首页 > 最新文献

Critical Reviews in Biotechnology最新文献

英文 中文
Current status and future trends of microbial and nematode-based biopesticides for biocontrol of crop pathogens. 基于微生物和线虫的生物农药对作物病原体进行生物防治的现状和未来趋势。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-10 DOI: 10.1080/07388551.2024.2370370
Rayhane Hamrouni, Flor Regus, Anne-Marie Farnet Da Silva, Thierry Orsiere, Jean-Luc Boudenne, Isabelle Laffont-Schwob, Pierre Christen, Nathalie Dupuy

The increasing public demand to avoid the use of synthetic pesticides and fertilizers in agricultural production systems, causing serious environmental damages, has challenged industry to develop new and effective solutions to manage and control phytopathogens. Biopesticides, particularly microbial-based biopesticides, are a promising new alternative with high biodegradability, specificity, suitability for incorporation into integrated pest management practices, low likelihood of resistance development, and practically no known human health risks. However: expensive production methods, narrow action spectra, susceptibility to environmental conditions, short shelf life, poor storage stability, legislation registry constraints, and general lack of knowledge are slowing down their adoption. In addition to regulatory framework revisions and improved training initiatives, improved preservation methods, thoughtfully designed formulations, and field test validations are needed to offer new microbial- and nematode-based biopesticides with improved efficacy and increased shelf-life. During the last several years, substantial advancements in biopesticide production have been developed. The novelty part of this review written in 2023 is to summarize (i) mechanisms of action of beneficial microorganisms used to increase crop performance and (ii) successful formulation including commercial products for the biological control of phytopathogens based on microorganisms, nematode and/or metabolites.

公众日益要求避免在农业生产系统中使用合成杀虫剂和化肥,这对环境造成了严重破坏。生物农药,特别是基于微生物的生物农药,是一种前景广阔的新替代品,具有生物降解性高、特异性强、适合纳入虫害综合防治实践、抗药性产生的可能性低以及几乎不存在已知的人类健康风险等特点。然而,由于生产方法昂贵、作用范围窄、易受环境条件影响、保质期短、储存稳定性差、立法登记限制以及普遍缺乏相关知识,这些因素都延缓了杀虫剂的应用。除了修订监管框架和改进培训措施外,还需要改进保存方法、精心设计配方和进行实地试验验证,以提供功效更好、货架期更长的新型微生物和线虫生物农药。在过去几年中,生物农药生产取得了长足的进步。2023 年撰写的这篇综述的新颖之处在于总结:(i) 用于提高作物性能的有益微生物的作用机理;(ii) 成功配方,包括基于微生物、线虫和/或代谢物的植物病原体生物防治商业产品。
{"title":"Current status and future trends of microbial and nematode-based biopesticides for biocontrol of crop pathogens.","authors":"Rayhane Hamrouni, Flor Regus, Anne-Marie Farnet Da Silva, Thierry Orsiere, Jean-Luc Boudenne, Isabelle Laffont-Schwob, Pierre Christen, Nathalie Dupuy","doi":"10.1080/07388551.2024.2370370","DOIUrl":"https://doi.org/10.1080/07388551.2024.2370370","url":null,"abstract":"<p><p>The increasing public demand to avoid the use of synthetic pesticides and fertilizers in agricultural production systems, causing serious environmental damages, has challenged industry to develop new and effective solutions to manage and control phytopathogens. Biopesticides, particularly microbial-based biopesticides, are a promising new alternative with high biodegradability, specificity, suitability for incorporation into integrated pest management practices, low likelihood of resistance development, and practically no known human health risks. However: expensive production methods, narrow action spectra, susceptibility to environmental conditions, short shelf life, poor storage stability, legislation registry constraints, and general lack of knowledge are slowing down their adoption. In addition to regulatory framework revisions and improved training initiatives, improved preservation methods, thoughtfully designed formulations, and field test validations are needed to offer new microbial- and nematode-based biopesticides with improved efficacy and increased shelf-life. During the last several years, substantial advancements in biopesticide production have been developed. The novelty part of this review written in 2023 is to summarize (i) mechanisms of action of beneficial microorganisms used to increase crop performance and (ii) successful formulation including commercial products for the biological control of phytopathogens based on microorganisms, nematode and/or metabolites.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-20"},"PeriodicalIF":8.1,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141579221","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wastewater-borne viruses and bacteria, surveillance and biosensors at the interface of academia and field deployment. 废水中的病毒和细菌、学术界和实地部署之间的监控和生物传感器。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-07 DOI: 10.1080/07388551.2024.2354709
Rajendra Singh, Jaewon Ryu, Woo Hyoung Lee, Joo-Hyon Kang, Sanghwa Park, Keugtae Kim

Wastewater is a complex, but an ideal, matrix for disease monitoring and surveillance as it represents the entire load of enteric pathogens from a local catchment area. It captures both clinical and community disease burdens. Global interest in wastewater surveillance has been growing rapidly for infectious diseases monitoring and for providing an early warning of potential outbreaks. Although molecular detection methods show high sensitivity and specificity in pathogen monitoring from wastewater, they are strongly limited by challenges, including expensive laboratory settings and prolonged sample processing and analysis. Alternatively, biosensors exhibit a wide range of practical utility in real-time monitoring of biological and chemical markers. However, field deployment of biosensors is primarily challenged by prolonged sample processing and pathogen concentration steps due to complex wastewater matrices. This review summarizes the role of wastewater surveillance and provides an overview of infectious viral and bacterial pathogens with cutting-edge technologies for their detection. It emphasizes the practical utility of biosensors in pathogen monitoring and the major bottlenecks for wastewater surveillance of pathogens, and overcoming approaches to field deployment of biosensors for real-time pathogen detection. Furthermore, the promising potential of novel machine learning algorithms to resolve uncertainties in wastewater data is discussed.

废水是一个复杂但理想的疾病监测和监控矩阵,因为它代表了当地集水区的全部肠道病原体负荷。它既能捕捉到临床疾病负担,也能捕捉到社区疾病负担。全球对废水监测的兴趣一直在迅速增长,以用于传染病监测和提供潜在疾病爆发的早期预警。虽然分子检测方法在监测废水中的病原体方面显示出较高的灵敏度和特异性,但它们受到各种挑战的严重限制,包括昂贵的实验室环境和漫长的样品处理和分析时间。另外,生物传感器在实时监测生物和化学标记物方面具有广泛的实用性。然而,由于废水基质复杂,样品处理和病原体浓缩步骤耗时较长,这对生物传感器的实地应用构成了主要挑战。本综述总结了废水监测的作用,并概述了具有传染性的病毒和细菌病原体及其尖端检测技术。它强调了生物传感器在病原体监测中的实际效用、废水病原体监测的主要瓶颈,以及现场部署生物传感器实时检测病原体的克服方法。此外,还讨论了新型机器学习算法在解决废水数据不确定性方面的巨大潜力。
{"title":"Wastewater-borne viruses and bacteria, surveillance and biosensors at the interface of academia and field deployment.","authors":"Rajendra Singh, Jaewon Ryu, Woo Hyoung Lee, Joo-Hyon Kang, Sanghwa Park, Keugtae Kim","doi":"10.1080/07388551.2024.2354709","DOIUrl":"10.1080/07388551.2024.2354709","url":null,"abstract":"<p><p>Wastewater is a complex, but an ideal, matrix for disease monitoring and surveillance as it represents the entire load of enteric pathogens from a local catchment area. It captures both clinical and community disease burdens. Global interest in wastewater surveillance has been growing rapidly for infectious diseases monitoring and for providing an early warning of potential outbreaks. Although molecular detection methods show high sensitivity and specificity in pathogen monitoring from wastewater, they are strongly limited by challenges, including expensive laboratory settings and prolonged sample processing and analysis. Alternatively, biosensors exhibit a wide range of practical utility in real-time monitoring of biological and chemical markers. However, field deployment of biosensors is primarily challenged by prolonged sample processing and pathogen concentration steps due to complex wastewater matrices. This review summarizes the role of wastewater surveillance and provides an overview of infectious viral and bacterial pathogens with cutting-edge technologies for their detection. It emphasizes the practical utility of biosensors in pathogen monitoring and the major bottlenecks for wastewater surveillance of pathogens, and overcoming approaches to field deployment of biosensors for real-time pathogen detection. Furthermore, the promising potential of novel machine learning algorithms to resolve uncertainties in wastewater data is discussed.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-21"},"PeriodicalIF":8.1,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
D-allulose 3-epimerase for low-calorie D-allulose synthesis: microbial production, characterization, and applications. 用于低热量 D-纤维素合成的 D-allulose 3-epimerase:微生物生产、表征和应用。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-07-07 DOI: 10.1080/07388551.2024.2368517
Xiaofang Xie, Caiming Li, Xiaofeng Ban, Hongshun Yang, Zhaofeng Li

D-allulose, an epimer of D-fructose at C-3 position, is a low-calorie rare sugar with favorable physiochemical properties and special physiological functions, which displays promising perspectives in the food and pharmaceutical industries. Currently, D-allulose is extremely sparse in nature and is predominantly biosynthesized through the isomerization of D-fructose by D-allulose 3-epimerase (DAEase). In recent years, D-allulose 3-epimerase as the key biocatalyst for D-allulose production has received increasing interest. The current review begins by providing a summary of D-allulose regarding its characteristics and applications, as well as different synthesis pathways dominated by biotransformation. Then, the research advances of D-allulose 3-epimerase are systematically reviewed, focusing on heterologous expression and biochemical characterization, crystal structure and molecular modification, and application in D-allulose production. Concerning the constraint of low yield of DAEase for industrial application, this review addresses the various attempts made to promote the production of DAEase in different expression systems. Also, various strategies have been adopted to improve its thermotolerance and catalytic activity, which is mainly based on the structure-function relationship of DAEase. The application of DAEase in D-allulose biosynthesis from D-fructose or low-cost feedstocks through single- or multi-enzymatic cascade reaction has been discussed. Finally, the prospects for related research of D-allulose 3-epimerase are also proposed, facilitating the industrialization of DAEase and more efficient and economical bioproduction of D-allulose.

D- 阿洛酮糖是 D-果糖在 C-3 位上的表聚体,是一种低热量的稀有糖类,具有良好的理化性质和特殊的生理功能,在食品和制药行业具有广阔的前景。目前,D-阿洛糖在自然界极为稀少,主要是通过 D-阿洛糖 3-表聚酶(DAEase)对 D-果糖进行异构化而生物合成的。近年来,D-阿洛糖 3-epimerase 作为生产 D-阿洛糖的关键生物催化剂受到越来越多的关注。本综述首先概述了 D-阿洛酮糖的特点和应用,以及以生物转化为主的不同合成途径。然后,系统地综述了 D-阿洛糖 3-酰亚胺酶的研究进展,重点关注异源表达和生化表征、晶体结构和分子修饰以及在 D-阿洛糖生产中的应用。鉴于工业应用中 DAEase 产量低的限制,本综述探讨了在不同表达系统中促进 DAEase 生产的各种尝试。此外,还采用了各种策略来提高 DAEase 的耐热性和催化活性,这主要是基于 DAEase 的结构-功能关系。讨论了 DAEase 在以 D-果糖或低成本原料为原料,通过单酶或多酶级联反应进行 D-阿洛糖生物合成中的应用。最后,还提出了DAEase的相关研究前景,以促进DAEase的产业化和更高效、更经济地生物生产D-阿洛糖。
{"title":"D-allulose 3-epimerase for low-calorie D-allulose synthesis: microbial production, characterization, and applications.","authors":"Xiaofang Xie, Caiming Li, Xiaofeng Ban, Hongshun Yang, Zhaofeng Li","doi":"10.1080/07388551.2024.2368517","DOIUrl":"https://doi.org/10.1080/07388551.2024.2368517","url":null,"abstract":"<p><p>D-allulose, an epimer of D-fructose at C-3 position, is a low-calorie rare sugar with favorable physiochemical properties and special physiological functions, which displays promising perspectives in the food and pharmaceutical industries. Currently, D-allulose is extremely sparse in nature and is predominantly biosynthesized through the isomerization of D-fructose by D-allulose 3-epimerase (DAEase). In recent years, D-allulose 3-epimerase as the key biocatalyst for D-allulose production has received increasing interest. The current review begins by providing a summary of D-allulose regarding its characteristics and applications, as well as different synthesis pathways dominated by biotransformation. Then, the research advances of D-allulose 3-epimerase are systematically reviewed, focusing on heterologous expression and biochemical characterization, crystal structure and molecular modification, and application in D-allulose production. Concerning the constraint of low yield of DAEase for industrial application, this review addresses the various attempts made to promote the production of DAEase in different expression systems. Also, various strategies have been adopted to improve its thermotolerance and catalytic activity, which is mainly based on the structure-function relationship of DAEase. The application of DAEase in D-allulose biosynthesis from D-fructose or low-cost feedstocks through single- or multi-enzymatic cascade reaction has been discussed. Finally, the prospects for related research of D-allulose 3-epimerase are also proposed, facilitating the industrialization of DAEase and more efficient and economical bioproduction of D-allulose.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-20"},"PeriodicalIF":8.1,"publicationDate":"2024-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141554367","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radionuclide biogeochemistry: from bioremediation toward the treatment of aqueous radioactive effluents. 放射性核素生物地球化学:从生物修复到放射性废水的处理。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-01 Epub Date: 2023-05-31 DOI: 10.1080/07388551.2023.2194505
Adam J Williamson, Marie Binet, Claire Sergeant

Civilian and military nuclear programs of several nations over more than 70 years have led to significant quantities of heterogenous solid, organic, and aqueous radioactive wastes bearing actinides, fission products, and activation products. While many physicochemical treatments have been developed to remediate, decontaminate and reduce waste volumes, they can involve high costs (energy input, expensive sorbants, ion exchange resins, chemical reducing/precipitation agents) or can lead to further secondary waste forms. Microorganisms can directly influence radionuclide solubility, via sorption, accumulation, precipitation, redox, and volatilization pathways, thus offering a more sustainable approach to remediation or effluent treatments. Much work to date has focused on fundamentals or laboratory-scale remediation trials, but there is a paucity of information toward field-scale bioremediation and, to a lesser extent, toward biological liquid effluent treatments. From the few biostimulation studies that have been conducted at legacy weapon production/test sites and uranium mining and milling sites, some marked success via bioreduction and biomineralisation has been observed. However, rebounding of radionuclide mobility from (a)biotic scale-up factors are often encountered. Radionuclide, heavy metal, co-contaminant, and/or matrix effects provide more challenging conditions than traditional industrial wastewater systems, thus innovative solutions via indirect interactions with stable element biogeochemical cycles, natural or engineered cultures or communities of metal and irradiation tolerant strains and reactor design inspirations from existing metal wastewater technologies, are required. This review encompasses the current state of the art in radionuclide biogeochemistry fundamentals and bioremediation and establishes links toward transitioning these concepts toward future radioactive effluent treatments.

70多年来,几个国家的民用和军用核计划导致了大量含有锕系元素、裂变产物和活化产物的非均质固体、有机和水性放射性废物。虽然已经开发了许多物理化学处理来修复、净化和减少废物量,但它们可能涉及高成本(能量输入、昂贵的吸附剂、离子交换树脂、化学还原/沉淀剂),或者可能导致进一步的二次废物形式。微生物可以通过吸附、积累、沉淀、氧化还原和挥发途径直接影响放射性核素的溶解度,从而为修复或污水处理提供更可持续的方法。迄今为止,许多工作都集中在基础知识或实验室规模的修复试验上,但缺乏关于现场规模的生物修复的信息,在较小程度上,缺乏关于生物液体污水处理的信息。在遗留武器生产/试验场以及铀矿开采和选矿场进行的为数不多的生物刺激研究中,通过生物还原和生物矿化取得了一些显著的成功。然而,经常会遇到放射性核素迁移率从(a)生物放大因子反弹的情况。放射性核素、重金属、共污染物和/或基质效应比传统的工业废水系统提供了更具挑战性的条件,因此通过与稳定元素生物地球化学循环的间接相互作用提供了创新的解决方案,需要金属和耐辐射菌株的天然或工程培养物或群落以及来自现有金属废水技术的反应器设计灵感。这篇综述涵盖了放射性核素生物地球化学基础和生物修复的最新技术,并建立了将这些概念转变为未来放射性污水处理的联系。
{"title":"Radionuclide biogeochemistry: from bioremediation toward the treatment of aqueous radioactive effluents.","authors":"Adam J Williamson, Marie Binet, Claire Sergeant","doi":"10.1080/07388551.2023.2194505","DOIUrl":"10.1080/07388551.2023.2194505","url":null,"abstract":"<p><p>Civilian and military nuclear programs of several nations over more than 70 years have led to significant quantities of heterogenous solid, organic, and aqueous radioactive wastes bearing actinides, fission products, and activation products. While many physicochemical treatments have been developed to remediate, decontaminate and reduce waste volumes, they can involve high costs (energy input, expensive sorbants, ion exchange resins, chemical reducing/precipitation agents) or can lead to further secondary waste forms. Microorganisms can directly influence radionuclide solubility, <i>via</i> sorption, accumulation, precipitation, redox, and volatilization pathways, thus offering a more sustainable approach to remediation or effluent treatments. Much work to date has focused on fundamentals or laboratory-scale remediation trials, but there is a paucity of information toward field-scale bioremediation and, to a lesser extent, toward biological liquid effluent treatments. From the few biostimulation studies that have been conducted at legacy weapon production/test sites and uranium mining and milling sites, some marked success <i>via</i> bioreduction and biomineralisation has been observed. However, rebounding of radionuclide mobility from (a)biotic scale-up factors are often encountered. Radionuclide, heavy metal, co-contaminant, and/or matrix effects provide more challenging conditions than traditional industrial wastewater systems, thus innovative solutions <i>via</i> indirect interactions with stable element biogeochemical cycles, natural or engineered cultures or communities of metal and irradiation tolerant strains and reactor design inspirations from existing metal wastewater technologies, are required. This review encompasses the current state of the art in radionuclide biogeochemistry fundamentals and bioremediation and establishes links toward transitioning these concepts toward future radioactive effluent treatments.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"698-716"},"PeriodicalIF":8.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9924771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacterial genome reduction for optimal chassis of synthetic biology: a review. 减少细菌基因组以优化合成生物学底盘:综述。
IF 9 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-01 Epub Date: 2023-06-28 DOI: 10.1080/07388551.2023.2208285
Shuai Ma, Tianyuan Su, Xuemei Lu, Qingsheng Qi

Bacteria with streamlined genomes, that harbor full functional genes for essential metabolic networks, are able to synthesize the desired products more effectively and thus have advantages as production platforms in industrial applications. To obtain streamlined chassis genomes, a large amount of effort has been made to reduce existing bacterial genomes. This work falls into two categories: rational and random reduction. The identification of essential gene sets and the emergence of various genome-deletion techniques have greatly promoted genome reduction in many bacteria over the past few decades. Some of the constructed genomes possessed desirable properties for industrial applications, such as: increased genome stability, transformation capacity, cell growth, and biomaterial productivity. The decreased growth and perturbations in physiological phenotype of some genome-reduced strains may limit their applications as optimized cell factories. This review presents an assessment of the advancements made to date in bacterial genome reduction to construct optimal chassis for synthetic biology, including: the identification of essential gene sets, the genome-deletion techniques, the properties and industrial applications of artificially streamlined genomes, the obstacles encountered in constructing reduced genomes, and the future perspectives.

具有精简基因组的细菌含有基本代谢网络的全部功能基因,能够更有效地合成所需的产品,因此在工业应用中具有作为生产平台的优势。为了获得精简的底盘基因组,人们做了大量工作来减少现有的细菌基因组。这项工作分为两类:合理缩减和随机缩减。过去几十年来,基本基因组的确定和各种基因组删除技术的出现极大地促进了许多细菌基因组的缩减。一些构建的基因组具有工业应用的理想特性,如:提高基因组稳定性、转化能力、细胞生长和生物材料生产率。一些基因组还原菌株的生长能力下降、生理表型紊乱,可能会限制它们作为优化细胞工厂的应用。本综述评估了迄今为止在细菌基因组还原以构建合成生物学最佳底盘方面取得的进展,包括:重要基因组的鉴定、基因组缺失技术、人工精简基因组的特性和工业应用、构建还原基因组过程中遇到的障碍以及未来展望。
{"title":"Bacterial genome reduction for optimal chassis of synthetic biology: a review.","authors":"Shuai Ma, Tianyuan Su, Xuemei Lu, Qingsheng Qi","doi":"10.1080/07388551.2023.2208285","DOIUrl":"10.1080/07388551.2023.2208285","url":null,"abstract":"<p><p>Bacteria with streamlined genomes, that harbor full functional genes for essential metabolic networks, are able to synthesize the desired products more effectively and thus have advantages as production platforms in industrial applications. To obtain streamlined chassis genomes, a large amount of effort has been made to reduce existing bacterial genomes. This work falls into two categories: rational and random reduction. The identification of essential gene sets and the emergence of various genome-deletion techniques have greatly promoted genome reduction in many bacteria over the past few decades. Some of the constructed genomes possessed desirable properties for industrial applications, such as: increased genome stability, transformation capacity, cell growth, and biomaterial productivity. The decreased growth and perturbations in physiological phenotype of some genome-reduced strains may limit their applications as optimized cell factories. This review presents an assessment of the advancements made to date in bacterial genome reduction to construct optimal chassis for synthetic biology, including: the identification of essential gene sets, the genome-deletion techniques, the properties and industrial applications of artificially streamlined genomes, the obstacles encountered in constructing reduced genomes, and the future perspectives.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"660-673"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9686502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biocontrol of plant pathogens in omics era-with special focus on endophytic bacilli. omics 时代的植物病原体生物防治--特别关注内生杆菌。
IF 9 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-01 Epub Date: 2023-04-13 DOI: 10.1080/07388551.2023.2183379
Ayesha Ahmed, Pengfei He, Yueqiu He, Brajesh K Singh, Yixin Wu, Shahzad Munir, Pengbo He

Nearly all plants and their organs are inhabited by endophytic microbes which play a crucial role in plant fitness and stress resilience. Harnessing endophytic services can provide effective solutions for a sustainable increase in agriculture productivity and can be used as a complement or alternative to agrochemicals. Shifting agriculture practices toward the use of nature-based solutions can contribute directly to the global challenges of food security and environmental sustainability. However, microbial inoculants have been used in agriculture for several decades with inconsistent efficacy. Key reasons of this inconsistent efficacy are linked to competition with indigenous soil microflora and inability to colonize plants. Endophytic microbes provide solutions to both of these issues which potentially make them better candidates for microbial inoculants. This article outlines the current advancements in endophytic research with special focus on endophytic bacilli. A better understanding of diverse mechanisms of disease control by bacilli is essential to achieve maximum biocontrol efficacy against multiple phytopathogens. Furthermore, we argue that integration of emerging technologies with strong theoretical frameworks have the potential to revolutionize biocontrol approaches based on endophytic microbes.

几乎所有植物及其器官都生活着内生微生物,它们对植物的健康和抗逆性起着至关重要的作用。利用内生服务可为可持续提高农业生产力提供有效的解决方案,并可作为农用化学品的补充或替代品。将农业实践转向使用以自然为基础的解决方案,可直接有助于应对粮食安全和环境可持续性的全球挑战。然而,微生物接种剂已在农业中使用了几十年,但效果并不稳定。效果不稳定的主要原因是与本地土壤微生物菌群竞争以及无法定植植物。内生微生物为这两个问题提供了解决方案,因此有可能成为微生物接种剂的最佳候选者。本文概述了内生微生物研究的最新进展,并特别关注内生杆菌。更好地了解芽孢杆菌控制病害的各种机制对于实现针对多种植物病原体的最大生物防治效果至关重要。此外,我们还认为,将新兴技术与强大的理论框架相结合,有可能彻底改变基于内生微生物的生物防治方法。
{"title":"Biocontrol of plant pathogens in omics era-with special focus on endophytic bacilli.","authors":"Ayesha Ahmed, Pengfei He, Yueqiu He, Brajesh K Singh, Yixin Wu, Shahzad Munir, Pengbo He","doi":"10.1080/07388551.2023.2183379","DOIUrl":"10.1080/07388551.2023.2183379","url":null,"abstract":"<p><p>Nearly all plants and their organs are inhabited by endophytic microbes which play a crucial role in plant fitness and stress resilience. Harnessing endophytic services can provide effective solutions for a sustainable increase in agriculture productivity and can be used as a complement or alternative to agrochemicals. Shifting agriculture practices toward the use of nature-based solutions can contribute directly to the global challenges of food security and environmental sustainability. However, microbial inoculants have been used in agriculture for several decades with inconsistent efficacy. Key reasons of this inconsistent efficacy are linked to competition with indigenous soil microflora and inability to colonize plants. Endophytic microbes provide solutions to both of these issues which potentially make them better candidates for microbial inoculants. This article outlines the current advancements in endophytic research with special focus on endophytic bacilli. A better understanding of diverse mechanisms of disease control by bacilli is essential to achieve maximum biocontrol efficacy against multiple phytopathogens. Furthermore, we argue that integration of emerging technologies with strong theoretical frameworks have the potential to revolutionize biocontrol approaches based on endophytic microbes.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"562-580"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9294460","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology. 作为脂肪酸、类胡萝卜素和固醇的重要来源的蓟马:生物活性化合物的生物合成和现代生物技术。
IF 9 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-01 Epub Date: 2023-05-09 DOI: 10.1080/07388551.2023.2196373
Yingjie Song, Xuewei Yang, Shuangfei Li, Yanqing Luo, Jo-Shu Chang, Zhangli Hu

Thraustochytrids are eukaryotes and obligate marine protists. They are increasingly considered to be a promising feed additive because of their superior and sustainable application in the production of health-benefiting bioactive compounds, such as fatty acids, carotenoids, and sterols. Moreover, the increasing demand makes it critical to rationally design the targeted products by engineering industrial strains. In this review, bioactive compounds accumulated in thraustochytrids were comprehensively evaluated according to their chemical structure, properties, and physiological function. Metabolic networks and biosynthetic pathways of fatty acids, carotenoids, and sterols were methodically summarized. Further, stress-based strategies used in thraustochytrids were reviewed to explore the potential methodologies for enhancing specific product yields. There are internal relationships between the biosynthesis of fatty acids, carotenoids, and sterols in thraustochytrids since they share some branches of the synthetic routes with some intermediate substrates in common. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these compounds are being synthesized in thraustochytrids still remains uncovered. Further, combined with omics technologies to deeply understand the mechanism and effects of different stresses is necessary, which could provide guidance for genetic engineering. While gene-editing technology has allowed targeted gene knock-in and knock-outs in thraustochytrids, efficient gene editing is still required. This critical review will provide comprehensive information to benefit boosting the commercial productivity of specific bioactive substances by thraustochytrids.

Thraustochytrids 是真核生物和海洋原生生物。由于其在生产有益健康的生物活性化合物(如脂肪酸、类胡萝卜素和固醇)方面的卓越和可持续应用,它们越来越被认为是一种前景广阔的饲料添加剂。此外,日益增长的需求使得通过工业菌株工程合理设计目标产品变得至关重要。在这篇综述中,根据蓟马的化学结构、特性和生理功能,对蓟马体内积累的生物活性化合物进行了全面评估。并对脂肪酸、类胡萝卜素和甾醇的代谢网络和生物合成途径进行了系统总结。此外,还回顾了基于胁迫的策略在蓟马中的应用,以探索提高特定产品产量的潜在方法。甲壳动物中脂肪酸、类胡萝卜素和固醇的生物合成之间存在内在联系,因为它们共享合成路线的某些分支和一些共同的中间底物。尽管之前的研究已经提出了经典的合成途径,但这些化合物在甲壳动物体内合成的代谢流程仍未被揭示。此外,有必要结合全息技术深入了解不同应激的机制和影响,从而为基因工程提供指导。虽然基因编辑技术可以在蛛网膜中实现有针对性的基因敲入和敲出,但仍需要高效的基因编辑技术。这篇重要综述将提供全面的信息,有助于提高蓟马特定生物活性物质的商业生产力。
{"title":"Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology.","authors":"Yingjie Song, Xuewei Yang, Shuangfei Li, Yanqing Luo, Jo-Shu Chang, Zhangli Hu","doi":"10.1080/07388551.2023.2196373","DOIUrl":"10.1080/07388551.2023.2196373","url":null,"abstract":"<p><p>Thraustochytrids are eukaryotes and obligate marine protists. They are increasingly considered to be a promising feed additive because of their superior and sustainable application in the production of health-benefiting bioactive compounds, such as fatty acids, carotenoids, and sterols. Moreover, the increasing demand makes it critical to rationally design the targeted products by engineering industrial strains. In this review, bioactive compounds accumulated in thraustochytrids were comprehensively evaluated according to their chemical structure, properties, and physiological function. Metabolic networks and biosynthetic pathways of fatty acids, carotenoids, and sterols were methodically summarized. Further, stress-based strategies used in thraustochytrids were reviewed to explore the potential methodologies for enhancing specific product yields. There are internal relationships between the biosynthesis of fatty acids, carotenoids, and sterols in thraustochytrids since they share some branches of the synthetic routes with some intermediate substrates in common. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these compounds are being synthesized in thraustochytrids still remains uncovered. Further, combined with omics technologies to deeply understand the mechanism and effects of different stresses is necessary, which could provide guidance for genetic engineering. While gene-editing technology has allowed targeted gene knock-in and knock-outs in thraustochytrids, efficient gene editing is still required. This critical review will provide comprehensive information to benefit boosting the commercial productivity of specific bioactive substances by thraustochytrids.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"618-640"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9434502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
State-of-the-art strategies and research advances for the biosynthesis of D-amino acids. D- 氨基酸生物合成的最新战略和研究进展。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-01 Epub Date: 2023-05-09 DOI: 10.1080/07388551.2023.2193861
Fenghua Wang, Hongbin Qi, Huimin Li, Xuanzhen Ma, Xin Gao, Chao Li, Fuping Lu, Shuhong Mao, Hui-Min Qin

D-amino acids (D-AAs) are the enantiomeric counterparts of L-amino acids (L-AAs) and important functional factors with a wide variety of physiological activities and applications in the food manufacture industry. Some D-AAs, such as D-Ala, D-Leu, and D-Phe, have been favored by consumers as sweeteners and fragrances because of their unique flavor. The biosynthesis of D-AAs has attracted much attention in recent years due to their unique advantages. In this review, we comprehensively analyze the structure-function relationships, biosynthesis pathways, multi-enzyme cascade and whole-cell catalysis for the production of D-AAs. The state-of-the-art strategies, including immobilization, protein engineering, and high-throughput screening, are summarized. Future challenges and perspectives of strategies-driven by bioinformatics technologies and smart computing technologies, as well as enzyme immobilization, are also discussed. These new approaches will promote the commercial production and application of D-AAs in the food industry by optimizing the key enzymes for industrial biocatalysts.

D- 氨基酸(D-As)是 L-氨基酸(L-As)的对映体,也是重要的功能因子,具有多种生理活性,在食品制造业中应用广泛。一些 D-AAs,如 D-Ala、D-Leu 和 D-Phe,因其独特的风味而作为甜味剂和香料受到消费者的青睐。近年来,D-As 的生物合成因其独特的优势而备受关注。在这篇综述中,我们全面分析了 D-AAs 的结构-功能关系、生物合成途径、多酶级联和全细胞催化生产。综述了最先进的策略,包括固定化、蛋白质工程和高通量筛选。此外,还讨论了由生物信息学技术和智能计算技术以及酶固定化技术驱动的策略的未来挑战和前景。通过优化工业生物催化剂的关键酶,这些新方法将促进 D-AAs 在食品工业中的商业化生产和应用。
{"title":"State-of-the-art strategies and research advances for the biosynthesis of D-amino acids.","authors":"Fenghua Wang, Hongbin Qi, Huimin Li, Xuanzhen Ma, Xin Gao, Chao Li, Fuping Lu, Shuhong Mao, Hui-Min Qin","doi":"10.1080/07388551.2023.2193861","DOIUrl":"10.1080/07388551.2023.2193861","url":null,"abstract":"<p><p>D-amino acids (D-AAs) are the enantiomeric counterparts of L-amino acids (L-AAs) and important functional factors with a wide variety of physiological activities and applications in the food manufacture industry. Some D-AAs, such as D-Ala, D-Leu, and D-Phe, have been favored by consumers as sweeteners and fragrances because of their unique flavor. The biosynthesis of D-AAs has attracted much attention in recent years due to their unique advantages. In this review, we comprehensively analyze the structure-function relationships, biosynthesis pathways, multi-enzyme cascade and whole-cell catalysis for the production of D-AAs. The state-of-the-art strategies, including immobilization, protein engineering, and high-throughput screening, are summarized. Future challenges and perspectives of strategies-driven by bioinformatics technologies and smart computing technologies, as well as enzyme immobilization, are also discussed. These new approaches will promote the commercial production and application of D-AAs in the food industry by optimizing the key enzymes for industrial biocatalysts.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"495-513"},"PeriodicalIF":8.1,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9438520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular approaches to enhance astaxanthin biosynthesis; future outlook: engineering of transcription factors in Haematococcus pluvialis. 增强虾青素生物合成的分子方法;未来展望:血球藻转录因子工程。
IF 9 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-01 Epub Date: 2023-06-28 DOI: 10.1080/07388551.2023.2208284
Sadaf-Ilyas Kayani, Saeed-Ur -Rahman, Qian Shen, Yi Cui, Wei Liu, Xinjuan Hu, Feifei Zhu, Shuhao Huo

Microalgae are the preferred species for producing astaxanthin because they pose a low toxicity risk than chemical synthesis. Astaxanthin has multiple health benefits and is being used in: medicines, nutraceuticals, cosmetics, and functional foods. Haematococcus pluvialis is a model microalga for astaxanthin biosynthesis; however, its natural astaxanthin content is low. Therefore, it is necessary to develop methods to improve the biosynthesis of astaxanthin to meet industrial demands, making its commercialization cost-effective. Several strategies related to cultivation conditions are employed to enhance the biosynthesis of astaxanthin in H. pluvialis. However, the mechanism of its regulation by transcription factors is unknown. For the first time, this study critically reviewed the studies on identifying transcription factors, progress in H. pluvialis genetic transformation, and use of phytohormones that increase the gene expression related to astaxanthin biosynthesis. In addition, we propose future approaches, including (i) Cloning and characterization of transcription factors, (ii) Transcriptional engineering through overexpression of positive regulators or downregulation/silencing of negative regulators, (iii) Gene editing for enrichment or deletion of transcription factors binding sites, (iv) Hormonal modulation of transcription factors. This review provides considerable knowledge about the molecular regulation of astaxanthin biosynthesis and the existing research gap. Besides, it provides the basis for transcription factors mediated metabolic engineering of astaxanthin biosynthesis in H. pluvialis.

微藻是生产虾青素的首选物种,因为与化学合成相比,微藻的毒性风险较低。虾青素对健康有多种益处,目前正被用于药物、营养保健品、化妆品和功能性食品。血球藻是虾青素生物合成的模式微藻,但其天然虾青素含量较低。因此,有必要开发改进虾青素生物合成的方法,以满足工业需求,使其商业化具有成本效益。为了提高虾青素的生物合成,人们采用了几种与培养条件有关的策略。然而,转录因子对虾青素的调控机制尚不清楚。本研究首次对有关转录因子的识别、H. pluvialis 基因转化的进展以及使用植物激素提高虾青素生物合成相关基因表达的研究进行了批判性回顾。此外,我们还提出了未来的方法,包括:(i)克隆转录因子并确定其特征;(ii)通过过度表达正调控因子或下调/抑制负调控因子来进行转录工程;(iii)通过基因编辑来丰富或删除转录因子的结合位点;(iv)通过激素调节转录因子。这篇综述提供了有关虾青素生物合成的分子调控和现有研究空白的大量知识。此外,它还为转录因子介导的 H. pluvialis 虾青素生物合成代谢工程提供了基础。
{"title":"Molecular approaches to enhance astaxanthin biosynthesis; future outlook: engineering of transcription factors in <i>Haematococcus pluvialis</i>.","authors":"Sadaf-Ilyas Kayani, Saeed-Ur -Rahman, Qian Shen, Yi Cui, Wei Liu, Xinjuan Hu, Feifei Zhu, Shuhao Huo","doi":"10.1080/07388551.2023.2208284","DOIUrl":"10.1080/07388551.2023.2208284","url":null,"abstract":"<p><p>Microalgae are the preferred species for producing astaxanthin because they pose a low toxicity risk than chemical synthesis. Astaxanthin has multiple health benefits and is being used in: medicines, nutraceuticals, cosmetics, and functional foods. <i>Haematococcus pluvialis</i> is a model microalga for astaxanthin biosynthesis; however, its natural astaxanthin content is low. Therefore, it is necessary to develop methods to improve the biosynthesis of astaxanthin to meet industrial demands, making its commercialization cost-effective. Several strategies related to cultivation conditions are employed to enhance the biosynthesis of astaxanthin in <i>H. pluvialis.</i> However, the mechanism of its regulation by transcription factors is unknown. For the first time, this study critically reviewed the studies on identifying transcription factors, progress in <i>H. pluvialis</i> genetic transformation, and use of phytohormones that increase the gene expression related to astaxanthin biosynthesis. In addition, we propose future approaches, including (i) Cloning and characterization of transcription factors, (ii) Transcriptional engineering through overexpression of positive regulators or downregulation/silencing of negative regulators, (iii) Gene editing for enrichment or deletion of transcription factors binding sites, (iv) Hormonal modulation of transcription factors. This review provides considerable knowledge about the molecular regulation of astaxanthin biosynthesis and the existing research gap. Besides, it provides the basis for transcription factors mediated metabolic engineering of astaxanthin biosynthesis in <i>H. pluvialis</i>.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"514-529"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9686504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enzyme hybrid nanoflowers and enzyme@metal-organic frameworks composites: fascinating hybrid nanobiocatalysts. 酶杂化纳米花和酶@金属有机框架复合材料:迷人的杂化纳米生物催化剂。
IF 9 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-06-01 Epub Date: 2023-04-09 DOI: 10.1080/07388551.2023.2189548
Zichen Wang, Ruirui Wang, Zixin Geng, Xiuyan Luo, Jiahui Jia, Saizhao Pang, Xianwei Fan, Muhammad Bilal, Jiandong Cui

Hybrid nanomaterials have recently emerged as a new interface of nanobiocatalysis, serving as a host platform for enzyme immobilization. Enzyme immobilization in inorganic crystal nanoflowers and metal-organic frameworks (MOFs) has sparked the bulk of scientific interest due to their superior performances. Many breakthroughs have been achieved recently in the preparation of various types of enzyme@MOF and enzyme-hybrid nanoflower composites. However, it is unfortunate that there are few reviews in the literature related to enzyme@MOF and enzyme-hybrid nanoflower composites and their improved synthesis strategies and their applications in biotechnology. In this review, innovative synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites are discussed. Enzyme@MOF composites and enzyme-hybrid nanoflower composites are reviewed in terms of biotechnological applications and potential research directions. We are convinced that a fundamental study and application of enzyme@MOF composites and enzyme-hybrid nanoflower composites will be understood by the reader as a result of this work. The summary of different synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites and the improvement of their synthetic strategies will also benefit the readers and provide ideas and thoughts in the future research process.

最近,杂化纳米材料成为纳米生物催化的新接口,可作为酶固定化的宿主平台。酶在无机晶体纳米流和金属有机框架(MOFs)中的固定化因其优越的性能而引起了科学界的广泛关注。最近,在制备各种酶@MOF 和酶杂化纳米花复合材料方面取得了许多突破性进展。然而,遗憾的是,有关酶@MOF和酶杂交纳米花复合材料及其改进合成策略和在生物技术中的应用的文献综述很少。本综述讨论了酶@MOF 复合材料和酶杂交纳米花复合材料的创新合成策略。从生物技术应用和潜在研究方向的角度对酶@MOF 复合材料和酶杂交纳米花复合材料进行了综述。我们相信,通过这项工作,读者将对酶@MOF复合材料和酶杂交纳米花复合材料的基础研究和应用有所了解。对酶@MOF复合材料和酶杂交纳米花复合材料不同合成策略的总结及其合成策略的改进也将使读者受益匪浅,并为今后的研究过程提供思路和想法。
{"title":"Enzyme hybrid nanoflowers and enzyme@metal-organic frameworks composites: fascinating hybrid nanobiocatalysts.","authors":"Zichen Wang, Ruirui Wang, Zixin Geng, Xiuyan Luo, Jiahui Jia, Saizhao Pang, Xianwei Fan, Muhammad Bilal, Jiandong Cui","doi":"10.1080/07388551.2023.2189548","DOIUrl":"10.1080/07388551.2023.2189548","url":null,"abstract":"<p><p>Hybrid nanomaterials have recently emerged as a new interface of nanobiocatalysis, serving as a host platform for enzyme immobilization. Enzyme immobilization in inorganic crystal nanoflowers and metal-organic frameworks (MOFs) has sparked the bulk of scientific interest due to their superior performances. Many breakthroughs have been achieved recently in the preparation of various types of enzyme@MOF and enzyme-hybrid nanoflower composites. However, it is unfortunate that there are few reviews in the literature related to enzyme@MOF and enzyme-hybrid nanoflower composites and their improved synthesis strategies and their applications in biotechnology. In this review, innovative synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites are discussed. Enzyme@MOF composites and enzyme-hybrid nanoflower composites are reviewed in terms of biotechnological applications and potential research directions. We are convinced that a fundamental study and application of enzyme@MOF composites and enzyme-hybrid nanoflower composites will be understood by the reader as a result of this work. The summary of different synthetic strategies for enzyme@MOF composites and enzyme-hybrid nanoflower composites and the improvement of their synthetic strategies will also benefit the readers and provide ideas and thoughts in the future research process.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"674-697"},"PeriodicalIF":9.0,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9619376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Critical Reviews in Biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1