首页 > 最新文献

Critical Reviews in Biotechnology最新文献

英文 中文
Biodegradable acids for pyrite depression and green flotation separation - an overview. 用于黄铁矿凹陷和绿色浮选分离的可生物降解酸--综述。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2023-08-20 DOI: 10.1080/07388551.2023.2238885
Ali Asimi Neisiani, Saeed Chehreh Chelgani

Exponential increasing demands for base metals have made meaningful processing of their quite low-grade (>1%) resources. Froth flotation is the most important physicochemical pretreatment technique for processing low-grade sulfide ores. In other words, flotation separation can effectively upgrade finely liberated base metal sulfides based on their surface properties. Various sulfide surface characters can be modified by flotation surfactants (collectors, activators, depressants, pH regulators, frothers, etc.). However, these reagents are mostly toxic. Therefore, using biodegradable flotation reagents would be essential for a green transition of ore treatment plants, while flotation circuits deal with massive volumes of water and materials. Pyrite, the most abundant sulfide mineral, is frequently associated with valuable minerals as a troublesome gangue. It causes severe technical and environmental difficulties. Thus, pyrite should be removed early in the beneficiation process to minimize its problematic issues. Recently, conventional inorganic pyrite depressants (such as cyanide, lime, and sulfur-oxy compounds) have been successfully assisted or even replaced with eco-friendly and green reagents (including polysaccharide-based substances and biodegradable acids). Yet, no comprehensive review is specified on the biodegradable acid depression reagents (such as tannic, lactic, humic acids, etc.) for pyrite removal through flotation separation. This study has comprehensively reviewed the previously conducted investigations in this area and provides suggestions for future assessments and developments. This robust review has systematically explored depression performance, various adsorption mechanisms, and aspects of these reagents on pyrite surfaces. Furthermore, factors affecting their efficiency were analyzed, and gaps within each area were highlighted.

由于对贱金属的需求呈指数级增长,对其相当低品位(>1%)资源的加工变得非常有意义。浮选是加工低品位硫化矿最重要的物理化学预处理技术。换句话说,浮选分离可以根据精细解放的贱金属硫化物的表面特性,有效地提升它们的品位。浮选表面活性剂(捕收剂、活化剂、抑制剂、pH 值调节剂、起泡剂等)可以改变硫化物的各种表面特性。然而,这些试剂大多有毒。因此,使用可生物降解的浮选试剂对于矿石处理厂的绿色转型至关重要,因为浮选回路需要处理大量的水和物料。黄铁矿是最丰富的硫化矿物,经常与有价值的矿物伴生,是一种麻烦的矸石。它给技术和环境带来了严重的困难。因此,黄铁矿应在选矿过程中尽早去除,以尽量减少其带来的问题。最近,传统的无机黄铁矿抑制剂(如氰化物、石灰和硫氧化合物)已成功地被环保型绿色试剂(包括多糖类物质和可生物降解的酸)所辅助甚至取代。然而,关于通过浮选分离去除黄铁矿的可降解酸抑制试剂(如单宁酸、乳酸、腐殖酸等),目前还没有全面的综述。本研究全面回顾了之前在这一领域开展的研究,并为未来的评估和发展提供了建议。本综述系统地探讨了这些试剂在黄铁矿表面的凹陷性能、各种吸附机制和各个方面。此外,还分析了影响其效率的因素,并强调了每个领域的差距。
{"title":"Biodegradable acids for pyrite depression and green flotation separation - an overview.","authors":"Ali Asimi Neisiani, Saeed Chehreh Chelgani","doi":"10.1080/07388551.2023.2238885","DOIUrl":"10.1080/07388551.2023.2238885","url":null,"abstract":"<p><p>Exponential increasing demands for base metals have made meaningful processing of their quite low-grade (>1%) resources. Froth flotation is the most important physicochemical pretreatment technique for processing low-grade sulfide ores. In other words, flotation separation can effectively upgrade finely liberated base metal sulfides based on their surface properties. Various sulfide surface characters can be modified by flotation surfactants (collectors, activators, depressants, pH regulators, frothers, etc.). However, these reagents are mostly toxic. Therefore, using biodegradable flotation reagents would be essential for a green transition of ore treatment plants, while flotation circuits deal with massive volumes of water and materials. Pyrite, the most abundant sulfide mineral, is frequently associated with valuable minerals as a troublesome gangue. It causes severe technical and environmental difficulties. Thus, pyrite should be removed early in the beneficiation process to minimize its problematic issues. Recently, conventional inorganic pyrite depressants (such as cyanide, lime, and sulfur-oxy compounds) have been successfully assisted or even replaced with eco-friendly and green reagents (including polysaccharide-based substances and biodegradable acids). Yet, no comprehensive review is specified on the biodegradable acid depression reagents (such as tannic, lactic, humic acids, etc.) for pyrite removal through flotation separation. This study has comprehensively reviewed the previously conducted investigations in this area and provides suggestions for future assessments and developments. This robust review has systematically explored depression performance, various adsorption mechanisms, and aspects of these reagents on pyrite surfaces. Furthermore, factors affecting their efficiency were analyzed, and gaps within each area were highlighted.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1226-1240"},"PeriodicalIF":8.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10031955","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microbial enhanced oil recovery (MEOR): recent development and future perspectives. 微生物提高采油(MEOR)技术的发展现状与展望
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2023-12-06 DOI: 10.1080/07388551.2023.2270578
Cong-Yu Ke, Rui Sun, Ming-Xia Wei, Xiu-Ni Yuan, Wu-Juan Sun, Si-Chang Wang, Qun-Zheng Zhang, Xun-Li Zhang

After conventional oil recovery operations, more than half of the crude oil still remains in a form, which is difficult to extract. Therefore, exploring and developing new enhanced oil recovery (EOR) technologies have always been priority research in oilfield development. Microbial enhanced oil recovery (MEOR) is a promising tertiary oil recovery technology that has received widespread attention from the global oil industry in recent years due to its environmental friendliness, simplicity of operation, and cost-effectiveness. This review presents the: principle, characteristics, classification, recent development, and applications of MEOR technology. Based on hundreds of field trials conducted worldwide, the microbial strains, nutrient systems, and actual effects used in these technologies are summarized, with an emphasis on the achievements made in the development and application of MEOR in China in recent years. These technical classifications involve: microbial huff and puff recovery (MHPR), microbial flooding recovery (MFR), microbial selective plugging recovery (MSPR), and microbial wax removal and control (MWRC). Most of them have achieved good results, with a success rate of approximately 80%. These successful cases have accumulated into rich experiential indications for the popularization and application of MEOR technology, but there are still important yet uncertain factors that hinder the industrialization of this technology. Finally, based on the extensive research and development of MEOR by the authors, especially in both laboratory and industrial large scales, the main challenges and future perspectives of the industrial application for MEOR are presented.

常规采油作业后,仍有一半以上的原油以某种形式存在,难以提取。因此,探索和开发新的提高采收率技术一直是油田开发的重点研究方向。微生物提高采油(MEOR)是一种极具发展前景的三次采油技术,近年来因其环境友好、操作简单、成本效益高而受到全球石油行业的广泛关注。本文综述了MEOR技术的原理、特点、分类、最新发展及应用。在国内外数百项田间试验的基础上,综述了这些技术的微生物菌种、营养体系和实际效果,重点介绍了近年来中国在MEOR开发和应用方面取得的成就。这些技术分类包括:微生物吞吐采油(MHPR)、微生物驱油采油(MFR)、微生物选择性封堵采油(MSPR)和微生物除蜡与控制(MWRC)。大多数都取得了良好的效果,成功率约为80%。这些成功案例为MEOR技术的推广应用积累了丰富的经验标志,但仍存在阻碍该技术产业化的重要但不确定的因素。最后,基于作者对MEOR的广泛研究和发展,特别是在实验室和工业大尺度上,提出了MEOR工业应用的主要挑战和未来展望。
{"title":"Microbial enhanced oil recovery (MEOR): recent development and future perspectives.","authors":"Cong-Yu Ke, Rui Sun, Ming-Xia Wei, Xiu-Ni Yuan, Wu-Juan Sun, Si-Chang Wang, Qun-Zheng Zhang, Xun-Li Zhang","doi":"10.1080/07388551.2023.2270578","DOIUrl":"10.1080/07388551.2023.2270578","url":null,"abstract":"<p><p>After conventional oil recovery operations, more than half of the crude oil still remains in a form, which is difficult to extract. Therefore, exploring and developing new enhanced oil recovery (EOR) technologies have always been priority research in oilfield development. Microbial enhanced oil recovery (MEOR) is a promising tertiary oil recovery technology that has received widespread attention from the global oil industry in recent years due to its environmental friendliness, simplicity of operation, and cost-effectiveness. This review presents the: principle, characteristics, classification, recent development, and applications of MEOR technology. Based on hundreds of field trials conducted worldwide, the microbial strains, nutrient systems, and actual effects used in these technologies are summarized, with an emphasis on the achievements made in the development and application of MEOR in China in recent years. These technical classifications involve: microbial huff and puff recovery (MHPR), microbial flooding recovery (MFR), microbial selective plugging recovery (MSPR), and microbial wax removal and control (MWRC). Most of them have achieved good results, with a success rate of approximately 80%. These successful cases have accumulated into rich experiential indications for the popularization and application of MEOR technology, but there are still important yet uncertain factors that hinder the industrialization of this technology. Finally, based on the extensive research and development of MEOR by the authors, especially in both laboratory and industrial large scales, the main challenges and future perspectives of the industrial application for MEOR are presented.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1183-1202"},"PeriodicalIF":8.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138498014","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling of astaxanthin biosynthesis via machine learning, mathematical and metabolic network modeling. 通过机器学习、数学和代谢网络建模建立虾青素生物合成模型。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2023-08-16 DOI: 10.1080/07388551.2023.2237183
Vinoj Chamilka Liyanaarachchi, Gannoru Kankanamalage Sanuji Hasara Nishshanka, P H Viraj Nimarshana, Jo-Shu Chang, Thilini U Ariyadasa, Dillirani Nagarajan

Natural astaxanthin is synthesized by diverse organisms including: bacteria, fungi, microalgae, and plants involving complex cellular processes, which depend on numerous interrelated parameters. Nonetheless, existing knowledge regarding astaxanthin biosynthesis and the conditions influencing astaxanthin accumulation is fairly limited. Thus, manipulation of the growth conditions to achieve desired biomass and astaxanthin yields can be a complicated process requiring cost-intensive and time-consuming experiment-based research. As a potential solution, modeling and simulation of biological systems have recently emerged, allowing researchers to predict/estimate astaxanthin production dynamics in selected organisms. Moreover, mathematical modeling techniques would enable further optimization of astaxanthin synthesis in a shorter period of time, ultimately contributing to a notable reduction in production costs. Thus, the present review comprehensively discusses existing mathematical modeling techniques which simulate the bioaccumulation of astaxanthin in diverse organisms. Associated challenges, solutions, and future perspectives are critically analyzed and presented.

天然虾青素由多种生物合成,包括细菌、真菌、微藻和植物,涉及复杂的细胞过程,取决于许多相互关联的参数。然而,现有关于虾青素生物合成和影响虾青素积累的条件的知识相当有限。因此,操纵生长条件以获得理想的生物量和虾青素产量是一个复杂的过程,需要进行成本高昂且耗时的实验研究。作为一种潜在的解决方案,最近出现了生物系统建模和模拟,使研究人员能够预测/估算选定生物的虾青素生产动态。此外,数学建模技术还能在更短的时间内进一步优化虾青素的合成,最终显著降低生产成本。因此,本综述全面讨论了模拟虾青素在不同生物体内生物累积的现有数学建模技术。对相关的挑战、解决方案和未来展望进行了批判性分析和介绍。
{"title":"Modeling of astaxanthin biosynthesis via machine learning, mathematical and metabolic network modeling.","authors":"Vinoj Chamilka Liyanaarachchi, Gannoru Kankanamalage Sanuji Hasara Nishshanka, P H Viraj Nimarshana, Jo-Shu Chang, Thilini U Ariyadasa, Dillirani Nagarajan","doi":"10.1080/07388551.2023.2237183","DOIUrl":"10.1080/07388551.2023.2237183","url":null,"abstract":"<p><p>Natural astaxanthin is synthesized by diverse organisms including: bacteria, fungi, microalgae, and plants involving complex cellular processes, which depend on numerous interrelated parameters. Nonetheless, existing knowledge regarding astaxanthin biosynthesis and the conditions influencing astaxanthin accumulation is fairly limited. Thus, manipulation of the growth conditions to achieve desired biomass and astaxanthin yields can be a complicated process requiring cost-intensive and time-consuming experiment-based research. As a potential solution, modeling and simulation of biological systems have recently emerged, allowing researchers to predict/estimate astaxanthin production dynamics in selected organisms. Moreover, mathematical modeling techniques would enable further optimization of astaxanthin synthesis in a shorter period of time, ultimately contributing to a notable reduction in production costs. Thus, the present review comprehensively discusses existing mathematical modeling techniques which simulate the bioaccumulation of astaxanthin in diverse organisms. Associated challenges, solutions, and future perspectives are critically analyzed and presented.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"996-1017"},"PeriodicalIF":8.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10013792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A crosswalk on the genetic and conventional strategies for enhancing astaxanthin production in Haematococcus pluvialis. 关于提高雨生红球藻虾青素产量的遗传和常规策略的人行横道。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2023-10-01 DOI: 10.1080/07388551.2023.2240009
Adolf Acheampong, Lamei Li, Shereen M Elsherbiny, Yahui Wu, Mohammed Sharif Swallah, Precious Bondzie-Quaye, Qing Huang

Astaxanthin is a naturally occurring xanthophyll with powerful: antioxidant, antitumor, and antibacterial properties that are widely employed in food, feed, medicinal and nutraceutical industries. Currently, chemical synthesis dominates the world's astaxanthin market, but the increasing demand for natural products is shifting the market for natural astaxanthin. Haematococcus pluvialis (H. pluvialis) is the factory source of natural astaxanthin when grown in optimal conditions. Currently, various strategies for the production of astaxanthin have been proposed or are being developed in order to meet its market demand. This up-to-date review scrutinized the current approaches or strategies that aim to increase astaxanthin yield from H. pluvialis. We have emphasized the genetic and environmental parameters that increase astaxanthin yield. We also looked at the transcriptomic dynamics caused by environmental factors (phytohormones induction, light, salt, temperature, and nutrient starvation) on astaxanthin synthesizing genes and other metabolic changes. Genetic engineering and culture optimization (environmental factors) are effective approaches to producing more astaxanthin for commercial purposes. Genetic engineering, in particular, is accurate, specific, potent, and safer than conventional random mutagenesis approaches. New technologies, such as CRISPR-Cas9 coupled with omics and emerging computational tools, may be the principal strategies in the future to attain strains that can produce more astaxanthin. This review provides accessible data on the strategies to increase astaxanthin accumulation natively. Also, this review can be a starting point for new scholars interested in H. pluvialis research.

虾青素是一种天然存在的叶黄素,具有强大的抗氧化、抗肿瘤和抗菌特性,广泛应用于食品、饲料、医药和营养品行业。目前,化学合成在世界虾青素市场上占据主导地位,但对天然产品日益增长的需求正在改变天然虾青素的市场。雨生红球藻(H.pluvialis)是在最佳条件下生长的天然虾青素的工厂来源。目前,为了满足市场需求,已经提出或正在开发生产虾青素的各种策略。这篇最新的综述仔细审查了目前旨在提高雨洪藻虾青素产量的方法或策略。我们强调了提高虾青素产量的遗传和环境参数。我们还研究了环境因素(植物激素诱导、光照、盐、温度和营养饥饿)对虾青素合成基因和其他代谢变化造成的转录组动力学。基因工程和培养优化(环境因素)是生产更多虾青素用于商业目的的有效方法。特别是基因工程比传统的随机诱变方法准确、特异、有效且安全。新技术,如CRISPR-Cas9,结合组学和新兴的计算工具,可能是未来获得能够产生更多虾青素的菌株的主要策略。这篇综述提供了关于增加虾青素天然积累的策略的可访问数据。此外,这篇综述也可以作为对雨洪藻研究感兴趣的新学者的起点。
{"title":"A crosswalk on the genetic and conventional strategies for enhancing astaxanthin production in <i>Haematococcus pluvialis</i>.","authors":"Adolf Acheampong, Lamei Li, Shereen M Elsherbiny, Yahui Wu, Mohammed Sharif Swallah, Precious Bondzie-Quaye, Qing Huang","doi":"10.1080/07388551.2023.2240009","DOIUrl":"10.1080/07388551.2023.2240009","url":null,"abstract":"<p><p>Astaxanthin is a naturally occurring xanthophyll with powerful: antioxidant, antitumor, and antibacterial properties that are widely employed in food, feed, medicinal and nutraceutical industries. Currently, chemical synthesis dominates the world's astaxanthin market, but the increasing demand for natural products is shifting the market for natural astaxanthin. <i>Haematococcus pluvialis (H. pluvialis)</i> is the factory source of natural astaxanthin when grown in optimal conditions. Currently, various strategies for the production of astaxanthin have been proposed or are being developed in order to meet its market demand. This up-to-date review scrutinized the current approaches or strategies that aim to increase astaxanthin yield from <i>H. pluvialis</i>. We have emphasized the genetic and environmental parameters that increase astaxanthin yield. We also looked at the transcriptomic dynamics caused by environmental factors (phytohormones induction, light, salt, temperature, and nutrient starvation) on astaxanthin synthesizing genes and other metabolic changes. Genetic engineering and culture optimization (environmental factors) are effective approaches to producing more astaxanthin for commercial purposes. Genetic engineering, in particular, is accurate, specific, potent, and safer than conventional random mutagenesis approaches. New technologies, such as CRISPR-Cas9 coupled with omics and emerging computational tools, may be the principal strategies in the future to attain strains that can produce more astaxanthin. This review provides accessible data on the strategies to increase astaxanthin accumulation natively. Also, this review can be a starting point for new scholars interested in <i>H. pluvialis</i> research.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1018-1039"},"PeriodicalIF":8.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41113432","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pulmonary delivery systems for antimicrobial peptides. 抗微生物肽的肺部输送系统。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2023-09-20 DOI: 10.1080/07388551.2023.2254932
Lucrezia Caselli, Gisele R Rodrigues, Octavio L Franco, Martin Malmsten

Bacterial infections of the respiratory tract cause millions of deaths annually. Several diseases exist wherein (1) bacterial infection is the main cause of disease (e.g., tuberculosis and bacterial pneumonia), (2) bacterial infection is a consequence of disease and worsens the disease prognosis (e.g., cystic fibrosis), and (3) bacteria-triggered inflammation propagates the disease (e.g., chronic obstructive pulmonary disease). Current approaches to combat infections generally include long and aggressive antibiotic treatments, which challenge patient compliance, thereby making relapses common and contributing to the development of antibiotic resistance. Consequently, the proportion of infections that cannot be treated with conventional antibiotics is rapidly increasing, and novel therapies are urgently needed. In this context, antimicrobial peptides (AMPs) have received considerable attention as they may exhibit potent antimicrobial effects against antibiotic-resistant bacterial strains but with modest toxicity. In addition, some AMPs suppress inflammation and provide other host defense functions (motivating the alternative term host defense peptides (HDPs)). However, the delivery of AMPs is complicated because they are large, positively charged, and amphiphilic. As a result of this, AMP delivery systems have recently attracted attention. For airway infections, the currently investigated delivery approaches range from aerosols and dry powders to various self-assembly and nanoparticle carrier systems, as well as their combinations. In this paper, we discuss recent developments in the field, ranging from mechanistic mode-of-action studies to the application of these systems for combating bacterial infections in the airways.

呼吸道细菌感染每年造成数百万人死亡。存在几种疾病,其中(1)细菌感染是疾病的主要原因(例如,肺结核和细菌性肺炎),(2)细菌感染为疾病的后果并恶化疾病预后(例如,囊性纤维化),以及(3)细菌引发的炎症传播疾病(例如,慢性阻塞性肺病)。目前对抗感染的方法通常包括长期和积极的抗生素治疗,这挑战了患者的依从性,从而使复发变得常见,并导致抗生素耐药性的发展。因此,无法用传统抗生素治疗的感染比例正在迅速增加,迫切需要新的治疗方法。在这种情况下,抗微生物肽(AMP)受到了相当大的关注,因为它们可能对抗生素耐药菌株表现出强大的抗微生物作用,但毒性适中。此外,一些AMP抑制炎症并提供其他宿主防御功能(激发替代术语宿主防御肽(HDPs))。然而,AMPs的递送是复杂的,因为它们是大的、带正电的和两亲性的。因此,AMP递送系统最近引起了关注。对于呼吸道感染,目前研究的递送方法从气溶胶和干粉到各种自组装和纳米颗粒载体系统,以及它们的组合。在这篇论文中,我们讨论了该领域的最新进展,从作用机制研究到这些系统在对抗呼吸道细菌感染方面的应用。
{"title":"Pulmonary delivery systems for antimicrobial peptides.","authors":"Lucrezia Caselli, Gisele R Rodrigues, Octavio L Franco, Martin Malmsten","doi":"10.1080/07388551.2023.2254932","DOIUrl":"10.1080/07388551.2023.2254932","url":null,"abstract":"<p><p>Bacterial infections of the respiratory tract cause millions of deaths annually. Several diseases exist wherein (1) bacterial infection is the main cause of disease (e.g., tuberculosis and bacterial pneumonia), (2) bacterial infection is a consequence of disease and worsens the disease prognosis (e.g., cystic fibrosis), and (3) bacteria-triggered inflammation propagates the disease (e.g., chronic obstructive pulmonary disease). Current approaches to combat infections generally include long and aggressive antibiotic treatments, which challenge patient compliance, thereby making relapses common and contributing to the development of antibiotic resistance. Consequently, the proportion of infections that cannot be treated with conventional antibiotics is rapidly increasing, and novel therapies are urgently needed. In this context, antimicrobial peptides (AMPs) have received considerable attention as they may exhibit potent antimicrobial effects against antibiotic-resistant bacterial strains but with modest toxicity. In addition, some AMPs suppress inflammation and provide other host defense functions (motivating the alternative term host defense peptides (HDPs)). However, the delivery of AMPs is complicated because they are large, positively charged, and amphiphilic. As a result of this, AMP delivery systems have recently attracted attention. For airway infections, the currently investigated delivery approaches range from aerosols and dry powders to various self-assembly and nanoparticle carrier systems, as well as their combinations. In this paper, we discuss recent developments in the field, ranging from mechanistic mode-of-action studies to the application of these systems for combating bacterial infections in the airways.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"963-980"},"PeriodicalIF":8.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41113322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extension characteristics of TdT and its application in biosensors. TdT的延伸特性及其在生物传感器中的应用。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2023-10-25 DOI: 10.1080/07388551.2023.2270772
He Yang, Longjiao Zhu, Xinxin Wang, Yuhan Song, Yulan Dong, Wentao Xu

The advantages of rapid amplification of nucleic acid without a template based on terminal deoxyribonucleotidyl transferase (TdT) have been widely used in the field of biosensors. However, the catalytic efficiency of TdT is affected by extension conditions. The sensitivity of TdT- mediated biosensors can be improved only under appropriate conditions. Therefore, in this review, we provide a comprehensive overview of TdT extension characteristics and its applications in biosensors. We focus on the relationship between TdT extension conditions and extension efficiency. Furthermore, the construction strategy of TdT-mediated biosensors according to five different recognition types and their applications in targets are discussed and, finally, several current challenges and prospects in the field are taken into consideration.

在没有基于末端脱氧核糖核苷酸转移酶(TdT)的模板的情况下快速扩增核酸的优点已被广泛应用于生物传感器领域。然而,TdT的催化效率受到延伸条件的影响。TdT介导的生物传感器只有在适当的条件下才能提高灵敏度。因此,在这篇综述中,我们对TdT的延伸特性及其在生物传感器中的应用进行了全面的综述。重点研究了TdT扩展条件与扩展效率之间的关系。此外,还讨论了根据五种不同识别类型构建TdT介导的生物传感器的策略及其在靶标中的应用,最后,考虑了该领域目前的几个挑战和前景。
{"title":"Extension characteristics of TdT and its application in biosensors.","authors":"He Yang, Longjiao Zhu, Xinxin Wang, Yuhan Song, Yulan Dong, Wentao Xu","doi":"10.1080/07388551.2023.2270772","DOIUrl":"10.1080/07388551.2023.2270772","url":null,"abstract":"<p><p>The advantages of rapid amplification of nucleic acid without a template based on terminal deoxyribonucleotidyl transferase (TdT) have been widely used in the field of biosensors. However, the catalytic efficiency of TdT is affected by extension conditions. The sensitivity of TdT- mediated biosensors can be improved only under appropriate conditions. Therefore, in this review, we provide a comprehensive overview of TdT extension characteristics and its applications in biosensors. We focus on the relationship between TdT extension conditions and extension efficiency. Furthermore, the construction strategy of TdT-mediated biosensors according to five different recognition types and their applications in targets are discussed and, finally, several current challenges and prospects in the field are taken into consideration.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"981-995"},"PeriodicalIF":8.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"50161024","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hosts engineering and in vitro enzymatic synthesis for the discovery of novel natural products and their derivatives. 用于发现新型天然产品及其衍生物的宿主工程和体外酶合成。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2023-08-13 DOI: 10.1080/07388551.2023.2236787
Huanyu Zhang, Lanping Guo, Yaowu Su, Rubing Wang, Wenqi Yang, Wenrong Mu, Liangshuang Xuan, Luqi Huang, Juan Wang, Wenyuan Gao

Novel natural products (NPs) and their derivatives are important sources for drug discovery, which have been broadly applied in the fields of agriculture, livestock, and medicine, making the synthesis of NPs and their derivatives necessarily important. In recent years, biosynthesis technology has received increasing attention due to its high efficiency in the synthesis of high value-added novel products and its advantages of green, environmental protection, and controllability. In this review, the technological advances of biosynthesis strategies in the discovery of novel NPs and their derivatives are outlined, with an emphasis on two areas of host engineering and in vitro enzymatic synthesis. In terms of hosts engineering, multiple microorganisms, including Streptomyces, Aspergillus, and Penicillium, have been used as the biosynthetic gene clusters (BGCs) provider and host strain for the expression of BGCs to discover new compounds over the past years. In addition, the use of in vitro enzymatic synthesis strategy to generate novel compounds such as triterpenoid saponins and flavonoids is also hereby described.

新型天然产物(NPs)及其衍生物是药物发现的重要来源,已广泛应用于农业、畜牧业和医药领域,因此 NPs 及其衍生物的合成必然十分重要。近年来,生物合成技术因其在合成高附加值新型产品方面的高效率以及绿色、环保、可控等优势而受到越来越多的关注。本综述概述了生物合成策略在发现新型 NPs 及其衍生物方面的技术进展,重点关注宿主工程和体外酶法合成两个领域。在宿主工程方面,多年来,包括链霉菌、曲霉和青霉在内的多种微生物被用作生物合成基因簇(BGCs)的提供者和表达BGCs的宿主菌株,以发现新化合物。此外,本文还介绍了利用体外酶合成策略生成三萜类皂甙和黄酮类等新型化合物的方法。
{"title":"Hosts engineering and <i>in vitro</i> enzymatic synthesis for the discovery of novel natural products and their derivatives.","authors":"Huanyu Zhang, Lanping Guo, Yaowu Su, Rubing Wang, Wenqi Yang, Wenrong Mu, Liangshuang Xuan, Luqi Huang, Juan Wang, Wenyuan Gao","doi":"10.1080/07388551.2023.2236787","DOIUrl":"10.1080/07388551.2023.2236787","url":null,"abstract":"<p><p>Novel natural products (NPs) and their derivatives are important sources for drug discovery, which have been broadly applied in the fields of agriculture, livestock, and medicine, making the synthesis of NPs and their derivatives necessarily important. In recent years, biosynthesis technology has received increasing attention due to its high efficiency in the synthesis of high value-added novel products and its advantages of green, environmental protection, and controllability. In this review, the technological advances of biosynthesis strategies in the discovery of novel NPs and their derivatives are outlined, with an emphasis on two areas of host engineering and <i>in vitro</i> enzymatic synthesis. In terms of hosts engineering, multiple microorganisms, including <i>Streptomyces</i>, <i>Aspergillus</i>, and <i>Penicillium</i>, have been used as the biosynthetic gene clusters (BGCs) provider and host strain for the expression of BGCs to discover new compounds over the past years. In addition, the use of <i>in vitro</i> enzymatic synthesis strategy to generate novel compounds such as triterpenoid saponins and flavonoids is also hereby described.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1121-1139"},"PeriodicalIF":8.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9990382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evidence and opportunities for developing non-transgenic genome edited crops using site-directed nuclease 1 approach. 使用定点核酸酶1方法开发非转基因基因组编辑作物的证据和机会。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2023-11-01 DOI: 10.1080/07388551.2023.2270581
H M Mamrutha, Wadhwa Zeenat, Deswal Kapil, Nagaveni Budhagatapalli, Divya Tikaniya, Kumar Rakesh, Gopalareddy Krishnappa, Gyanendra Singh, G P Singh

The innovations and progress in genome editing/new breeding technologies have revolutionized research in the field of functional genomics and crop improvement. This revolution has expanded the horizons of agricultural research, presenting fresh possibilities for creating novel plant varieties equipped with desired traits that can effectively combat the challenges posed by climate change. However, the regulation and social acceptance of genome-edited crops still remain as major barriers. Only a few countries considered the site-directed nuclease 1 (SDN1) approach-based genome-edited plants under less or no regulation. Hence, the present review aims to comprise information on the research work conducted using SDN1 in crops by various genome editing tools. It also elucidates the promising candidate genes that can be used for editing and has listed the studies on non-transgenic crops developed through SDN1 either by Agrobacterium-mediated transformation or by ribo nucleoprotein (RNP) complex. The review also hoards the existing regulatory landscape of genome editing and provides an overview of globally commercialized genome-edited crops. These compilations will enable confidence in researchers and policymakers, across the globe, to recognize the full potential of this technology and reconsider the regulatory aspects associated with genome-edited crops. Furthermore, this compilation serves as a valuable resource for researchers embarking on the development of customized non-transgenic crops through the utilization of SDN1.

基因组编辑/新育种技术的创新和进步彻底改变了功能基因组学和作物改良领域的研究。这场革命拓宽了农业研究的视野,为创造具有所需性状的新型植物品种提供了新的可能性,这些品种可以有效应对气候变化带来的挑战。然而,基因组编辑作物的监管和社会接受仍然是主要障碍。只有少数国家认为基于位点定向核酸酶1(SDN1)方法的基因组编辑植物受到较少或没有监管。因此,本综述旨在包括通过各种基因组编辑工具在作物中使用SDN1进行的研究工作的信息。它还阐明了可用于编辑的有前景的候选基因,并列出了通过农杆菌介导的转化或核糖核蛋白(RNP)复合物通过SDN1开发的非转基因作物的研究。该综述还概述了基因组编辑的现有监管格局,并概述了全球商业化的基因组编辑作物。这些汇编将使全球的研究人员和政策制定者有信心认识到这项技术的全部潜力,并重新考虑与基因组编辑作物相关的监管方面。此外,对于通过利用SDN1开发定制非转基因作物的研究人员来说,这一汇编是一个宝贵的资源。
{"title":"Evidence and opportunities for developing non-transgenic genome edited crops using site-directed nuclease 1 approach.","authors":"H M Mamrutha, Wadhwa Zeenat, Deswal Kapil, Nagaveni Budhagatapalli, Divya Tikaniya, Kumar Rakesh, Gopalareddy Krishnappa, Gyanendra Singh, G P Singh","doi":"10.1080/07388551.2023.2270581","DOIUrl":"10.1080/07388551.2023.2270581","url":null,"abstract":"<p><p>The innovations and progress in genome editing/new breeding technologies have revolutionized research in the field of functional genomics and crop improvement. This revolution has expanded the horizons of agricultural research, presenting fresh possibilities for creating novel plant varieties equipped with desired traits that can effectively combat the challenges posed by climate change. However, the regulation and social acceptance of genome-edited crops still remain as major barriers. Only a few countries considered the site-directed nuclease 1 (SDN1) approach-based genome-edited plants under less or no regulation. Hence, the present review aims to comprise information on the research work conducted using SDN1 in crops by various genome editing tools. It also elucidates the promising candidate genes that can be used for editing and has listed the studies on non-transgenic crops developed through SDN1 either by <i>Agrobacterium</i>-mediated transformation or by ribo nucleoprotein (RNP) complex. The review also hoards the existing regulatory landscape of genome editing and provides an overview of globally commercialized genome-edited crops. These compilations will enable confidence in researchers and policymakers, across the globe, to recognize the full potential of this technology and reconsider the regulatory aspects associated with genome-edited crops. Furthermore, this compilation serves as a valuable resource for researchers embarking on the development of customized non-transgenic crops through the utilization of SDN1.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1140-1150"},"PeriodicalIF":8.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71421465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Arabinose as an overlooked sugar for microbial bioproduction of chemical building blocks. 阿拉伯糖是一种被忽视的糖,用于微生物生物生产化学构建块。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2023-11-06 DOI: 10.1080/07388551.2023.2270702
Vinod Kumar, Deepti Agrawal, Rajesh Reddy Bommareddy, M Ahsanul Islam, Samuel Jacob, Venkatesh Balan, Vijai Singh, Vijay Kumar Thakur, Naveen Kumar Navani, Nigel S Scrutton

The circular economy is anticipated to bring a disruptive transformation in manufacturing technologies. Robust and industrial scalable microbial strains that can simultaneously assimilate and valorize multiple carbon substrates are highly desirable, as waste bioresources contain substantial amounts of renewable and fermentable carbon, which is diverse. Lignocellulosic biomass (LCB) is identified as an inexhaustible and alternative resource to reduce global dependence on oil. Glucose, xylose, and arabinose are the major monomeric sugars in LCB. However, primary research has focused on the use of glucose. On the other hand, the valorization of pentose sugars, xylose, and arabinose, has been mainly overlooked, despite possible assimilation by vast microbial communities. The present review highlights the research efforts that have explicitly proven the suitability of arabinose as the starting feedstock for producing various chemical building blocks via biological routes. It begins by analyzing the availability of various arabinose-rich biorenewable sources that can serve as potential feedstocks for biorefineries. The subsequent section outlines the current understanding of arabinose metabolism, biochemical routes prevalent in prokaryotic and eukaryotic systems, and possible products that can be derived from this sugar. Further, currently, exemplar products from arabinose, including arabitol, 2,3-butanediol, 1,2,3-butanetriol, ethanol, lactic acid, and xylitol are discussed, which have been produced by native and non-native microbial strains using metabolic engineering and genome editing tools. The final section deals with the challenges and obstacles associated with arabinose-based production, followed by concluding remarks and prospects.

循环经济预计将带来制造业技术的颠覆性变革。由于废物生物源含有大量可再生和可发酵的碳,因此非常需要能够同时同化和稳定多种碳底物的稳健和工业可扩展的微生物菌株。木质纤维素生物质(LCB)被认为是减少全球对石油依赖的取之不尽、用之不竭的替代资源。葡萄糖、木糖和阿拉伯糖是LCB中的主要单体糖。然而,最初的研究集中在葡萄糖的使用上。另一方面,尽管可能被大量微生物群落同化,但戊糖、木糖和阿拉伯糖的增值主要被忽视了。本综述强调了明确证明阿拉伯糖作为起始原料适合通过生物途径生产各种化学构建块的研究工作。它首先分析了各种富含阿拉伯糖的生物可再生资源的可用性,这些资源可以作为生物精炼厂的潜在原料。下一节概述了目前对阿拉伯糖代谢的理解,原核和真核系统中普遍存在的生化途径,以及从这种糖中提取的可能产物。此外,目前讨论了阿拉伯糖的示例产品,包括阿拉伯糖醇、2,3-丁二醇、1,2-丁三醇、乙醇、乳酸和木糖醇,这些产品已由天然和非天然微生物菌株使用代谢工程和基因组编辑工具生产。最后一节论述了与阿拉伯糖生产相关的挑战和障碍,然后是总结发言和展望。
{"title":"Arabinose as an overlooked sugar for microbial bioproduction of chemical building blocks.","authors":"Vinod Kumar, Deepti Agrawal, Rajesh Reddy Bommareddy, M Ahsanul Islam, Samuel Jacob, Venkatesh Balan, Vijai Singh, Vijay Kumar Thakur, Naveen Kumar Navani, Nigel S Scrutton","doi":"10.1080/07388551.2023.2270702","DOIUrl":"10.1080/07388551.2023.2270702","url":null,"abstract":"<p><p>The circular economy is anticipated to bring a disruptive transformation in manufacturing technologies. Robust and industrial scalable microbial strains that can simultaneously assimilate and valorize multiple carbon substrates are highly desirable, as waste bioresources contain substantial amounts of renewable and fermentable carbon, which is diverse. Lignocellulosic biomass (LCB) is identified as an inexhaustible and alternative resource to reduce global dependence on oil. Glucose, xylose, and arabinose are the major monomeric sugars in LCB. However, primary research has focused on the use of glucose. On the other hand, the valorization of pentose sugars, xylose, and arabinose, has been mainly overlooked, despite possible assimilation by vast microbial communities. The present review highlights the research efforts that have explicitly proven the suitability of arabinose as the starting feedstock for producing various chemical building blocks via biological routes. It begins by analyzing the availability of various arabinose-rich biorenewable sources that can serve as potential feedstocks for biorefineries. The subsequent section outlines the current understanding of arabinose metabolism, biochemical routes prevalent in prokaryotic and eukaryotic systems, and possible products that can be derived from this sugar. Further, currently, exemplar products from arabinose, including arabitol, 2,3-butanediol, 1,2,3-butanetriol, ethanol, lactic acid, and xylitol are discussed, which have been produced by native and non-native microbial strains using metabolic engineering and genome editing tools. The final section deals with the challenges and obstacles associated with arabinose-based production, followed by concluding remarks and prospects.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1103-1120"},"PeriodicalIF":8.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71479088","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineering proteins with catechol chemistry for biotechnological applications. 利用邻苯二酚化学成分改造蛋白质,促进生物技术应用。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-08-28 DOI: 10.1080/07388551.2024.2387165
Suryalakshmi Pandurangan, Shanmugam Easwaramoorthi, Niraikulam Ayyadurai

Developing proteins with increased chemical space by expanding the amino acids alphabet has been an emerging technique to compete for the obstacle encountered by their need in various applications. 3,4-Dihydroxyphenylalanine (L-DOPA) catecholic unnatural amino acid is abundantly present in mussels foot proteins through post-translational modification of tyrosine to give a strong adhesion toward wet rocks. L-DOPA forms: bidentate coordination, H-bonding, metal-ligand complexes, long-ranged electrostatic, and van der Waals interactions via a pair of donor hydroxyl groups. Incorporating catechol in proteins through genetic code expansion paved the way for developing: protein-based bio-sensor, implant coating, bio-conjugation, adhesive bio-materials, biocatalyst, metal interaction and nano-biotechnological applications. The increased chemical spaces boost the protein properties by offering a new chemically active interaction ability to the protein. Here, we review the technique employed to develop a genetically expanded organism with catechol to provide novel properties and functionalities; and we highlight the importance of L-DOPA incorporated proteins in biomedical and industrial fields.

通过扩展氨基酸字母表来开发具有更大化学空间的蛋白质已成为一种新兴技术,以应对其在各种应用中遇到的障碍。通过对酪氨酸进行翻译后修饰,3,4-二羟基苯丙氨酸(L-DOPA)儿茶酚类非天然氨基酸大量存在于贻贝足蛋白质中,使其对潮湿的岩石具有很强的附着力。L-DOPA 通过一对供体羟基形成:双叉配位、H 键、金属配体复合物、长程静电和范德华相互作用。通过扩展遗传密码将邻苯二酚融入蛋白质,为开发基于蛋白质的生物传感器、植入涂层、生物共轭、粘合生物材料、生物催化剂、金属相互作用和纳米生物技术应用铺平了道路。增加的化学空间为蛋白质提供了新的化学活性相互作用能力,从而提高了蛋白质的特性。在此,我们回顾了利用儿茶酚开发基因扩增生物体以提供新特性和功能的技术,并强调了L-DOPA结合蛋白在生物医学和工业领域的重要性。
{"title":"Engineering proteins with catechol chemistry for biotechnological applications.","authors":"Suryalakshmi Pandurangan, Shanmugam Easwaramoorthi, Niraikulam Ayyadurai","doi":"10.1080/07388551.2024.2387165","DOIUrl":"https://doi.org/10.1080/07388551.2024.2387165","url":null,"abstract":"<p><p>Developing proteins with increased chemical space by expanding the amino acids alphabet has been an emerging technique to compete for the obstacle encountered by their need in various applications. 3,4-Dihydroxyphenylalanine (L-DOPA) catecholic unnatural amino acid is abundantly present in mussels foot proteins through post-translational modification of tyrosine to give a strong adhesion toward wet rocks. L-DOPA forms: bidentate coordination, H-bonding, metal-ligand complexes, long-ranged electrostatic, and van der Waals interactions <i>via</i> a pair of donor hydroxyl groups. Incorporating catechol in proteins through genetic code expansion paved the way for developing: protein-based bio-sensor, implant coating, bio-conjugation, adhesive bio-materials, biocatalyst, metal interaction and nano-biotechnological applications. The increased chemical spaces boost the protein properties by offering a new chemically active interaction ability to the protein. Here, we review the technique employed to develop a genetically expanded organism with catechol to provide novel properties and functionalities; and we highlight the importance of L-DOPA incorporated proteins in biomedical and industrial fields.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-19"},"PeriodicalIF":8.1,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142092501","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Critical Reviews in Biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1