Pub Date : 2024-12-01Epub Date: 2024-01-24DOI: 10.1080/07388551.2023.2299769
Qiong Tang, Sishan Wei, Xiaodong Zheng, Pengcheng Tu, Fei Tao
Plants, anchored throughout their life cycles, face a unique set of challenges from fluctuating environments and pathogenic assaults. Central to their adaptative mechanisms are transcription factors (TFs), particularly the AP2/ERF superfamily-one of the most extensive TF families unique to plants. This family plays instrumental roles in orchestrating diverse biological processes ranging from growth and development to secondary metabolism, and notably, responses to both biotic and abiotic stresses. Distinguished by the presence of the signature AP2 domain or its responsiveness to ethylene signals, the AP2/ERF superfamily has become a nexus of research focus, with increasing literature elucidating its multifaceted roles. This review provides a synoptic overview of the latest research advancements on the AP2/ERF family, spanning its taxonomy, structural nuances, prevalence in higher plants, transcriptional and post-transcriptional dynamics, and the intricate interplay in DNA-binding and target gene regulation. Special attention is accorded to the ethylene response factor B3 subgroup protein Pti5 and its role in stress response, with speculative insights into its functionalities and interaction matrix in tomatoes. The overarching goal is to pave the way for harnessing these TFs in the realms of plant genetic enhancement and novel germplasm development.
{"title":"APETALA2/ethylene-responsive factors in higher plant and their roles in regulation of plant stress response.","authors":"Qiong Tang, Sishan Wei, Xiaodong Zheng, Pengcheng Tu, Fei Tao","doi":"10.1080/07388551.2023.2299769","DOIUrl":"10.1080/07388551.2023.2299769","url":null,"abstract":"<p><p>Plants, anchored throughout their life cycles, face a unique set of challenges from fluctuating environments and pathogenic assaults. Central to their adaptative mechanisms are transcription factors (TFs), particularly the AP2/ERF superfamily-one of the most extensive TF families unique to plants. This family plays instrumental roles in orchestrating diverse biological processes ranging from growth and development to secondary metabolism, and notably, responses to both biotic and abiotic stresses. Distinguished by the presence of the signature AP2 domain or its responsiveness to ethylene signals, the AP2/ERF superfamily has become a nexus of research focus, with increasing literature elucidating its multifaceted roles. This review provides a synoptic overview of the latest research advancements on the AP2/ERF family, spanning its taxonomy, structural nuances, prevalence in higher plants, transcriptional and post-transcriptional dynamics, and the intricate interplay in DNA-binding and target gene regulation. Special attention is accorded to the ethylene response factor B3 subgroup protein Pti5 and its role in stress response, with speculative insights into its functionalities and interaction matrix in tomatoes. The overarching goal is to pave the way for harnessing these TFs in the realms of plant genetic enhancement and novel germplasm development.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1533-1551"},"PeriodicalIF":8.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139545425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-03-07DOI: 10.1080/07388551.2024.2314309
Santosh Gudi, Pavan M, Praveenkumar Alagappan, Om Prakash Raigar, Priyanka Halladakeri, Rakshith S R Gowda, Pradeep Kumar, Gurjeet Singh, Meenakshi Tamta, Pusarla Susmitha, Amandeep, Dinesh Kumar Saini
Natural fibers have garnered considerable attention owing to their desirable textile properties and advantageous effects on human health. Nevertheless, natural fibers lag behind synthetic fibers in terms of both quality and yield, as these attributes are largely genetically determined. In this article, a comprehensive overview of the natural and synthetic fiber production landscape over the last 10 years is presented, with a particular focus on the role of scientific breeding techniques in improving fiber quality traits in key crops like cotton, hemp, ramie, and flax. Additionally, the article delves into cutting-edge genomics-assisted breeding techniques, including QTL mapping, genome-wide association studies, transgenesis, and genome editing, and their potential role in enhancing fiber quality traits in these crops. A user-friendly compendium of 11226 available QTLs and significant marker-trait associations derived from 136 studies, associated with diverse fiber quality traits in these crops is furnished. Furthermore, the potential applications of transcriptomics in these pivotal crops, elucidating the distinct genes implicated in augmenting fiber quality attributes are investigated. Additionally, information on 11257 candidate/characterized or cloned genes sourced from various studies, emphasizing their key role in the development of high-quality fiber crops is collated. Additionally, the review sheds light on the current progress of marker-assisted selection for fiber quality traits in each crop, providing detailed insights into improved cultivars released for different fiber crops. In conclusion, it is asserted that the application of modern breeding tools holds tremendous potential in catalyzing a transformative shift in the textile industry.
{"title":"Fashion meets science: how advanced breeding approaches could revolutionize the textile industry.","authors":"Santosh Gudi, Pavan M, Praveenkumar Alagappan, Om Prakash Raigar, Priyanka Halladakeri, Rakshith S R Gowda, Pradeep Kumar, Gurjeet Singh, Meenakshi Tamta, Pusarla Susmitha, Amandeep, Dinesh Kumar Saini","doi":"10.1080/07388551.2024.2314309","DOIUrl":"10.1080/07388551.2024.2314309","url":null,"abstract":"<p><p>Natural fibers have garnered considerable attention owing to their desirable textile properties and advantageous effects on human health. Nevertheless, natural fibers lag behind synthetic fibers in terms of both quality and yield, as these attributes are largely genetically determined. In this article, a comprehensive overview of the natural and synthetic fiber production landscape over the last 10 years is presented, with a particular focus on the role of scientific breeding techniques in improving fiber quality traits in key crops like cotton, hemp, ramie, and flax. Additionally, the article delves into cutting-edge genomics-assisted breeding techniques, including QTL mapping, genome-wide association studies, transgenesis, and genome editing, and their potential role in enhancing fiber quality traits in these crops. A user-friendly compendium of 11226 available QTLs and significant marker-trait associations derived from 136 studies, associated with diverse fiber quality traits in these crops is furnished. Furthermore, the potential applications of transcriptomics in these pivotal crops, elucidating the distinct genes implicated in augmenting fiber quality attributes are investigated. Additionally, information on 11257 candidate/characterized or cloned genes sourced from various studies, emphasizing their key role in the development of high-quality fiber crops is collated. Additionally, the review sheds light on the current progress of marker-assisted selection for fiber quality traits in each crop, providing detailed insights into improved cultivars released for different fiber crops. In conclusion, it is asserted that the application of modern breeding tools holds tremendous potential in catalyzing a transformative shift in the textile industry.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1653-1679"},"PeriodicalIF":8.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140058878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The chloroplast and mitochondrion are semi-autonomous organelles that play essential roles in cell function. These two organelles are embellished with prokaryotic remnants and contain many new features emerging from the co-evolution of organelles and the nucleus. A typical plant chloroplast or mitochondrion genome encodes less than 100 genes, and the regulation of these genes' expression is remarkably complex. The regulation of chloroplast and mitochondrion gene expression can be achieved at multiple levels during development and in response to environmental cues, in which, RNA metabolism, including: RNA transcription, processing, translation, and degradation, plays an important role. RNA metabolism in plant chloroplasts and mitochondria combines bacterial-like traits with novel features evolved in the host cell and is regulated by a large number of nucleus-encoded proteins. Among these, pentatricopeptide repeat (PPR) proteins are deeply involved in multiple aspects of the RNA metabolism of organellar genes. Research over the past decades has revealed new insights into different RNA metabolic events in plant organelles, such as the composition of chloroplast and mitochondrion RNA editosomes. We summarize and discuss the most recent knowledge and biotechnological implications of various RNA metabolism processes in plant chloroplasts and mitochondria, with a focus on the nucleus-encoded factors supporting them, to gain a deeper understanding of the function and evolution of these two organelles in plant cells. Furthermore, a better understanding of the role of nucleus-encoded factors in chloroplast and mitochondrion RNA metabolism will motivate future studies on manipulating the plant gene expression machinery with engineered nucleus-encoded factors.
{"title":"Recent advances and biotechnological applications of RNA metabolism in plant chloroplasts and mitochondria.","authors":"Nadia Ahmed Ali, Wenjian Song, Jianyan Huang, Dianxing Wu, Xiaobo Zhao","doi":"10.1080/07388551.2023.2299789","DOIUrl":"10.1080/07388551.2023.2299789","url":null,"abstract":"<p><p>The chloroplast and mitochondrion are semi-autonomous organelles that play essential roles in cell function. These two organelles are embellished with prokaryotic remnants and contain many new features emerging from the co-evolution of organelles and the nucleus. A typical plant chloroplast or mitochondrion genome encodes less than 100 genes, and the regulation of these genes' expression is remarkably complex. The regulation of chloroplast and mitochondrion gene expression can be achieved at multiple levels during development and in response to environmental cues, in which, RNA metabolism, including: RNA transcription, processing, translation, and degradation, plays an important role. RNA metabolism in plant chloroplasts and mitochondria combines bacterial-like traits with novel features evolved in the host cell and is regulated by a large number of nucleus-encoded proteins. Among these, pentatricopeptide repeat (PPR) proteins are deeply involved in multiple aspects of the RNA metabolism of organellar genes. Research over the past decades has revealed new insights into different RNA metabolic events in plant organelles, such as the composition of chloroplast and mitochondrion RNA editosomes. We summarize and discuss the most recent knowledge and biotechnological implications of various RNA metabolism processes in plant chloroplasts and mitochondria, with a focus on the nucleus-encoded factors supporting them, to gain a deeper understanding of the function and evolution of these two organelles in plant cells. Furthermore, a better understanding of the role of nucleus-encoded factors in chloroplast and mitochondrion RNA metabolism will motivate future studies on manipulating the plant gene expression machinery with engineered nucleus-encoded factors.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1552-1573"},"PeriodicalIF":8.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139491007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Every year, a huge amount of lethal compounds, such as synthetic dyes, pesticides, pharmaceuticals, hydrocarbons, etc. are mass produced worldwide, which negatively affect soil, air, and water quality. At present, pesticides are used very frequently to meet the requirements of modernized agriculture. The Food and Agriculture Organization of the United Nations (FAO) estimates that food production will increase by 80% by 2050 to keep up with the growing population, consequently pesticides will continue to play a role in agriculture. However, improper handling of these highly persistent chemicals leads to pollution of the environment and accumulation in food chain. These effects necessitate the development of technologies to eliminate or degrade these pollutants. Degradation of these compounds by physical and chemical processes is expensive and usually results in secondary compounds with higher toxicity. The biological strategies proposed for the degradation of these compounds are both cost-effective and eco-friendly. Microbes play an imperative role in the degradation of xenobiotic compounds that have toxic effects on the environment. This review on the fate of xenobiotic compounds in the environment presents cutting-edge insights and novel contributions in different fields. Microbial community dynamics in water bodies, genetic modification for enhanced pesticide degradation and the use of fungi for pharmaceutical removal, white-rot fungi's versatile ligninolytic enzymes and biodegradation potential are highlighted. Here we emphasize the factors influencing bioremediation, such as microbial interactions and carbon catabolism repression, along with a nuanced view of challenges and limitations. Overall, this review provides a comprehensive perspective on the bioremediation strategies.
{"title":"How to deal with xenobiotic compounds through environment friendly approach?","authors":"Mony Thakur, Vinod Yadav, Yatin Kumar, Avijit Pramanik, Kashyap Kumar Dubey","doi":"10.1080/07388551.2024.2336527","DOIUrl":"10.1080/07388551.2024.2336527","url":null,"abstract":"<p><p>Every year, a huge amount of lethal compounds, such as synthetic dyes, pesticides, pharmaceuticals, hydrocarbons, etc. are mass produced worldwide, which negatively affect soil, air, and water quality. At present, pesticides are used very frequently to meet the requirements of modernized agriculture. The Food and Agriculture Organization of the United Nations (FAO) estimates that food production will increase by 80% by 2050 to keep up with the growing population, consequently pesticides will continue to play a role in agriculture. However, improper handling of these highly persistent chemicals leads to pollution of the environment and accumulation in food chain. These effects necessitate the development of technologies to eliminate or degrade these pollutants. Degradation of these compounds by physical and chemical processes is expensive and usually results in secondary compounds with higher toxicity. The biological strategies proposed for the degradation of these compounds are both cost-effective and eco-friendly. Microbes play an imperative role in the degradation of xenobiotic compounds that have toxic effects on the environment. This review on the fate of xenobiotic compounds in the environment presents cutting-edge insights and novel contributions in different fields. Microbial community dynamics in water bodies, genetic modification for enhanced pesticide degradation and the use of fungi for pharmaceutical removal, white-rot fungi's versatile ligninolytic enzymes and biodegradation potential are highlighted. Here we emphasize the factors influencing bioremediation, such as microbial interactions and carbon catabolism repression, along with a nuanced view of challenges and limitations. Overall, this review provides a comprehensive perspective on the bioremediation strategies.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1574-1593"},"PeriodicalIF":8.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140874536","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microalgae-based technology is widely utilized in wastewater treatment and resource recovery. However, the practical implementation of microalgae-based technology is hampered by the difficulty in separating microalgae from treated water due to the low density of microalgae. This review is designed to find the current status of the development and utilization of microalgae biogranulation technology for better and more cost-effective wastewater treatment. This review reveals that the current trend of research is geared toward developing microalgae-bacterial granules. Most previous works were focused on studying the effect of operating conditions to improve the efficiency of wastewater treatment using microalgae-bacterial granules. Limited studies have been directed toward optimizing operating conditions to induce the secretion of extracellular polymeric substances (EPSs), which promotes the development of denser microalgae granules with enhanced settling ability. Likewise, studies on the understanding of the EPS role and the interaction between microalgae cells in forming granules are scarce. Furthermore, the majority of current research has been on the cultivation of microalgae-bacteria granules, which limits their application only in wastewater treatment. Cultivation of microalgae granules without bacteria has greater potential because it does not require additional purification and can be used for border applications.
{"title":"Insight into recent advances in microalgae biogranulation in wastewater treatment.","authors":"Syahirah Faraheen Kabir Ahmad, Gobi Kanadasan, Keat Teong Lee, Vel Murugan Vadivelu","doi":"10.1080/07388551.2024.2317785","DOIUrl":"10.1080/07388551.2024.2317785","url":null,"abstract":"<p><p>Microalgae-based technology is widely utilized in wastewater treatment and resource recovery. However, the practical implementation of microalgae-based technology is hampered by the difficulty in separating microalgae from treated water due to the low density of microalgae. This review is designed to find the current status of the development and utilization of microalgae biogranulation technology for better and more cost-effective wastewater treatment. This review reveals that the current trend of research is geared toward developing microalgae-bacterial granules. Most previous works were focused on studying the effect of operating conditions to improve the efficiency of wastewater treatment using microalgae-bacterial granules. Limited studies have been directed toward optimizing operating conditions to induce the secretion of extracellular polymeric substances (EPSs), which promotes the development of denser microalgae granules with enhanced settling ability. Likewise, studies on the understanding of the EPS role and the interaction between microalgae cells in forming granules are scarce. Furthermore, the majority of current research has been on the cultivation of microalgae-bacteria granules, which limits their application only in wastewater treatment. Cultivation of microalgae granules without bacteria has greater potential because it does not require additional purification and can be used for border applications.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1594-1609"},"PeriodicalIF":8.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140130903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-01Epub Date: 2024-05-05DOI: 10.1080/07388551.2024.2336526
Anshuman Mishra, Heui-Soo Kim, Rajender Kumar, Vaibhav Srivastava
Vibrio species pose significant threats worldwide, causing mortalities in aquaculture and infections in humans. Global warming and the emergence of worldwide strains of Vibrio diseases are increasing day by day. Control of Vibrio species requires effective monitoring, diagnosis, and treatment strategies at the global scale. Despite current efforts based on chemical, biological, and mechanical means, Vibrio control management faces limitations due to complicated implementation processes. This review explores the intricacies and challenges of Vibrio-related diseases, including accurate and cost-effective diagnosis and effective control. The global burden due to emerging Vibrio species further complicates management strategies. We propose an innovative integrated technology model that harnesses cutting-edge technologies to address these obstacles. The proposed model incorporates advanced tools, such as biosensing technologies, the Internet of Things (IoT), remote sensing devices, cloud computing, and machine learning. This model offers invaluable insights and supports better decision-making by integrating real-time ecological data and biological phenotype signatures. A major advantage of our approach lies in leveraging cloud-based analytics programs, efficiently extracting meaningful information from vast and complex datasets. Collaborating with data and clinical professionals ensures logical and customized solutions tailored to each unique situation. Aquaculture biotechnology that prioritizes sustainability may have a large impact on human health and the seafood industry. Our review underscores the importance of adopting this model, revolutionizing the prognosis and management of Vibrio-related infections, even under complex circumstances. Furthermore, this model has promising implications for aquaculture and public health, addressing the United Nations Sustainable Development Goals and their development agenda.
{"title":"Advances in <i>Vibrio</i>-related infection management: an integrated technology approach for aquaculture and human health.","authors":"Anshuman Mishra, Heui-Soo Kim, Rajender Kumar, Vaibhav Srivastava","doi":"10.1080/07388551.2024.2336526","DOIUrl":"10.1080/07388551.2024.2336526","url":null,"abstract":"<p><p><i>Vibrio</i> species pose significant threats worldwide, causing mortalities in aquaculture and infections in humans. Global warming and the emergence of worldwide strains <i>of Vibrio</i> diseases are increasing day by day. Control of <i>Vibrio</i> species requires effective monitoring, diagnosis, and treatment strategies at the global scale. Despite current efforts based on chemical, biological, and mechanical means, <i>Vibrio</i> control management faces limitations due to complicated implementation processes. This review explores the intricacies and challenges of <i>Vibrio</i>-related diseases, including accurate and cost-effective diagnosis and effective control. The global burden due to emerging <i>Vibrio</i> species further complicates management strategies. We propose an innovative integrated technology model that harnesses cutting-edge technologies to address these obstacles. The proposed model incorporates advanced tools, such as biosensing technologies, the Internet of Things (IoT), remote sensing devices, cloud computing, and machine learning. This model offers invaluable insights and supports better decision-making by integrating real-time ecological data and biological phenotype signatures. A major advantage of our approach lies in leveraging cloud-based analytics programs, efficiently extracting meaningful information from vast and complex datasets. Collaborating with data and clinical professionals ensures logical and customized solutions tailored to each unique situation. Aquaculture biotechnology that prioritizes sustainability may have a large impact on human health and the seafood industry. Our review underscores the importance of adopting this model, revolutionizing the prognosis and management of <i>Vibrio</i>-related infections, even under complex circumstances. Furthermore, this model has promising implications for aquaculture and public health, addressing the United Nations Sustainable Development Goals and their development agenda.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1610-1637"},"PeriodicalIF":8.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140847233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-28DOI: 10.1080/07388551.2024.2423153
Rohan R Bhujle, Nidhi Nayak, N A Nanje Gowda, Ravi Pandiselvam, Chikkaballapura Krishnappa Sunil
Millets, often overlooked as food crops, have regained potential as promising stable food sources of bioactive compounds to regulate blood sugar levels in the diabetic populace. This comprehensive review delves into various millet varieties, processing methods, and extraction techniques aimed at isolating bioactive compounds. The review elucidates the inhibitory effects of millet-derived bioactive compounds on key enzymes involved in carbohydrate metabolism, such as α-amylase and α-glucosidase. It further explores the relationship between the antibacterial activity of phenols, flavonoids, and anthocyanins in millets and their role in amylase inhibition. In particular, phenols, flavonoids, and proteins found in millets play pivotal roles in inhibiting enzymes responsible for glucose digestion and absorption. However, processing methods can either enhance or reduce the bioactive compounds, thereby influencing enzyme inhibition capacity. Studies underscore the presence of phenolic compounds with notable inhibitory activity in: foxtail, finger, barnyard, and pearl millet varieties. Furthermore, extraction techniques, such as Soxhlet and ultrasonic-assisted extraction, emerge as efficient methods for isolating bioactive compounds, thus enhancing their therapeutic efficacy. This review highlights the challenges in preserving the inhibitory activity of millets during processing and optimizing processing methods to ensure better retention of bioactive compounds. It also emphasizes the utilization of millet as a natural dietary supplement or functional food to manage diabetes and promote overall well-being.
{"title":"A comprehensive review on influence of millet processing on carbohydrate-digesting enzyme inhibitors and implications for diabetes management.","authors":"Rohan R Bhujle, Nidhi Nayak, N A Nanje Gowda, Ravi Pandiselvam, Chikkaballapura Krishnappa Sunil","doi":"10.1080/07388551.2024.2423153","DOIUrl":"https://doi.org/10.1080/07388551.2024.2423153","url":null,"abstract":"<p><p>Millets, often overlooked as food crops, have regained potential as promising stable food sources of bioactive compounds to regulate blood sugar levels in the diabetic populace. This comprehensive review delves into various millet varieties, processing methods, and extraction techniques aimed at isolating bioactive compounds. The review elucidates the inhibitory effects of millet-derived bioactive compounds on key enzymes involved in carbohydrate metabolism, such as α-amylase and α-glucosidase. It further explores the relationship between the antibacterial activity of phenols, flavonoids, and anthocyanins in millets and their role in amylase inhibition. In particular, phenols, flavonoids, and proteins found in millets play pivotal roles in inhibiting enzymes responsible for glucose digestion and absorption. However, processing methods can either enhance or reduce the bioactive compounds, thereby influencing enzyme inhibition capacity. Studies underscore the presence of phenolic compounds with notable inhibitory activity in: foxtail, finger, barnyard, and pearl millet varieties. Furthermore, extraction techniques, such as Soxhlet and ultrasonic-assisted extraction, emerge as efficient methods for isolating bioactive compounds, thus enhancing their therapeutic efficacy. This review highlights the challenges in preserving the inhibitory activity of millets during processing and optimizing processing methods to ensure better retention of bioactive compounds. It also emphasizes the utilization of millet as a natural dietary supplement or functional food to manage diabetes and promote overall well-being.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-23"},"PeriodicalIF":8.1,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142749633","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1080/07388551.2024.2425989
Min Li, Xue Yang, Di Zhang, Yuan Tian, Zi-Chang Jia, Wen-Hui Liu, Rui-Rui Hao, Yun-Sheng Chen, Mo-Xian Chen, Ying-Gao Liu
The biomolecular condensates (BCs) formed by proteins through phase separation provide the necessary space and raw materials for the orderly progression of cellular activities, and on this basis, various membraneless organelles (MLOs) are formed. The occurrence of eukaryotic phase separation is driven by multivalent interactions from intrinsically disordered regions (IDRs) and/or specific protein/nucleic acid binding domains and is regulated by various environmental factors. In plant and animal cells, the MLOs involved in gene expression regulation, stress response, and mitotic control display similar functions and mechanisms. In contrast, the phase separation related to reproductive development and immune regulation differs significantly between the two kingdoms owing to their distinct cell structures and nutritional patterns. In addition, animals and plants each exhibit unique protein phase separation activities, such as neural regulation and light signal response. By comparing the similarities and differences in the formation mechanism and functional regulation of known protein phase separation, we elucidated its importance in the evolution, differentiation, and environmental adaptation of both animals and plants. The significance of studying protein phase separation for enhancing biological quality of life has been further emphasized.
{"title":"A story of two kingdoms: unravelling the intricacies of protein phase separation in plants and animals.","authors":"Min Li, Xue Yang, Di Zhang, Yuan Tian, Zi-Chang Jia, Wen-Hui Liu, Rui-Rui Hao, Yun-Sheng Chen, Mo-Xian Chen, Ying-Gao Liu","doi":"10.1080/07388551.2024.2425989","DOIUrl":"https://doi.org/10.1080/07388551.2024.2425989","url":null,"abstract":"<p><p>The biomolecular condensates (BCs) formed by proteins through phase separation provide the necessary space and raw materials for the orderly progression of cellular activities, and on this basis, various membraneless organelles (MLOs) are formed. The occurrence of eukaryotic phase separation is driven by multivalent interactions from intrinsically disordered regions (IDRs) and/or specific protein/nucleic acid binding domains and is regulated by various environmental factors. In plant and animal cells, the MLOs involved in gene expression regulation, stress response, and mitotic control display similar functions and mechanisms. In contrast, the phase separation related to reproductive development and immune regulation differs significantly between the two kingdoms owing to their distinct cell structures and nutritional patterns. In addition, animals and plants each exhibit unique protein phase separation activities, such as neural regulation and light signal response. By comparing the similarities and differences in the formation mechanism and functional regulation of known protein phase separation, we elucidated its importance in the evolution, differentiation, and environmental adaptation of both animals and plants. The significance of studying protein phase separation for enhancing biological quality of life has been further emphasized.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-21"},"PeriodicalIF":8.1,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142726727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-24DOI: 10.1080/07388551.2024.2423152
Su Yan, Jia-Jia Ma, Dan Wu, Gui-Li Huang, Xiao-Wei Yu, Yu-Ning Wang
Agricultural byproducts generally contain abundant bioactive compounds (e.g., cellulose/hemicellulose, phenolic compounds (PCs), and dietary fibers (DFs)), but most of them are neglected and underutilized. Owing to the complicated and rigid structures of agricultural byproducts, a considerable amount of bioactive compounds are entrapped in the polymer matrix, impeding their further development and utilization. In recent years, the prominent performance of cellulolytic fungi to grow and degrade agricultural byproducts has been applied to achieve efficient biotransformation of byproducts to high-value compounds, which is a green and sustainable strategy for the reutilization of agricultural byproducts. This review comprehensively summarizes recent progress in the value-added biotransformation of agricultural byproducts by cellulolytic fungi, including (1) direct utilization of agricultural byproducts for biochemicals and bioethanol production via a consolidated bioprocessing, (2) recovery and biotransformation of bounded PCs from agricultural byproducts for higher bioactive properties, as well as (3) modification and conversion of insoluble DF from agricultural byproducts to produce functional soluble DF. The functional enzymes, potential mechanisms, and metabolic pathways involved are emphasized. Moreover, promising advantages and current bottlenecks using cellulolytic fungi have also been elucidated, shedding further perspectives for sustainable and efficient reutilization of agricultural byproducts by cellulolytic fungi.
{"title":"Value-added biotransformation of agricultural byproducts by cellulolytic fungi: a review.","authors":"Su Yan, Jia-Jia Ma, Dan Wu, Gui-Li Huang, Xiao-Wei Yu, Yu-Ning Wang","doi":"10.1080/07388551.2024.2423152","DOIUrl":"https://doi.org/10.1080/07388551.2024.2423152","url":null,"abstract":"<p><p>Agricultural byproducts generally contain abundant bioactive compounds (e.g., cellulose/hemicellulose, phenolic compounds (PCs), and dietary fibers (DFs)), but most of them are neglected and underutilized. Owing to the complicated and rigid structures of agricultural byproducts, a considerable amount of bioactive compounds are entrapped in the polymer matrix, impeding their further development and utilization. In recent years, the prominent performance of cellulolytic fungi to grow and degrade agricultural byproducts has been applied to achieve efficient biotransformation of byproducts to high-value compounds, which is a green and sustainable strategy for the reutilization of agricultural byproducts. This review comprehensively summarizes recent progress in the value-added biotransformation of agricultural byproducts by cellulolytic fungi, including (1) direct utilization of agricultural byproducts for biochemicals and bioethanol production via a consolidated bioprocessing, (2) recovery and biotransformation of bounded PCs from agricultural byproducts for higher bioactive properties, as well as (3) modification and conversion of insoluble DF from agricultural byproducts to produce functional soluble DF. The functional enzymes, potential mechanisms, and metabolic pathways involved are emphasized. Moreover, promising advantages and current bottlenecks using cellulolytic fungi have also been elucidated, shedding further perspectives for sustainable and efficient reutilization of agricultural byproducts by cellulolytic fungi.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-20"},"PeriodicalIF":8.1,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-24DOI: 10.1080/07388551.2024.2424362
Carlos E Costa, Aloia Romaní, Lucília Domingues
Resveratrol is an antioxidant abundant in plants like grapes and peanuts and has garnered significant attention for its potential therapeutic applications. This review explores its chemical attributes, stability, and solubility, influencing its diverse applications and bioavailability. Resveratrol's multifaceted therapeutic roles encompass: antioxidant, cardioprotective, anti-inflammatory, neuroprotective, anti-aging, and anticancer properties. While traditionally studied in preclinical settings, a surge in clinical trials underscores resveratrol's promise for human health. Over 250 recent clinical trials investigate its effects alone and in combination with other compounds. Commercially utilized in food, cosmetics, supplements, and pharmaceuticals, the resveratrol market is expanding, driven by microbial fermentation. Microbes offer advantages over plant extraction and chemical synthesis, providing cost-effective, pure, and sustainable production. Microbial biosynthesis can be attained from carbon sources, such as glucose or xylose, among others, which can be obtained from renewable resources or agro-industrial wastes. While Saccharomyces cerevisiae has been the most used host, non-conventional yeasts like Yarrowia lipolytica and bacteria like Escherichia coli have also demonstrated potential. Genetic modifications such as increasing acetyl-CoA/malonyl-CoA pools, boosting the shikimate pathway, or multi-copy expression of pathway genes, allied to the optimization of fermentation strategies have been promising in increasing titers. Microbial biosynthesis of resveratrol aligns with the shift toward sustainable and renewable bio-based compounds, exemplifying a circular bioeconomy. Concluding, microbial fermentation presents a promising avenue for efficient resveratrol production, driven by genetic engineering, pathway optimization, and fermentation strategies. These advances hold the key to unlocking the potential of resveratrol for diverse therapeutic applications, contributing to a greener and sustainable future.
{"title":"Overview of resveratrol properties, applications, and advances in microbial precision fermentation.","authors":"Carlos E Costa, Aloia Romaní, Lucília Domingues","doi":"10.1080/07388551.2024.2424362","DOIUrl":"https://doi.org/10.1080/07388551.2024.2424362","url":null,"abstract":"<p><p>Resveratrol is an antioxidant abundant in plants like grapes and peanuts and has garnered significant attention for its potential therapeutic applications. This review explores its chemical attributes, stability, and solubility, influencing its diverse applications and bioavailability. Resveratrol's multifaceted therapeutic roles encompass: antioxidant, cardioprotective, anti-inflammatory, neuroprotective, anti-aging, and anticancer properties. While traditionally studied in preclinical settings, a surge in clinical trials underscores resveratrol's promise for human health. Over 250 recent clinical trials investigate its effects alone and in combination with other compounds. Commercially utilized in food, cosmetics, supplements, and pharmaceuticals, the resveratrol market is expanding, driven by microbial fermentation. Microbes offer advantages over plant extraction and chemical synthesis, providing cost-effective, pure, and sustainable production. Microbial biosynthesis can be attained from carbon sources, such as glucose or xylose, among others, which can be obtained from renewable resources or agro-industrial wastes. While <i>Saccharomyces cerevisiae</i> has been the most used host, non-conventional yeasts like <i>Yarrowia lipolytica</i> and bacteria like <i>Escherichia coli</i> have also demonstrated potential. Genetic modifications such as increasing acetyl-CoA/malonyl-CoA pools, boosting the shikimate pathway, or multi-copy expression of pathway genes, allied to the optimization of fermentation strategies have been promising in increasing titers. Microbial biosynthesis of resveratrol aligns with the shift toward sustainable and renewable bio-based compounds, exemplifying a circular bioeconomy. Concluding, microbial fermentation presents a promising avenue for efficient resveratrol production, driven by genetic engineering, pathway optimization, and fermentation strategies. These advances hold the key to unlocking the potential of resveratrol for diverse therapeutic applications, contributing to a greener and sustainable future.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-17"},"PeriodicalIF":8.1,"publicationDate":"2024-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142709330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}