首页 > 最新文献

Contributions to Plasma Physics最新文献

英文 中文
Role of field ionization in laser pulse evolution during interaction of long laser pulse with gaseous hydrogen atoms 长激光脉冲与气态氢原子相互作用时场电离在激光脉冲演化过程中的作用
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-12 DOI: 10.1002/ctpp.202400022
Elnaz Khalilzadeh, Amir Chakhmachi, Zohreh Dehghani
In this paper, the laser pulse evolution arising from the field ionization during the interaction of a long laser pulse with gaseous hydrogen atoms is investigated using the kinetic 1D‐3 V Particle‐In‐Cell (PIC) Smilei simulation code. After performing various simulations, it is shown that the field ionization of hydrogen atoms has a non‐negligible effect on the evolution of the laser pulse compared to the pre‐ionized plasma case. The results of our simulations show that the amount of these evolutions is strongly dependent on the parameters of the laser and initial ionization assumed. In this regard, two main mechanisms are responsible for the changes in the generated radiations and then the evolution of the laser pulse. When the average degree of ionization is weak, the backscattered Raman radiations can provide the necessary conditions for the chaotic behavior to occur and the laser pulse to evolve. When the laser and plasma pulse parameters (such as the laser pulse amplitude, hydrogen atoms density, and the rise time of pulse) are selected so that a strong space charge field is formed, the wave breaking (which happened faster due to density changes during the field ionization) is the main factor for evolutions in the laser pulse.
本文使用动力学 1D-3 V 粒子内胞(PIC)Smilei 仿真代码研究了长激光脉冲与气态氢原子相互作用过程中场电离引起的激光脉冲演变。在进行了各种模拟后,结果表明与电离前等离子体情况相比,氢原子的场电离对激光脉冲的演化有不可忽略的影响。模拟结果表明,这些演变量与激光参数和假定的初始电离有很大关系。在这方面,有两种主要机制导致了所产生辐射的变化以及激光脉冲的演变。当平均电离程度较弱时,后向散射拉曼辐射可为混沌行为的发生和激光脉冲的演变提供必要条件。当激光和等离子体脉冲参数(如激光脉冲振幅、氢原子密度和脉冲上升时间)的选择使空间电荷场形成较强时,波的破碎(由于场电离过程中的密度变化而发生得较快)是激光脉冲演变的主要因素。
{"title":"Role of field ionization in laser pulse evolution during interaction of long laser pulse with gaseous hydrogen atoms","authors":"Elnaz Khalilzadeh, Amir Chakhmachi, Zohreh Dehghani","doi":"10.1002/ctpp.202400022","DOIUrl":"https://doi.org/10.1002/ctpp.202400022","url":null,"abstract":"In this paper, the laser pulse evolution arising from the field ionization during the interaction of a long laser pulse with gaseous hydrogen atoms is investigated using the kinetic 1D‐3 V Particle‐In‐Cell (PIC) Smilei simulation code. After performing various simulations, it is shown that the field ionization of hydrogen atoms has a non‐negligible effect on the evolution of the laser pulse compared to the pre‐ionized plasma case. The results of our simulations show that the amount of these evolutions is strongly dependent on the parameters of the laser and initial ionization assumed. In this regard, two main mechanisms are responsible for the changes in the generated radiations and then the evolution of the laser pulse. When the average degree of ionization is weak, the backscattered Raman radiations can provide the necessary conditions for the chaotic behavior to occur and the laser pulse to evolve. When the laser and plasma pulse parameters (such as the laser pulse amplitude, hydrogen atoms density, and the rise time of pulse) are selected so that a strong space charge field is formed, the wave breaking (which happened faster due to density changes during the field ionization) is the main factor for evolutions in the laser pulse.","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"1 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213587","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of (r, q) Distribution on Ion Acoustic Waves in a Negative‐Ion Plasma With Application to Earth's Ionosphere 负离子等离子体中 (r, q) 分布对离子声波的影响及其在地球电离层中的应用
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-11 DOI: 10.1002/ctpp.202400074
Zhong‐Zheng Li, Li‐Qiang Xie, Sheng‐De Liang, Dong‐Ning Gao
Ion acoustic waves (IAWs) are theoretically researched in a negative ion plasma (NIP) with warm light ions, cold heavy ions, and distributed electrons. The reductive perturbation method (RPM) is used to simplify two‐fluid plasma equations and the relevant ZK equation and solitary solution of IAWs are derived. Small‐k expansion method is applied to obtained the instability growth rate of IAWs. The flatness and tail parameters modify the amplitude, width, soliton energy, and instability growth rate. It is noted that the increscent flatness and tail parameters result in the increasing amplitude, width, and soliton energy. Increasing flatness and tail parameters lead to the decreasing growth rate. These results will be helpful in understanding the plasma dynamics for NIP system containing distributed electrons in Earth's ionosphere.
从理论上研究了具有暖轻离子、冷重离子和分布电子的负离子等离子体(NIP)中的离子声波(IAWs)。利用还原扰动法(RPM)简化了双流体等离子体方程,并导出了相关的 ZK 方程和 IAWs 孤解。应用小k膨胀法得到了IAWs的不稳定增长率。平整度和尾参数改变了振幅、宽度、孤子能量和不稳定增长率。可以看出,平整度和尾部参数的增加会导致振幅、宽度和孤子能量的增加。平整度和尾参数的增加会导致增长率的降低。这些结果将有助于理解地球电离层中含有分布电子的 NIP 系统的等离子体动力学。
{"title":"Effect of (r, q) Distribution on Ion Acoustic Waves in a Negative‐Ion Plasma With Application to Earth's Ionosphere","authors":"Zhong‐Zheng Li, Li‐Qiang Xie, Sheng‐De Liang, Dong‐Ning Gao","doi":"10.1002/ctpp.202400074","DOIUrl":"https://doi.org/10.1002/ctpp.202400074","url":null,"abstract":"Ion acoustic waves (IAWs) are theoretically researched in a negative ion plasma (NIP) with warm light ions, cold heavy ions, and distributed electrons. The reductive perturbation method (RPM) is used to simplify two‐fluid plasma equations and the relevant ZK equation and solitary solution of IAWs are derived. Small‐k expansion method is applied to obtained the instability growth rate of IAWs. The flatness and tail parameters modify the amplitude, width, soliton energy, and instability growth rate. It is noted that the increscent flatness and tail parameters result in the increasing amplitude, width, and soliton energy. Increasing flatness and tail parameters lead to the decreasing growth rate. These results will be helpful in understanding the plasma dynamics for NIP system containing distributed electrons in Earth's ionosphere.","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"31 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213588","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Problems of quantum‐statistical thermodynamics of plasmas: High‐ and low‐temperature limits and analyticity 等离子体的量子统计热力学问题:高低温极限与解析性
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-11 DOI: 10.1002/ctpp.202400048
Werner Ebeling
The OCP plasma model which has been the favourite plasma model of Gabor Kalman is simple but on the other side connected with some principal difficulties, and gave rise to some controversies. We discuss here the three main problems of Coulomb systems, the limit cases of the parameter : and . We show first that Taylor expansions in are in general divergent and have asymptotic character and expansions in are convergent. We study the analytic properties of the partition functions and the thermodynamic functions. Assuming analytizity with respect to the relevant physical parameter for pair interactions we can show that the analyticity with respect to this parameter allows to extend several OCP—properties, except the exchange functions, to many component systems by analytic continuation of the case to . In particular follows that the Taylor coefficients of analytic OCP functions may be extended to any multicomponent Coulomb system. Further, we discuss also the most difficult case and the problem with contributions linear in the interaction, the so‐called Hartree terms.
OCP 等离子体模型是加博尔-卡尔曼(Gabor Kalman)最喜欢的等离子体模型,它虽然简单,但也存在一些主要困难,并引起了一些争议。我们在此讨论库仑系统的三个主要问题,即参数: 和 的极限情况。我们首先证明,在 的泰勒展开一般是发散的,具有渐近特性,而 在 的展开是收敛的。我们研究了分割函数和热力学函数的解析性质。假定对相互作用的相关物理参数具有可分析性,我们就可以证明对该参数的可分析性允许通过分析延续把除交换函数以外的几个 OCP 属性扩展到多组分系统。 特别是,分析 OCP 函数的泰勒系数可以扩展到任何多组分库仑系统。此外,我们还讨论了最困难的情况和在相互作用中具有线性贡献的问题,即所谓的哈特里项。
{"title":"Problems of quantum‐statistical thermodynamics of plasmas: High‐ and low‐temperature limits and analyticity","authors":"Werner Ebeling","doi":"10.1002/ctpp.202400048","DOIUrl":"https://doi.org/10.1002/ctpp.202400048","url":null,"abstract":"The OCP plasma model which has been the favourite plasma model of Gabor Kalman is simple but on the other side connected with some principal difficulties, and gave rise to some controversies. We discuss here the three main problems of Coulomb systems, the limit cases of the parameter : and . We show first that Taylor expansions in are in general divergent and have asymptotic character and expansions in are convergent. We study the analytic properties of the partition functions and the thermodynamic functions. Assuming analytizity with respect to the relevant physical parameter for pair interactions we can show that the analyticity with respect to this parameter allows to extend several OCP—properties, except the exchange functions, to many component systems by analytic continuation of the case to . In particular follows that the Taylor coefficients of analytic OCP functions may be extended to any multicomponent Coulomb system. Further, we discuss also the most difficult case and the problem with contributions linear in the interaction, the so‐called Hartree terms.","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"1 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Preface to the Proceedings of 19th International Workshop on Plasma Edge Theory in Fusion Devices. September 18–21, 2023, ASIPP, Hefei, China 第 19 届聚变装置等离子体边缘理论国际研讨会论文集序言。2023 年 9 月 18-21 日,ASIPP,中国合肥
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-09-06 DOI: 10.1002/ctpp.202400087
Rui Ding, Masahiro Kobayashi, Guoliang Xu, Hai Xie
{"title":"Preface to the Proceedings of 19th International Workshop on Plasma Edge Theory in Fusion Devices. September 18–21, 2023, ASIPP, Hefei, China","authors":"Rui Ding, Masahiro Kobayashi, Guoliang Xu, Hai Xie","doi":"10.1002/ctpp.202400087","DOIUrl":"10.1002/ctpp.202400087","url":null,"abstract":"","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 7-8","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213429","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microwave atmospheric pressure plasma jet: A review 微波大气压等离子体射流:综述
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-08-22 DOI: 10.1002/ctpp.202400036
Suryasunil Rath, Satyananda Kar
Considerable interest has emerged in atmospheric pressure discharges within the microwave frequency range over the past decade, driven by the growing potential applications such as material processing, CO2 dissociation, waste treatment, hydrogen production, water treatment, and so forth. This review delves into the diverse types of atmospheric pressure plasma jets (APPJs) operated at microwave frequencies. The analysis integrates insights from an overall review that encapsulates the different types of geometry, characterizations, modeling, and various applications of microwave atmospheric plasma jets (MW‐APPJs). This paper will contribute to a comprehensive understanding of microwave plasma generated in the ambient atmosphere. The fundamental insights into these discharges are emerging, but there are still numerous unexplained phenomena in these inherently complex plasmas that need to be studied. The properties of these MW‐APPJs encompass a higher range of electron densities (ne), gas temperatures (Tg), electron temperatures (Te), and reactive oxygen and nitrogen species (RONS). This review provides an overview of the key underlying processes crucial for generating and stabilizing MW‐APPJs. Additionally, the unique physical and chemical properties of these discharges are summarized. In the initial section, we aim to introduce the primary scientific characterizations of different types of waveguide‐based and non‐waveguide‐based MW‐APPJs. The subsequent part focuses on the diverse modeling approaches for different MW‐APPJs and the outcomes derived from these models. The final section describes the potential applications of MW‐APPJs in various domains.
过去十年来,由于材料加工、二氧化碳解离、废物处理、制氢、水处理等潜在应用日益增多,人们对微波频率范围内的大气压放电产生了浓厚的兴趣。本综述深入探讨了在微波频率下运行的各种类型的大气压等离子体射流(APPJ)。分析综合了全面综述中的见解,包括微波大气等离子体射流(MW-APPJs)的不同几何类型、特性、建模和各种应用。本文将有助于全面了解环境大气中产生的微波等离子体。对这些放电的基本认识正在形成,但在这些固有的复杂等离子体中仍有许多无法解释的现象需要研究。这些 MW-APPJ 的特性包括较高范围的电子密度 (ne)、气体温度 (Tg)、电子温度 (Te) 以及活性氧和氮物种 (RONS)。本综述概述了生成和稳定 MW-APPJs 的关键基本过程。此外,还总结了这些放电的独特物理和化学特性。在第一部分,我们旨在介绍不同类型波导型和非波导型 MW-APPJ 的主要科学特征。随后的部分重点介绍了针对不同 MW-APPJ 的各种建模方法以及从这些模型中得出的结果。最后一部分介绍了 MW-APPJ 在各个领域的潜在应用。
{"title":"Microwave atmospheric pressure plasma jet: A review","authors":"Suryasunil Rath, Satyananda Kar","doi":"10.1002/ctpp.202400036","DOIUrl":"https://doi.org/10.1002/ctpp.202400036","url":null,"abstract":"Considerable interest has emerged in atmospheric pressure discharges within the microwave frequency range over the past decade, driven by the growing potential applications such as material processing, CO<jats:sub>2</jats:sub> dissociation, waste treatment, hydrogen production, water treatment, and so forth. This review delves into the diverse types of atmospheric pressure plasma jets (APPJs) operated at microwave frequencies. The analysis integrates insights from an overall review that encapsulates the different types of geometry, characterizations, modeling, and various applications of microwave atmospheric plasma jets (MW‐APPJs). This paper will contribute to a comprehensive understanding of microwave plasma generated in the ambient atmosphere. The fundamental insights into these discharges are emerging, but there are still numerous unexplained phenomena in these inherently complex plasmas that need to be studied. The properties of these MW‐APPJs encompass a higher range of electron densities (<jats:italic>n</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub>), gas temperatures (<jats:italic>T</jats:italic><jats:sub><jats:italic>g</jats:italic></jats:sub>), electron temperatures (<jats:italic>T</jats:italic><jats:sub><jats:italic>e</jats:italic></jats:sub>), and reactive oxygen and nitrogen species (RONS). This review provides an overview of the key underlying processes crucial for generating and stabilizing MW‐APPJs. Additionally, the unique physical and chemical properties of these discharges are summarized. In the initial section, we aim to introduce the primary scientific characterizations of different types of waveguide‐based and non‐waveguide‐based MW‐APPJs. The subsequent part focuses on the diverse modeling approaches for different MW‐APPJs and the outcomes derived from these models. The final section describes the potential applications of MW‐APPJs in various domains.","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"77 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213594","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure and melting of strongly coupled dusty plasma 强耦合尘埃等离子体的结构与熔化
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-08-22 DOI: 10.1002/ctpp.202400057
Mohamed Issaad
The structure and phase transition of a two‐dimensional dusty plasma, confined by an anisotropic power‐law potential and interacting via a screened Coulomb potential, were investigated using Monte Carlo simulations. The study varied the number of particles (), screening strength (), eccentricity parameter (), and confinement power parameter () to characterize the system's structural properties.
利用蒙特卡洛模拟研究了由各向异性幂律势能约束并通过屏蔽库仑势能相互作用的二维尘埃等离子体的结构和相变。研究改变了粒子数量()、屏蔽强度()、偏心率参数()和约束功率参数(),以描述系统的结构特性。
{"title":"Structure and melting of strongly coupled dusty plasma","authors":"Mohamed Issaad","doi":"10.1002/ctpp.202400057","DOIUrl":"https://doi.org/10.1002/ctpp.202400057","url":null,"abstract":"The structure and phase transition of a two‐dimensional dusty plasma, confined by an anisotropic power‐law potential and interacting via a screened Coulomb potential, were investigated using Monte Carlo simulations. The study varied the number of particles (), screening strength (), eccentricity parameter (), and confinement power parameter () to characterize the system's structural properties.","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"109 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213592","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bound and resonance states of highly charged H- and He-like ions under weakly coupled plasma environment 弱耦合等离子体环境下高电荷氢离子和类氢离子的束缚态和共振态
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-08-20 DOI: 10.1002/ctpp.202400041
S. Mondal, A. N. Sil, S. Dutta, S. Nandi, T. K. Mukhopadhyay, J. K. Saha
<p>The position of bound <span></span><math> <semantics> <mrow> <mn>1</mn> <mi>sns</mi> </mrow> <annotation>$$ 1 sns $$</annotation> </semantics></math> (<span></span><math> <semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>1</mn> <mo>−</mo> <mn>5</mn> </mrow> <annotation>$$ n=1-5 $$</annotation> </semantics></math>) states as well as doubly excited resonance <span></span><math> <semantics> <mrow> <mn>2</mn> <mi>sns</mi> </mrow> <annotation>$$ 2 sns $$</annotation> </semantics></math>, <span></span><math> <semantics> <mrow> <mn>2</mn> <mi>pnp</mi> </mrow> <annotation>$$ 2 pnp $$</annotation> </semantics></math> (<span></span><math> <semantics> <mrow> <mi>n</mi> <mo>=</mo> <mn>2</mn> <mo>−</mo> <mn>3</mn> </mrow> <annotation>$$ n=2-3 $$</annotation> </semantics></math>) states of <span></span><math> <semantics> <mrow> <msup> <mo> </mo> <mn>1</mn> </msup> <msup> <mi>S</mi> <mi>e</mi> </msup> </mrow> <annotation>$$ {}^1{mathrm{S}}^e $$</annotation> </semantics></math> symmetry has been determined for highly charged He-like ions (<span></span><math> <semantics> <mrow> <msup> <mi>C</mi> <mrow> <mn>4</mn> <mo>+</mo> </mrow> </msup> </mrow> <annotation>$$ {mathrm{C}}^{4+} $$</annotation> </semantics></math>, <span></span><math> <semantics> <mrow> <msup> <mi>Mg</mi> <mrow> <mn>10</mn> <mo>+</mo> </mrow> </msup> </mrow> <annotation>$$ {mathrm{Mg}}^{10+} $$</annotation> </semantics></math>, <span></span><math> <semantics> <mrow> <msup> <mi>Al</mi> <mrow> <mn>11</mn> <mo>+</mo> </mrow> </msup> </mrow>
在弱耦合等离子体环境下,测定了高电荷类氦离子(、、、、和Ar16+)的束缚()态和双激发共振对称态()的位置及其各自的单电子阈值(、、和)。之所以选择这些特定离子及其各自的电荷状态,是因为它们经常出现在天体物理和实验室等离子体中。在处理氦离子和类氦离子时,分别采用了具有多分量明确相关的海勒拉斯(Hylleraas)类型基础和纯指数基础集的里兹变分法。在不同等离子体条件下,采用稳定法测定了几个低洼共振态的共振宽度。等离子体嵌入离子的束缚态和共振态的电离电位都有所降低。很明显,来自不同主导构型的共振态的宽度(或寿命)随等离子体屏蔽长度的变化而变化。
{"title":"Bound and resonance states of highly charged H- and He-like ions under weakly coupled plasma environment","authors":"S. Mondal,&nbsp;A. N. Sil,&nbsp;S. Dutta,&nbsp;S. Nandi,&nbsp;T. K. Mukhopadhyay,&nbsp;J. K. Saha","doi":"10.1002/ctpp.202400041","DOIUrl":"10.1002/ctpp.202400041","url":null,"abstract":"&lt;p&gt;The position of bound &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mi&gt;sns&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ 1 sns $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;5&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ n=1-5 $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;) states as well as doubly excited resonance &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mi&gt;sns&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ 2 sns $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mi&gt;pnp&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ 2 pnp $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;n&lt;/mi&gt;\u0000 &lt;mo&gt;=&lt;/mo&gt;\u0000 &lt;mn&gt;2&lt;/mn&gt;\u0000 &lt;mo&gt;−&lt;/mo&gt;\u0000 &lt;mn&gt;3&lt;/mn&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ n=2-3 $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;) states of &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mo&gt; &lt;/mo&gt;\u0000 &lt;mn&gt;1&lt;/mn&gt;\u0000 &lt;/msup&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mi&gt;e&lt;/mi&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {}^1{mathrm{S}}^e $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt; symmetry has been determined for highly charged He-like ions (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;C&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;4&lt;/mn&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {mathrm{C}}^{4+} $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;Mg&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;10&lt;/mn&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt;$$ {mathrm{Mg}}^{10+} $$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msup&gt;\u0000 &lt;mi&gt;Al&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mn&gt;11&lt;/mn&gt;\u0000 &lt;mo&gt;+&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msup&gt;\u0000 &lt;/mrow&gt;\u0000 ","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 10","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213590","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HL-2A's ELM cycle simulations by integrating BOUT++'s drift MHD and transport code 通过整合 BOUT++ 的漂移 MHD 和传输代码进行 HL-2A 的 ELM 循环模拟
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-08-15 DOI: 10.1002/ctpp.202300144
Xinliang Xu, Zhanhui Wang, Nami Li, Na Wu, Yulin Zhou, Xueke Wu, Cailong Fu

A new integrating model has been developed to couple tokamak edge multiscale magnetohydrodynamic (MHD) events and transport simulations, such as edge-localized mode (ELM) cycles. As a proof of principle, we first start from a set of three-field two-fluid model equations, which includes the pressure, current, and vorticity. The equations are separated into the slowly evolving part of the axisymmetric component by taking a time average of the axisymmetric component. The time-averaged fluxes, which are quadratic in fluctuating quantities, act as driven terms for the time-averaged axisymmetric quantities that determine the plasma transport, and therefore the large-scale evolution of the plasma profiles. Then the HL-2A's ELM cycles are simulated using the model. Good agreements of ELM size and pedestal recovery time have been achieved for the solutions obtained from the coupled simulation compared with experiment. For one ELM cycle simulation, the coupled code can achieve a speedup of a factor of up to 30 over standalone code.

为了将托卡马克边缘多尺度磁流体动力学(MHD)事件和传输模拟(如边缘局部模式(ELM)循环)结合起来,我们开发了一种新的集成模型。作为原理验证,我们首先从一组三场双流体模型方程出发,其中包括压力、电流和涡度。通过取轴对称分量的时间平均值,将方程分离成轴对称分量的缓慢演化部分。时间平均通量是波动量的二次方,它作为时间平均轴对称量的驱动项,决定了等离子体的传输,从而决定了等离子体剖面的大尺度演变。然后利用该模型模拟了 HL-2A 的 ELM 循环。通过耦合模拟得到的解与实验结果相比,在 ELM 尺寸和基座恢复时间方面取得了良好的一致性。在一次 ELM 循环模拟中,耦合代码比独立代码最多可提速 30 倍。
{"title":"HL-2A's ELM cycle simulations by integrating BOUT++'s drift MHD and transport code","authors":"Xinliang Xu,&nbsp;Zhanhui Wang,&nbsp;Nami Li,&nbsp;Na Wu,&nbsp;Yulin Zhou,&nbsp;Xueke Wu,&nbsp;Cailong Fu","doi":"10.1002/ctpp.202300144","DOIUrl":"10.1002/ctpp.202300144","url":null,"abstract":"<p>A new integrating model has been developed to couple tokamak edge multiscale magnetohydrodynamic (MHD) events and transport simulations, such as edge-localized mode (ELM) cycles. As a proof of principle, we first start from a set of three-field two-fluid model equations, which includes the pressure, current, and vorticity. The equations are separated into the slowly evolving part of the axisymmetric component by taking a time average of the axisymmetric component. The time-averaged fluxes, which are quadratic in fluctuating quantities, act as driven terms for the time-averaged axisymmetric quantities that determine the plasma transport, and therefore the large-scale evolution of the plasma profiles. Then the HL-2A's ELM cycles are simulated using the model. Good agreements of ELM size and pedestal recovery time have been achieved for the solutions obtained from the coupled simulation compared with experiment. For one ELM cycle simulation, the coupled code can achieve a speedup of a factor of up to 30 over standalone code.</p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 7-8","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142213593","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of temperature on the wave breaking amplitude of nonlinear relativistic strong plasma waves 温度对非线性相对论强等离子体波的破波幅度的影响
IF 1.6 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-08-02 DOI: 10.1002/ctpp.202400075
Govind Singh Yadav, Mithun Karmakar
The wave‐breaking amplitude of a strong nonlinear plasma wave has been determined in a warm plasma. Pseudopotential technique has been adopted to describe the wave‐breaking phenomena in such plasma. The solution is obtained with the consideration that the phase velocity of the plasma wave is equal to the velocity of light in vacuum. This assumption is justified since the wave which is excited usually by the relativistic charged particle bunches or laser pulses has phase speed very close to the speed of light in vacuum. The investigation shows that the breaking amplitude decreases with the increase of the electron temperature. Furthermore, the wavelength of the plasma wave is seen to decrease as we increase the electron temperature. The obtained results have relevance in the astrophysical situation as well as in the field of plasma based charged particle acceleration process.
在暖等离子体中测定了强非线性等离子体波的破波幅度。采用伪电势技术来描述这种等离子体中的破波现象。求解时考虑到等离子体波的相位速度等于真空中的光速。这一假设是合理的,因为通常由相对论带电粒子束或激光脉冲激发的波的相位速度非常接近真空中的光速。研究表明,断裂振幅随着电子温度的升高而减小。此外,等离子体波的波长也随着电子温度的升高而减小。所获得的结果与天体物理学以及基于等离子体的带电粒子加速过程领域相关。
{"title":"Effect of temperature on the wave breaking amplitude of nonlinear relativistic strong plasma waves","authors":"Govind Singh Yadav, Mithun Karmakar","doi":"10.1002/ctpp.202400075","DOIUrl":"https://doi.org/10.1002/ctpp.202400075","url":null,"abstract":"The wave‐breaking amplitude of a strong nonlinear plasma wave has been determined in a warm plasma. Pseudopotential technique has been adopted to describe the wave‐breaking phenomena in such plasma. The solution is obtained with the consideration that the phase velocity of the plasma wave is equal to the velocity of light in vacuum. This assumption is justified since the wave which is excited usually by the relativistic charged particle bunches or laser pulses has phase speed very close to the speed of light in vacuum. The investigation shows that the breaking amplitude decreases with the increase of the electron temperature. Furthermore, the wavelength of the plasma wave is seen to decrease as we increase the electron temperature. The obtained results have relevance in the astrophysical situation as well as in the field of plasma based charged particle acceleration process.","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"481 1","pages":""},"PeriodicalIF":1.6,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141886006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cover Picture: Contrib. Plasma Phys. 06/2024 封面图片:Contrib.等离子体物理 06/2024
IF 1.3 4区 物理与天体物理 Q3 PHYSICS, FLUIDS & PLASMAS Pub Date : 2024-07-29 DOI: 10.1002/ctpp.202490011

Ken Golden (top photo) and Gabor Kalman (bottom photo). Photos by P. Hartmann.

Ken Golden(上图)和 Gabor Kalman(下图)。照片由 P. Hartmann 拍摄。
{"title":"Cover Picture: Contrib. Plasma Phys. 06/2024","authors":"","doi":"10.1002/ctpp.202490011","DOIUrl":"10.1002/ctpp.202490011","url":null,"abstract":"<p>Ken Golden (top photo) and Gabor Kalman (bottom photo). Photos by P. Hartmann.\u0000 <figure>\u0000 <div><picture>\u0000 <source></source></picture><p></p>\u0000 </div>\u0000 </figure></p>","PeriodicalId":10700,"journal":{"name":"Contributions to Plasma Physics","volume":"64 6","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/ctpp.202490011","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141870823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Contributions to Plasma Physics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1