Pub Date : 2023-08-17DOI: 10.3390/cosmetics10040115
U. Wollina, A. Goldman
Background: The injection of dermal fillers for facial esthetics has become a very popular procedure. Although usually safe in the hands of the experienced user, filler injections may bear a risk of unwanted side effects. Material and Methods: This is a narrative review of dermal filler migration after facial injections. We performed research on the literature on Pubmed and Google Scholar. Inclusion criteria were observational studies, case reports, and clinical trials which investigated the association of facial filler injections to filler migration. Animal studies have not been considered. Intravascular injections were excluded. Results: We identified 28 reports that met the inclusion criteria. The age range of affected patients was 21 to 86 years (mean ± standard deviation: 47 ± 14.8 years). Women were 25 times more reported than males. Hyaluronic acid and polyalkylimide were the most commonly encountered filler substances. Injections into the nose, lips, nasolabial folds, and forehead (including glabella) are more often reported for filler migration than injections into the cheeks. Tear-trough correction bears a risk for orbital migration. The delay from injection to presentation of filler migration was highly variable. Very late filler migration was more commonly seen with permanent fillers than non-permanent products. Conclusions: Filler migration distant from the injection site can occur even several years after the primary treatment. All filler types can be involved. Permanent fillers bear a higher risk of very late filler migration. Migration of permanent fillers needs surgical treatment, while HA fillers respond to hyaluronidase injections. Detailed knowledge of facial anatomy, safer injection techniques, and filler qualities are preventive measures.
{"title":"Filler Migration after Facial Injection—A Narrative Review","authors":"U. Wollina, A. Goldman","doi":"10.3390/cosmetics10040115","DOIUrl":"https://doi.org/10.3390/cosmetics10040115","url":null,"abstract":"Background: The injection of dermal fillers for facial esthetics has become a very popular procedure. Although usually safe in the hands of the experienced user, filler injections may bear a risk of unwanted side effects. Material and Methods: This is a narrative review of dermal filler migration after facial injections. We performed research on the literature on Pubmed and Google Scholar. Inclusion criteria were observational studies, case reports, and clinical trials which investigated the association of facial filler injections to filler migration. Animal studies have not been considered. Intravascular injections were excluded. Results: We identified 28 reports that met the inclusion criteria. The age range of affected patients was 21 to 86 years (mean ± standard deviation: 47 ± 14.8 years). Women were 25 times more reported than males. Hyaluronic acid and polyalkylimide were the most commonly encountered filler substances. Injections into the nose, lips, nasolabial folds, and forehead (including glabella) are more often reported for filler migration than injections into the cheeks. Tear-trough correction bears a risk for orbital migration. The delay from injection to presentation of filler migration was highly variable. Very late filler migration was more commonly seen with permanent fillers than non-permanent products. Conclusions: Filler migration distant from the injection site can occur even several years after the primary treatment. All filler types can be involved. Permanent fillers bear a higher risk of very late filler migration. Migration of permanent fillers needs surgical treatment, while HA fillers respond to hyaluronidase injections. Detailed knowledge of facial anatomy, safer injection techniques, and filler qualities are preventive measures.","PeriodicalId":10735,"journal":{"name":"Cosmetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45129415","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-09DOI: 10.3390/cosmetics10040114
Daniela Florina Trifan, A. Tirla, C. Moș, A. Danciu, F. Bodog, F. Manole, T. Ghitea
Background/Aim: Rapid onset of facial ptosis can impact physical appearance and compromise the outcomes of facelift procedures. The level of vitamin D has a potential correlation with collagen formation and its deficiency with inflammatory processes that affect the breakdown of hyaluronic acid. This study aims to investigate the potential relationship between accentuated facial ptosis in women and low levels of vitamin D. Furthermore, it aims to explore preventive measures or strategies to slow down facial ptosis and enhance the longevity of facelift results. Materials and Methods: The study was focused on monitoring the vitamin D levels in women and men with advanced facial ptosis and comparing them with a control group. Results: Notably, a direct association between gender and serum vitamin D levels was observed, indicating less sustainable outcomes in women. Conclusions: Women face additional challenges in the aging process due to hormonal shifts after menopause or premenopausal, which are associated with osteoporosis and lower vitamin D levels.
{"title":"Involvement of Vitamin D3 in the Aging Process According to Sex","authors":"Daniela Florina Trifan, A. Tirla, C. Moș, A. Danciu, F. Bodog, F. Manole, T. Ghitea","doi":"10.3390/cosmetics10040114","DOIUrl":"https://doi.org/10.3390/cosmetics10040114","url":null,"abstract":"Background/Aim: Rapid onset of facial ptosis can impact physical appearance and compromise the outcomes of facelift procedures. The level of vitamin D has a potential correlation with collagen formation and its deficiency with inflammatory processes that affect the breakdown of hyaluronic acid. This study aims to investigate the potential relationship between accentuated facial ptosis in women and low levels of vitamin D. Furthermore, it aims to explore preventive measures or strategies to slow down facial ptosis and enhance the longevity of facelift results. Materials and Methods: The study was focused on monitoring the vitamin D levels in women and men with advanced facial ptosis and comparing them with a control group. Results: Notably, a direct association between gender and serum vitamin D levels was observed, indicating less sustainable outcomes in women. Conclusions: Women face additional challenges in the aging process due to hormonal shifts after menopause or premenopausal, which are associated with osteoporosis and lower vitamin D levels.","PeriodicalId":10735,"journal":{"name":"Cosmetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44606681","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-07DOI: 10.3390/cosmetics10040113
E. Mauri, S. Scialla
Nanogels are a prominent research topic in biomedical and drug delivery applications. The versatility of their chemistry allows them to be tailored both to carry and release a wide range of active molecules, and to target specific tissues or cell types. Within a vast field of possible chemical designs, nanogels based on hyaluronic acid seem particularly interesting from the standpoint of dermatological and cosmetic applications, due to the well-known involvement of hyaluronic acid in several fundamental processes related to skin health and ageing. In spite of this, relatively few studies about these nanocarriers and their potential skin-related benefits have appeared so far in the literature. With the aim to stimulate further interest in the topic, in this review, we provide information on hyaluronic acid-based nanogels, including their key physicochemical properties, their typical drug release behavior, and the main synthetic methodologies. The latter include: approaches based on spontaneous self-assembly of polymer molecules; approaches based on chemical cross-linking, where nanogel formation is promoted by covalent bonds between polymer chains; and hybrid approaches that leverage a combination of the above two mechanisms. We believe this body of information, which we collected by going through the relevant literature from the past 10–15 years, offers cosmetic formulators plenty of options to design innovative products.
{"title":"Nanogels Based on Hyaluronic Acid as Potential Active Carriers for Dermatological and Cosmetic Applications","authors":"E. Mauri, S. Scialla","doi":"10.3390/cosmetics10040113","DOIUrl":"https://doi.org/10.3390/cosmetics10040113","url":null,"abstract":"Nanogels are a prominent research topic in biomedical and drug delivery applications. The versatility of their chemistry allows them to be tailored both to carry and release a wide range of active molecules, and to target specific tissues or cell types. Within a vast field of possible chemical designs, nanogels based on hyaluronic acid seem particularly interesting from the standpoint of dermatological and cosmetic applications, due to the well-known involvement of hyaluronic acid in several fundamental processes related to skin health and ageing. In spite of this, relatively few studies about these nanocarriers and their potential skin-related benefits have appeared so far in the literature. With the aim to stimulate further interest in the topic, in this review, we provide information on hyaluronic acid-based nanogels, including their key physicochemical properties, their typical drug release behavior, and the main synthetic methodologies. The latter include: approaches based on spontaneous self-assembly of polymer molecules; approaches based on chemical cross-linking, where nanogel formation is promoted by covalent bonds between polymer chains; and hybrid approaches that leverage a combination of the above two mechanisms. We believe this body of information, which we collected by going through the relevant literature from the past 10–15 years, offers cosmetic formulators plenty of options to design innovative products.","PeriodicalId":10735,"journal":{"name":"Cosmetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48800264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-03DOI: 10.3390/cosmetics10040112
C. Dauber, Emma Parente, María Pía Zucca, A. Gámbaro, I. Vieitez
Currently, in addition to the use of olive oil in cosmetics, the use of olive-derived bioactives and their incorporation into cosmetics is a growing trend. The olive oil industry produces vast quantities of by-products, such as olive mill wastewater, olive pomace and leaves from which new ingredients may be obtained for cosmetic use. In this way, by-products are revalorized, which contributes to the implementation of a sustainable economy or upcycling. This review intends to provide a detailed overview of the different extraction techniques reported in order to obtain the bioactive compounds of cosmetic value that can be found in olive by-products: fatty acids, tocopherols, polyphenols, phytosterols and squalene. Different extraction techniques are presented, including some traditional techniques (solid–liquid extraction) and more novel or “greener” ones: ultrasound, microwave, supercritical extraction, pressurized fluids and deep eutectic solvents. Additionally, different applications of olive by-products in skin care products are explored: emollient, antioxidant, anti-age, anti-inflammatory, antiviral, antifungal and antibacterial, and the perspective of consumers is also considered since they increasingly demand products formulated with natural ingredients.
{"title":"Olea europea and By-Products: Extraction Methods and Cosmetic Applications","authors":"C. Dauber, Emma Parente, María Pía Zucca, A. Gámbaro, I. Vieitez","doi":"10.3390/cosmetics10040112","DOIUrl":"https://doi.org/10.3390/cosmetics10040112","url":null,"abstract":"Currently, in addition to the use of olive oil in cosmetics, the use of olive-derived bioactives and their incorporation into cosmetics is a growing trend. The olive oil industry produces vast quantities of by-products, such as olive mill wastewater, olive pomace and leaves from which new ingredients may be obtained for cosmetic use. In this way, by-products are revalorized, which contributes to the implementation of a sustainable economy or upcycling. This review intends to provide a detailed overview of the different extraction techniques reported in order to obtain the bioactive compounds of cosmetic value that can be found in olive by-products: fatty acids, tocopherols, polyphenols, phytosterols and squalene. Different extraction techniques are presented, including some traditional techniques (solid–liquid extraction) and more novel or “greener” ones: ultrasound, microwave, supercritical extraction, pressurized fluids and deep eutectic solvents. Additionally, different applications of olive by-products in skin care products are explored: emollient, antioxidant, anti-age, anti-inflammatory, antiviral, antifungal and antibacterial, and the perspective of consumers is also considered since they increasingly demand products formulated with natural ingredients.","PeriodicalId":10735,"journal":{"name":"Cosmetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47174791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-02DOI: 10.3390/cosmetics10040111
Le Thi Nhat Ngoc, Ju‐Young Moon, Young-Chul Lee
Bioactive peptides have gained significant attention in the cosmetic industry due to their potential in enhancing skin health and beauty. These small protein fragments exhibit various biological activities, such as antioxidant, anti-aging, anti-inflammatory, and antimicrobial activities, making them ideal ingredients for cosmetic formulations. These bioactive peptides are classified into four categories: signal, carrier, neurotransmitter-inhibitory, and enzyme-inhibitory peptides. This review provides insight into applying bioactive peptides in cosmetics and their mechanisms of action (e.g., downregulating pro-inflammatory cytokines, radical scavenging, inhibiting collagen, tyrosinase, and elastase synthesis). The abundant natural origins (e.g., animals, plants, and marine sources) have been identified as primary sources for extractions of cosmetic peptides through various techniques (e.g., enzymatic hydrolysis, ultrafiltration, fermentation, and high-performance liquid chromatography). Furthermore, the safety and regulatory aspects of using peptides in cosmetics are examined, including potential allergic reactions and regulatory guidelines. Finally, the challenges of peptides in cosmetics are discussed, emphasizing the need for further research to fully harness their potential in enhancing skin health. Overall, this review provides a comprehensive understanding of the application of peptides in cosmetics, shedding light on their transformative role in developing innovative and effective skincare products.
{"title":"Insights into Bioactive Peptides in Cosmetics","authors":"Le Thi Nhat Ngoc, Ju‐Young Moon, Young-Chul Lee","doi":"10.3390/cosmetics10040111","DOIUrl":"https://doi.org/10.3390/cosmetics10040111","url":null,"abstract":"Bioactive peptides have gained significant attention in the cosmetic industry due to their potential in enhancing skin health and beauty. These small protein fragments exhibit various biological activities, such as antioxidant, anti-aging, anti-inflammatory, and antimicrobial activities, making them ideal ingredients for cosmetic formulations. These bioactive peptides are classified into four categories: signal, carrier, neurotransmitter-inhibitory, and enzyme-inhibitory peptides. This review provides insight into applying bioactive peptides in cosmetics and their mechanisms of action (e.g., downregulating pro-inflammatory cytokines, radical scavenging, inhibiting collagen, tyrosinase, and elastase synthesis). The abundant natural origins (e.g., animals, plants, and marine sources) have been identified as primary sources for extractions of cosmetic peptides through various techniques (e.g., enzymatic hydrolysis, ultrafiltration, fermentation, and high-performance liquid chromatography). Furthermore, the safety and regulatory aspects of using peptides in cosmetics are examined, including potential allergic reactions and regulatory guidelines. Finally, the challenges of peptides in cosmetics are discussed, emphasizing the need for further research to fully harness their potential in enhancing skin health. Overall, this review provides a comprehensive understanding of the application of peptides in cosmetics, shedding light on their transformative role in developing innovative and effective skincare products.","PeriodicalId":10735,"journal":{"name":"Cosmetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43402062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-08-01DOI: 10.3390/cosmetics10040110
N. Sedush, K. Kalinin, Pavel N. Azarkevich, A. A. Gorskaya
Dermal fillers have gained significant attention in the field of aesthetic medicine due to their ability to restore volume and correct facial wrinkles. Even though such formulations have similar compositions, they can have different microstructure and molecular characteristics, which in turn affect the biodegradation profile. This study presents the results of an investigation of the physicochemical characteristics of four dermal fillers from different manufacturers (Sculptra®, Gana V®, AestheFill®, and Repart PLA®). The molecular and supramolecular characteristics of polylactic acid (L/D isomer ratio, molecular weight, degree of crystallinity), the morphology and size of PLA microparticles were determined. Hydrolytic degradation studies in phosphate buffer revealed differences in the rate of molecular weight reduction in the polymer. The obtained data may be important for the analysis and interpretation of the results of biological studies and clinical outcomes of the PLA dermal fillers.
{"title":"Physicochemical Characteristics and Hydrolytic Degradation of Polylactic Acid Dermal Fillers: A Comparative Study","authors":"N. Sedush, K. Kalinin, Pavel N. Azarkevich, A. A. Gorskaya","doi":"10.3390/cosmetics10040110","DOIUrl":"https://doi.org/10.3390/cosmetics10040110","url":null,"abstract":"Dermal fillers have gained significant attention in the field of aesthetic medicine due to their ability to restore volume and correct facial wrinkles. Even though such formulations have similar compositions, they can have different microstructure and molecular characteristics, which in turn affect the biodegradation profile. This study presents the results of an investigation of the physicochemical characteristics of four dermal fillers from different manufacturers (Sculptra®, Gana V®, AestheFill®, and Repart PLA®). The molecular and supramolecular characteristics of polylactic acid (L/D isomer ratio, molecular weight, degree of crystallinity), the morphology and size of PLA microparticles were determined. Hydrolytic degradation studies in phosphate buffer revealed differences in the rate of molecular weight reduction in the polymer. The obtained data may be important for the analysis and interpretation of the results of biological studies and clinical outcomes of the PLA dermal fillers.","PeriodicalId":10735,"journal":{"name":"Cosmetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42644426","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-25DOI: 10.3390/cosmetics10040109
Sze-Huey Sang, K. Liew, Siew-Keah Lee, Jing Keng, Sue-Kei Lee, G. Akowuah, C. S. Tan, Yik-Ling Chew
In recent decades, there has been a growing demand for shampoos derived from botanical sources due to their avoidance of synthetic and highly allergenic chemicals used as bioactives and excipients. These hair care products are free from sulfates, parabens, silicones, synthetic fragrances, and artificial colours. Natural shampoos are sustainable, skin-friendly, and eco-friendly to the environment. Garcinia mangostana (Mangosteen) peel is usually discarded as agricultural waste. It consists of numerous bioactives which exhibit promising activities for hair care and scalp maintenance. This study aimed to formulate and evaluate a novel hair shampoo containing standardised mangosteen peel extract. The formulation of the mangosteen shampoo utilised botanical ingredients and naturally derived components. It underwent an evaluation to assess its physicochemical properties, including visual inspection, pH, surface tension, percentage solid content, wetting time, foam ability and stability, as well as dirt dispersion. These properties were then compared to those of two commercially available hair shampoos. Its antimicrobial activity towards Malassezia furfur ATCC 14521 and Staphylococcus aureus ATCC 25923 was also examined and compared with the commercial shampoo using the microbroth dilution method. Its antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity assay. It was noticed that all formulations (F1–F4) had acceptable physicochemical properties, and they fell within the standard range. F2 had the best antifungal activity (MIC 0.039 mg/mL, MFC 0.156 mg/mL), and moderate antibacterial (MIC 2.50 mg/mL, MBC 5.00 mg/mL) and antioxidant activities (IC50 21.9 ± 3.27 mg/mL; AEAC 26.3 ± 4.06 mg AA/100 g sample). A microscopic examination of hair strands after washing revealed the successful removal of artificial sebum, signifying a good detergency effect. The physical and chemical properties of the hair shampoo formula remained stable without phase separation. In conclusion, the formulated clean hair shampoo with standardised mangosteen peel extract has good cleansing properties, and it is effective in inhibiting dandruff-causing microbial and scavenging free radicals.
{"title":"Formulation of Botanical Shampoo Infused with Standardised Mangosteen Peel Extract for Healthy Hair and Scalp","authors":"Sze-Huey Sang, K. Liew, Siew-Keah Lee, Jing Keng, Sue-Kei Lee, G. Akowuah, C. S. Tan, Yik-Ling Chew","doi":"10.3390/cosmetics10040109","DOIUrl":"https://doi.org/10.3390/cosmetics10040109","url":null,"abstract":"In recent decades, there has been a growing demand for shampoos derived from botanical sources due to their avoidance of synthetic and highly allergenic chemicals used as bioactives and excipients. These hair care products are free from sulfates, parabens, silicones, synthetic fragrances, and artificial colours. Natural shampoos are sustainable, skin-friendly, and eco-friendly to the environment. Garcinia mangostana (Mangosteen) peel is usually discarded as agricultural waste. It consists of numerous bioactives which exhibit promising activities for hair care and scalp maintenance. This study aimed to formulate and evaluate a novel hair shampoo containing standardised mangosteen peel extract. The formulation of the mangosteen shampoo utilised botanical ingredients and naturally derived components. It underwent an evaluation to assess its physicochemical properties, including visual inspection, pH, surface tension, percentage solid content, wetting time, foam ability and stability, as well as dirt dispersion. These properties were then compared to those of two commercially available hair shampoos. Its antimicrobial activity towards Malassezia furfur ATCC 14521 and Staphylococcus aureus ATCC 25923 was also examined and compared with the commercial shampoo using the microbroth dilution method. Its antioxidant activity was evaluated using 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical scavenging activity assay. It was noticed that all formulations (F1–F4) had acceptable physicochemical properties, and they fell within the standard range. F2 had the best antifungal activity (MIC 0.039 mg/mL, MFC 0.156 mg/mL), and moderate antibacterial (MIC 2.50 mg/mL, MBC 5.00 mg/mL) and antioxidant activities (IC50 21.9 ± 3.27 mg/mL; AEAC 26.3 ± 4.06 mg AA/100 g sample). A microscopic examination of hair strands after washing revealed the successful removal of artificial sebum, signifying a good detergency effect. The physical and chemical properties of the hair shampoo formula remained stable without phase separation. In conclusion, the formulated clean hair shampoo with standardised mangosteen peel extract has good cleansing properties, and it is effective in inhibiting dandruff-causing microbial and scavenging free radicals.","PeriodicalId":10735,"journal":{"name":"Cosmetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43546213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-21DOI: 10.3390/cosmetics10040108
Hyeon-Mi Kim, M. Moon, C. Hyun
With the increasing number of cosmetic consumers emphasizing value consumption and sustainability, upcycling has gained attention as a solution to agricultural by-products, which are the main culprits of environmental problems. In this study, we isolated citrulluside T with whitening activity from discarded Citrullus lanatus stems and investigated the anti-melanogenic effect of citrulluside T and the underlying mechanisms. We found that citrulluside T did not exhibit cytotoxicity up to a concentration of 90 μM and significantly reduced the melanin content and intracellular tyrosinase activity in B16F10 cells. In addition, citrulluside T inhibited the expression of melanogenic enzymes such as tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2, as well as melanin synthesis via cAMP-dependent protein kinase (PKA)/cAMP response element-binding protein (CREB)-mediated downregulation of microphthalmia-associated transcription factor (MITF), a key transcription factor in melanogenesis. Furthermore, we found that citrulluside T exerted its anti-melanogenic effect by downregulating the β-catenin protein and upregulating phosphorylated β-catenin. Finally, we confirmed that citrulluside T was safe for skin through skin irritation tests on 33 subjects, suggesting its applicability as a protective agent against hyperpigmentation for topical applications such as cosmetics and ointments.
{"title":"Citrulluside T, Isolated from the Citrullus lanatus Stem, Inhibits Melanogenesis in α-MSH-Induced Mouse B16F10 Cells","authors":"Hyeon-Mi Kim, M. Moon, C. Hyun","doi":"10.3390/cosmetics10040108","DOIUrl":"https://doi.org/10.3390/cosmetics10040108","url":null,"abstract":"With the increasing number of cosmetic consumers emphasizing value consumption and sustainability, upcycling has gained attention as a solution to agricultural by-products, which are the main culprits of environmental problems. In this study, we isolated citrulluside T with whitening activity from discarded Citrullus lanatus stems and investigated the anti-melanogenic effect of citrulluside T and the underlying mechanisms. We found that citrulluside T did not exhibit cytotoxicity up to a concentration of 90 μM and significantly reduced the melanin content and intracellular tyrosinase activity in B16F10 cells. In addition, citrulluside T inhibited the expression of melanogenic enzymes such as tyrosinase, tyrosinase-related protein (TRP)-1, and TRP-2, as well as melanin synthesis via cAMP-dependent protein kinase (PKA)/cAMP response element-binding protein (CREB)-mediated downregulation of microphthalmia-associated transcription factor (MITF), a key transcription factor in melanogenesis. Furthermore, we found that citrulluside T exerted its anti-melanogenic effect by downregulating the β-catenin protein and upregulating phosphorylated β-catenin. Finally, we confirmed that citrulluside T was safe for skin through skin irritation tests on 33 subjects, suggesting its applicability as a protective agent against hyperpigmentation for topical applications such as cosmetics and ointments.","PeriodicalId":10735,"journal":{"name":"Cosmetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46646160","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-19DOI: 10.3390/cosmetics10040107
L. Coderch, C. Alonso, M. García, L. Pérez, M. Martí
Human hair fibres are mainly comprised of proteins (>90%) and lipids (1–9%), which are characterised as exogenous or endogenous, depending on whether they originate from sebaceous glands or hair matrix cells, respectively. Exogenous lipids consist of free fatty acids (FFAs), triglycerides, cholesterol (CH), wax esters, and squalene. Endogenous hair lipids comprise FFAs, CH, ceramides, glycosylceramides, cholesterol sulfate, and 18-methyleicosanoic acid. Lipids were demonstrated to be fundamental against damage and maintenance of healthy hair. Several studies have evaluated the effects of hair lipid content and have shown how hair properties were altered when lipids were removed by solvent extraction. The effect of surfactants on hair lipids is difficult to determine, as the complex structure of the cell membrane complex makes it difficult to determine where surfactants act. Shampoos and conditioners contain surfactants that remove lipids during routine cleansing of hair. However, shampooing does not completely remove all free lipids from the surface layers. The effect of surfactants on the alteration and removal of structural lipids is poorly developed, and there is no consensus on the results. Further research on the lipid composition of the hair could provide information on the penetration pathways of surfactants to improve effectiveness and limit possible damage.
{"title":"Hair Lipid Structure: Effect of Surfactants","authors":"L. Coderch, C. Alonso, M. García, L. Pérez, M. Martí","doi":"10.3390/cosmetics10040107","DOIUrl":"https://doi.org/10.3390/cosmetics10040107","url":null,"abstract":"Human hair fibres are mainly comprised of proteins (>90%) and lipids (1–9%), which are characterised as exogenous or endogenous, depending on whether they originate from sebaceous glands or hair matrix cells, respectively. Exogenous lipids consist of free fatty acids (FFAs), triglycerides, cholesterol (CH), wax esters, and squalene. Endogenous hair lipids comprise FFAs, CH, ceramides, glycosylceramides, cholesterol sulfate, and 18-methyleicosanoic acid. Lipids were demonstrated to be fundamental against damage and maintenance of healthy hair. Several studies have evaluated the effects of hair lipid content and have shown how hair properties were altered when lipids were removed by solvent extraction. The effect of surfactants on hair lipids is difficult to determine, as the complex structure of the cell membrane complex makes it difficult to determine where surfactants act. Shampoos and conditioners contain surfactants that remove lipids during routine cleansing of hair. However, shampooing does not completely remove all free lipids from the surface layers. The effect of surfactants on the alteration and removal of structural lipids is poorly developed, and there is no consensus on the results. Further research on the lipid composition of the hair could provide information on the penetration pathways of surfactants to improve effectiveness and limit possible damage.","PeriodicalId":10735,"journal":{"name":"Cosmetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46273691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-18DOI: 10.3390/cosmetics10040106
N. Sadgrove, S. Batra, David Barreto, J. Rapaport
In this current review, research spanning the last decade (such as transcriptomic studies, phenotypic observations, and confirmed comorbidities) has been synthesized into an updated etiology of hair loss and applied to the new cosmeceutical paradigm of hair rejuvenation. The major etiological components in scalps with hair loss are denoted as the ‘big eight strikes’, which include the following: androgens, prostaglandins, overactive aerobic metabolism of glucose, bacterial or fungal over-colonization, inflammation, fibrosis, metabolism or circulation problems, and malnutrition. The relevance of the ‘big eight’ to nine categories of hair loss is explained. In cases of androgenetic alopecia or female pattern hair loss, both elevated DHT and increased frequency of androgen receptors lead to problems with the metabolism of glucose (sugar), redox imbalance, disruption to the electron transport chain, and PPAR-γ overactivity (the latter is unique to androgenetic alopecia, where the reverse occurs in other types of hair loss). These etiological factors and others from ‘the big eight’ are the focal point of our hypothetical narrative of the attenuative mechanisms of commercial cosmeceutical hair serums. We conclude that cosmeceuticals with the potential to improve all eight strikes (according to published in vitro or clinical data) utilize bioactive peptides and plant compounds that are either flavonoids (isoflavones, procyanidins, flavanols, and flavonols) or sterols/triterpenes. It is noteworthy that many therapeutic interventions are generic to the multiple types of hair loss. Lastly, suggestions are made on how scalp and hair health can be improved by following the cosmeceutical approach.
{"title":"An Updated Etiology of Hair Loss and the New Cosmeceutical Paradigm in Therapy: Clearing ‘the Big Eight Strikes’","authors":"N. Sadgrove, S. Batra, David Barreto, J. Rapaport","doi":"10.3390/cosmetics10040106","DOIUrl":"https://doi.org/10.3390/cosmetics10040106","url":null,"abstract":"In this current review, research spanning the last decade (such as transcriptomic studies, phenotypic observations, and confirmed comorbidities) has been synthesized into an updated etiology of hair loss and applied to the new cosmeceutical paradigm of hair rejuvenation. The major etiological components in scalps with hair loss are denoted as the ‘big eight strikes’, which include the following: androgens, prostaglandins, overactive aerobic metabolism of glucose, bacterial or fungal over-colonization, inflammation, fibrosis, metabolism or circulation problems, and malnutrition. The relevance of the ‘big eight’ to nine categories of hair loss is explained. In cases of androgenetic alopecia or female pattern hair loss, both elevated DHT and increased frequency of androgen receptors lead to problems with the metabolism of glucose (sugar), redox imbalance, disruption to the electron transport chain, and PPAR-γ overactivity (the latter is unique to androgenetic alopecia, where the reverse occurs in other types of hair loss). These etiological factors and others from ‘the big eight’ are the focal point of our hypothetical narrative of the attenuative mechanisms of commercial cosmeceutical hair serums. We conclude that cosmeceuticals with the potential to improve all eight strikes (according to published in vitro or clinical data) utilize bioactive peptides and plant compounds that are either flavonoids (isoflavones, procyanidins, flavanols, and flavonols) or sterols/triterpenes. It is noteworthy that many therapeutic interventions are generic to the multiple types of hair loss. Lastly, suggestions are made on how scalp and hair health can be improved by following the cosmeceutical approach.","PeriodicalId":10735,"journal":{"name":"Cosmetics","volume":" ","pages":""},"PeriodicalIF":3.3,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46447623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}