Na Wu, Yulin Zhou, Xueke Wu, Cailong Fu

A new integrating model has been developed to couple tokamak edge multiscale magnetohydrodynamic (MHD) events and transport simulations, such as edge-localized mode (ELM) cycles. As a proof of principle, we first start from a set of three-field two-fluid model equations, which includes the pressure, current, and vorticity. The equations are separated into the slowly evolving part of the axisymmetric component by taking a time average of the axisymmetric component. The time-averaged fluxes, which are quadratic in fluctuating quantities, act as driven terms for the time-averaged axisymmetric quantities that determine the plasma transport, and therefore the large-scale evolution of the plasma profiles. Then the HL-2A's ELM cycles are simulated using the model. Good agreements of ELM size and pedestal recovery time have been achieved for the solutions obtained from the coupled simulation compared with experiment. For one ELM cycle simulation, the coupled code can achieve a speedup of a factor of up to 30 over standalone code.

为了将托卡马克边缘多尺度磁流体动力学(MHD)事件和传输模拟(如边缘局部模式(ELM)循环)结合起来,我们开发了一种新的集成模型。作为原理验证,我们首先从一组三场双流体模型方程出发,其中包括压力、电流和涡度。通过取轴对称分量的时间平均值,将方程分离成轴对称分量的缓慢演化部分。时间平均通量是波动量的二次方,它作为时间平均轴对称量的驱动项,决定了等离子体的传输,从而决定了等离子体剖面的大尺度演变。然后利用该模型模拟了 HL-2A 的 ELM 循环。通过耦合模拟得到的解与实验结果相比,在 ELM 尺寸和基座恢复时间方面取得了良好的一致性。在一次 ELM 循环模拟中,耦合代码比独立代码最多可提速 30 倍。
{"title":"HL-2A's ELM cycle simulations by integrating BOUT++'s drift MHD and transport code","authors":"Xinliang Xu,&nbsp;Zhanhui Wang,&nbsp;Nami Li,&nbsp;Na Wu,&nbsp;Yulin Zhou,&nbsp;Xueke Wu,&nbsp;Cailong Fu","doi":"10.1002/ctpp.202300144","DOIUrl":"10.1002/ctpp.202300144","url":null,"abstract":"<p>A new integrating model has been developed to couple tokamak edge multiscale magnetohydrodynamic (MHD) events and transport simulations, such as edge-localized mode (ELM) cycles. As a proof of principle, we first start from a set of three-field two-fluid model equations, which includes the pressure, current, and vorticity. The equations are separated into the slowly evolving part of the axisymmetric component by taking a time average of the axisymmetric component. The time-averaged fluxes, which are quadratic in fluctuating quantities, act as driven terms for the time-averaged axisymmetric quantities that determine the plasma transport, and therefore the large-scale evolution of the plasma profiles. Then the HL-2A's ELM cycles are simulated using the model. Good agreements of ELM size and pedestal recovery time have been achieved for the solutions obtained from the coupled simulation compared with experiment. For one ELM cycle simulation, the coupled code can achieve a speedup of a factor of up to 30 over standalone code.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 7-8","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Shear-modified ion-acoustic instability in ionospheric multi-ion plasmas
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-08-14 DOI: 10.1002/ctpp.202300157
K. Shahzad,  Aman-ur-Rehman, S. Ali, Muhammad Yousaf Hamza
<p>The linear properties of the low-frequency ion-acoustic (IA) waves are studied in a collisionless magnetoplasma using both fluid and kinetic descriptions in the presence of particle shear flows and field-aligned currents. Two different compositions of plasmas such as <span></span><math> <semantics> <mrow> <mfenced> <msup> <mi>H</mi> <mo>+</mo> </msup> <mo>,</mo> <msup> <mi>O</mi> <mo>+</mo> </msup> <mo>,</mo> <msup> <mi>e</mi> <mo>−</mo> </msup> </mfenced> </mrow> <annotation>$$ left({H}^{+},{O}^{+},{e}^{-}right) $$</annotation> </semantics></math> and <span></span><math> <semantics> <mrow> <mfenced> <msup> <mi>H</mi> <mo>−</mo> </msup> <mo>,</mo> <msup> <mi>O</mi> <mo>+</mo> </msup> <mo>,</mo> <msup> <mi>e</mi> <mo>−</mo> </msup> </mfenced> </mrow> <annotation>$$ left({H}^{-},{O}^{+},{e}^{-}right) $$</annotation> </semantics></math> are analyzed under the drift approximation and plan wave solution. Calculating a generalized linear dispersion function, shear-modified IA waves are investigated with various limiting cases. In contrast, relying on the kinetic treatment, a generalized dielectric response function is also solved to study the real frequency and growth rate of the shear-modified IA waves. Numerically, it is shown that a small concentration of negative hydrogen ions in the oxygen ionospheric plasma may lead to an increase in the growth rate and real frequency of the IA waves. The growth rate of negative hydrogen ion plasma is relatively found larger than that of positive hydrogen ion plasma. It is also noted that growth rate increases significantly with field-aligned flow of lighter species as compared with heavier ones. The magnitudes of the wave frequency and growth rate become larger when plasma species stream in the same direction as compared with counter-streaming of plasma species. Additionally, the shear flow modifies the profiles of wave instability and IA oscillations are greatly influenced by the same and opposite sides' particle shear flows. The growth rate increases as the shear flow increases, resulting in wider curves. The present findings are important for understanding the low-frequency electrostatic
{"title":"Shear-modified ion-acoustic instability in ionospheric multi-ion plasmas","authors":"K. Shahzad,&nbsp; Aman-ur-Rehman,&nbsp;S. Ali,&nbsp;Muhammad Yousaf Hamza","doi":"10.1002/ctpp.202300157","DOIUrl":"https://doi.org/10.1002/ctpp.202300157","url":null,"abstract":"&lt;p&gt;The linear properties of the low-frequency ion-acoustic (IA) waves are studied in a collisionless magnetoplasma using both fluid and kinetic descriptions in the presence of particle shear flows and field-aligned currents. Two different compositions of plasmas such as &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mfenced&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;O&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mfenced&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ left({H}^{+},{O}^{+},{e}^{-}right) $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; and &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mfenced&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;H&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;O&lt;/mi&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;mo&gt;,&lt;/mo&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mfenced&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ left({H}^{-},{O}^{+},{e}^{-}right) $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; are analyzed under the drift approximation and plan wave solution. Calculating a generalized linear dispersion function, shear-modified IA waves are investigated with various limiting cases. In contrast, relying on the kinetic treatment, a generalized dielectric response function is also solved to study the real frequency and growth rate of the shear-modified IA waves. Numerically, it is shown that a small concentration of negative hydrogen ions in the oxygen ionospheric plasma may lead to an increase in the growth rate and real frequency of the IA waves. The growth rate of negative hydrogen ion plasma is relatively found larger than that of positive hydrogen ion plasma. It is also noted that growth rate increases significantly with field-aligned flow of lighter species as compared with heavier ones. The magnitudes of the wave frequency and growth rate become larger when plasma species stream in the same direction as compared with counter-streaming of plasma species. Additionally, the shear flow modifies the profiles of wave instability and IA oscillations are greatly influenced by the same and opposite sides' particle shear flows. The growth rate increases as the shear flow increases, resulting in wider curves. The present findings are important for understanding the low-frequency electrostatic ","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143114578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of temperature on the wave breaking amplitude of nonlinear relativistic strong plasma waves 温度对非线性相对论强等离子体波的破波幅度的影响
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-08-02 DOI: 10.1002/ctpp.202400075
Govind Singh Yadav, Mithun Karmakar

The wave-breaking amplitude of a strong nonlinear plasma wave has been determined in a warm plasma. Pseudopotential technique has been adopted to describe the wave-breaking phenomena in such plasma. The solution is obtained with the consideration that the phase velocity of the plasma wave is equal to the velocity of light in vacuum. This assumption is justified since the wave which is excited usually by the relativistic charged particle bunches or laser pulses has phase speed very close to the speed of light in vacuum. The investigation shows that the breaking amplitude decreases with the increase of the electron temperature. Furthermore, the wavelength of the plasma wave is seen to decrease as we increase the electron temperature. The obtained results have relevance in the astrophysical situation as well as in the field of plasma based charged particle acceleration process.

在暖等离子体中测定了强非线性等离子体波的破波幅度。采用伪电势技术来描述这种等离子体中的破波现象。求解时考虑到等离子体波的相位速度等于真空中的光速。这一假设是合理的,因为通常由相对论带电粒子束或激光脉冲激发的波的相位速度非常接近真空中的光速。研究表明,断裂振幅随着电子温度的升高而减小。此外,等离子体波的波长也随着电子温度的升高而减小。所获得的结果与天体物理学以及基于等离子体的带电粒子加速过程领域相关。
{"title":"Effect of temperature on the wave breaking amplitude of nonlinear relativistic strong plasma waves","authors":"Govind Singh Yadav,&nbsp;Mithun Karmakar","doi":"10.1002/ctpp.202400075","DOIUrl":"10.1002/ctpp.202400075","url":null,"abstract":"<p>The wave-breaking amplitude of a strong nonlinear plasma wave has been determined in a warm plasma. Pseudopotential technique has been adopted to describe the wave-breaking phenomena in such plasma. The solution is obtained with the consideration that the phase velocity of the plasma wave is equal to the velocity of light in vacuum. This assumption is justified since the wave which is excited usually by the relativistic charged particle bunches or laser pulses has phase speed very close to the speed of light in vacuum. The investigation shows that the breaking amplitude decreases with the increase of the electron temperature. Furthermore, the wavelength of the plasma wave is seen to decrease as we increase the electron temperature. The obtained results have relevance in the astrophysical situation as well as in the field of plasma based charged particle acceleration process.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141886006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: Contrib. Plasma Phys. 06/2024 封面图片:Contrib.等离子体物理 06/2024
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-07-29 DOI: 10.1002/ctpp.202490011

Ken Golden (top photo) and Gabor Kalman (bottom photo). Photos by P. Hartmann.

Ken Golden(上图)和 Gabor Kalman(下图)。照片由 P. Hartmann 拍摄。
{"title":"Cover Picture: Contrib. Plasma Phys. 06/2024","authors":"","doi":"10.1002/ctpp.202490011","DOIUrl":"10.1002/ctpp.202490011","url":null,"abstract":"<p>Ken Golden (top photo) and Gabor Kalman (bottom photo). Photos by P. Hartmann.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 6","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202490011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Issue Information: Contrib. Plasma Phys. 06/2024 发行信息:Contrib.等离子体物理 06/2024
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-07-29 DOI: 10.1002/ctpp.202490012
{"title":"Issue Information: Contrib. Plasma Phys. 06/2024","authors":"","doi":"10.1002/ctpp.202490012","DOIUrl":"10.1002/ctpp.202490012","url":null,"abstract":"","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 6","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202490012","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parametric coupling of whistler waves with gyrating ion beam in a complex plasma 复杂等离子体中啸波与回旋离子束的参数耦合
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-07-25 DOI: 10.1002/ctpp.202400055
Twinkle Pahuja, Amit Kumar, Jyotsna Sharma, Anuj Vijay

This manuscript examines the non-linear interaction between the negative energy beam cyclotron mode and the high-frequency whistler waves. The negative energy beam mode is supported in the vicinity of the beam gyro-frequency harmonics by a gyrating ion beam with a$$ mathrm{a} $$ ring-shaped velocity distribution. Using a gyrating ion beam, we have examined how dust charge variations affect the parametric up-conversion of high-frequency whistler waves (WWs) into a side band wave and a low-frequency mode. For the linked modes, a non-linear dispersion relation is obtained. It is demonstrated that the WWs divided by beam gyro-frequency harmonics are up-converted by a gyrating ion-beam frequency. An expression for the ion cyclotron mode wave growth rate has been obtained. The estimation of the turbulence growth rate takes into account for the typical parameters of existing dusty plasma. It has been observed that an increased growth rate is reported with a rise in the pump wave amplitude, beam gyro-frequency, number density of dust grains, and the relative density of dust grains. However, a decline in the growth rate has been observed with increasing gyrating ion beam density and dust grain's size.

本手稿研究了负能量束回旋模式与高频啸叫波之间的非线性相互作用。负能量光束模式在光束陀螺频率谐波附近得到了具有环形速度分布的回旋离子束的支持。利用回旋离子束,我们研究了尘埃电荷变化如何影响高频啸叫声波(WWs)向上转换为边带波和低频模式的参数。对于链接模式,得到了非线性色散关系。研究表明,被光束陀螺频率谐波分割的啸叫波会被回旋离子束频率向上转换。得到了离子回旋模式波增长率的表达式。湍流增长率的估算考虑了现有尘埃等离子体的典型参数。据观察,随着泵波幅值、束陀螺频率、尘粒数量密度和尘粒相对密度的增加,湍流增长率也会增加。然而,随着回旋离子束密度和尘粒大小的增加,生长率有所下降。
{"title":"Parametric coupling of whistler waves with gyrating ion beam in a complex plasma","authors":"Twinkle Pahuja,&nbsp;Amit Kumar,&nbsp;Jyotsna Sharma,&nbsp;Anuj Vijay","doi":"10.1002/ctpp.202400055","DOIUrl":"10.1002/ctpp.202400055","url":null,"abstract":"<p>This manuscript examines the non-linear interaction between the negative energy beam cyclotron mode and the high-frequency whistler waves. The negative energy beam mode is supported in the vicinity of the beam gyro-frequency harmonics by a gyrating ion beam with <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>a</mi>\u0000 </mrow>\u0000 <annotation>$$ mathrm{a} $$</annotation>\u0000 </semantics></math> ring-shaped velocity distribution. Using a gyrating ion beam, we have examined how dust charge variations affect the parametric up-conversion of high-frequency whistler waves (WWs) into a side band wave and a low-frequency mode. For the linked modes, a non-linear dispersion relation is obtained. It is demonstrated that the WWs divided by beam gyro-frequency harmonics are up-converted by a gyrating ion-beam frequency. An expression for the ion cyclotron mode wave growth rate has been obtained. The estimation of the turbulence growth rate takes into account for the typical parameters of existing dusty plasma. It has been observed that an increased growth rate is reported with a rise in the pump wave amplitude, beam gyro-frequency, number density of dust grains, and the relative density of dust grains. However, a decline in the growth rate has been observed with increasing gyrating ion beam density and dust grain's size.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"65 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141779877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical study of sheath formation in multi-ion species plasmas 多离子等离子体鞘形成的数值研究
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-07-11 DOI: 10.1002/ctpp.202300140
Panupong Rintarak, Yasuhiro Suzuki, Gakushi Kawamura

A study of multi-ion species plasmas in divertor region through kinetic simulation helps us understand particle transports and wall interactions. We analyzed plasma sheath behavior without collisions involving electrons, hydrogen isotopes, and helium ions using a one-dimensional spatial space and three-dimensional velocity space (1D3V) Particle-In-Cell (PIC) simulation. The PIC simulation model follows Maxwellian velocity distributions with the pre-sheath acceleration for each particle species in the plasma source, and the plasmas move to the absorption wall with equal and constant flux. This revealed spatial potential variations due to differences in masses and charges of multi-ion species plasmas, including independent sound velocities of each ion species. Increasing ion masses result in a more negative wall potential. The electrostatic force repels electrons and accelerates multi-ions to reach the absorption wall. This information is found in the phase spaces of velocity in the sheath.

通过动力学模拟研究岔流区的多离子等离子体,有助于我们了解粒子传输和壁相互作用。我们利用一维空间和三维速度空间(1D3V)粒子池内(PIC)模拟,分析了不涉及电子、氢同位素和氦离子碰撞的等离子鞘行为。PIC 模拟模型遵循 Maxwellian 速度分布,等离子体源中的每种粒子都具有鞘前加速度,等离子体以相等和恒定的流量移动到吸收壁。这揭示了多离子等离子体质量和电荷差异导致的空间电势变化,包括每个离子种类的独立声速。离子质量越大,壁电势越负。静电力排斥电子,加速多离子到达吸收壁。这些信息可以在鞘内速度的相空间中找到。
{"title":"Numerical study of sheath formation in multi-ion species plasmas","authors":"Panupong Rintarak,&nbsp;Yasuhiro Suzuki,&nbsp;Gakushi Kawamura","doi":"10.1002/ctpp.202300140","DOIUrl":"10.1002/ctpp.202300140","url":null,"abstract":"<p>A study of multi-ion species plasmas in divertor region through kinetic simulation helps us understand particle transports and wall interactions. We analyzed plasma sheath behavior without collisions involving electrons, hydrogen isotopes, and helium ions using a one-dimensional spatial space and three-dimensional velocity space (1D3V) Particle-In-Cell (PIC) simulation. The PIC simulation model follows Maxwellian velocity distributions with the pre-sheath acceleration for each particle species in the plasma source, and the plasmas move to the absorption wall with equal and constant flux. This revealed spatial potential variations due to differences in masses and charges of multi-ion species plasmas, including independent sound velocities of each ion species. Increasing ion masses result in a more negative wall potential. The electrostatic force repels electrons and accelerates multi-ions to reach the absorption wall. This information is found in the phase spaces of velocity in the sheath.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 7-8","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141608202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Contributions to Plasma Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1