首页 > 最新文献

Critical Reviews in Biotechnology最新文献

英文 中文
Potential anti-aging applications of microbial-derived surfactantsin cosmetic formulations. 微生物衍生表面活性剂在化妆品配方中的潜在抗衰老应用。
IF 9 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-18 DOI: 10.1080/07388551.2024.2393420
Amir Mohammad Bagheri,Masoud Mirzahashemi,Soodeh Salarpour,Yasmin Dehghnnoudeh,Ibrahim M Banat,Mandana Ohadi,Gholamreza Dehghannoudeh
The skin aging process is a complex interaction of genetic, epigenetic, and environmental factors, such as chemical pollution and UV radiation. There is growing evidence that biosurfactants, especially those of microbial origin, have distinct age-supportive effects through different mechanisms, such as stimulation of fibroblast growth, high antioxidant capacities, and favorable anti-inflammatory properties. With a growing financial contribution of more than 15 m€per year, microbial surfactants (MSs) display unique biological effects on the skin including improved cell mobility, better nutrient access, and facilitated cellular growth under harsh conditions. Their biodegradable nature, unusual surface activity, good safety profile and tolerance to high temperature and pH variations widen their potential spectrum in biomedical and pharmaceutical applications. MSs typically have lower critical micelle concentration (CMC) levels than chemical surfactants enhancing their effectiveness. As natural surfactants, MSs are considered possible "green" alternatives to synthetic surfactants with better biodegradability, sustainability, and beneficial functional properties. This review therefore aims to explore the potential impacts of MSs as anti-aging ingredients.
皮肤老化过程是遗传、表观遗传和环境因素(如化学污染和紫外线辐射)之间复杂的相互作用。越来越多的证据表明,生物表面活性剂,尤其是源自微生物的生物表面活性剂,通过不同的机制具有独特的抗衰老作用,如刺激成纤维细胞生长、高抗氧化能力和良好的抗炎特性。微生物表面活性剂(MSs)对皮肤具有独特的生物效应,包括改善细胞的流动性、更好地获取营养物质以及在恶劣条件下促进细胞生长,每年的经济效益超过 1500 万欧元。微生物表面活性剂的生物降解性、非同寻常的表面活性、良好的安全性以及对高温和 pH 值变化的耐受性,拓宽了其在生物医学和制药领域的应用前景。与化学表面活性剂相比,MS 的临界胶束浓度(CMC)通常较低,从而提高了其功效。作为天然表面活性剂,MSs 被认为是合成表面活性剂的 "绿色 "替代品,具有更好的生物降解性、可持续性和有益的功能特性。因此,本综述旨在探讨 MSs 作为抗衰老成分的潜在影响。
{"title":"Potential anti-aging applications of microbial-derived surfactantsin cosmetic formulations.","authors":"Amir Mohammad Bagheri,Masoud Mirzahashemi,Soodeh Salarpour,Yasmin Dehghnnoudeh,Ibrahim M Banat,Mandana Ohadi,Gholamreza Dehghannoudeh","doi":"10.1080/07388551.2024.2393420","DOIUrl":"https://doi.org/10.1080/07388551.2024.2393420","url":null,"abstract":"The skin aging process is a complex interaction of genetic, epigenetic, and environmental factors, such as chemical pollution and UV radiation. There is growing evidence that biosurfactants, especially those of microbial origin, have distinct age-supportive effects through different mechanisms, such as stimulation of fibroblast growth, high antioxidant capacities, and favorable anti-inflammatory properties. With a growing financial contribution of more than 15 m€per year, microbial surfactants (MSs) display unique biological effects on the skin including improved cell mobility, better nutrient access, and facilitated cellular growth under harsh conditions. Their biodegradable nature, unusual surface activity, good safety profile and tolerance to high temperature and pH variations widen their potential spectrum in biomedical and pharmaceutical applications. MSs typically have lower critical micelle concentration (CMC) levels than chemical surfactants enhancing their effectiveness. As natural surfactants, MSs are considered possible \"green\" alternatives to synthetic surfactants with better biodegradability, sustainability, and beneficial functional properties. This review therefore aims to explore the potential impacts of MSs as anti-aging ingredients.","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":"29 1","pages":"1-22"},"PeriodicalIF":9.0,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142268669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in the development of phage-mediated cyanobacterial cell lysis. 噬菌体介导的蓝藻细胞裂解的研发进展。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-16 DOI: 10.1080/07388551.2024.2399530
Haojie Jin, Wanzhao Ge, Mengzhe Li, Yan Wang, Yanjing Jiang, Jiaqi Zhang, Yike Jing, Yigang Tong, Yujie Fu

Cyanobacteria, the only oxygenic photoautotrophs among prokaryotes, are developing as both carbon building blocks and energetic self-supported chassis for the generation of various bioproducts. However, one of the challenges to optimize it as a more sustainable platform is how to release intracellular bioproducts for an easier downstream biorefinery process. To date, the major method used for cyanobacterial cell lysis is based on mechanical force, which is energy-intensive and economically unsustainable. Phage-mediated bacterial cell lysis is species-specific and highly efficient and can be conducted under mild conditions; therefore, it has been intensively studied as a bacterial cell lysis weapon. In contrast to heterotrophic bacteria, biological cell lysis studies in cyanobacteria are lagging behind. In this study, we reviewed cyanobacterial cell envelope features that could affect cell strength and elicited a thorough presentation of the necessary phage lysin components for efficient cell lysis. We then summarized all bioengineering manipulated pipelines for lysin component optimization and further revealed the challenges for each intent-oriented application in cyanobacterial cell lysis. In addition to applied biotechnology usage, the significance of phage-mediated cyanobacterial cell lysis could also advance sophisticated biochemical studies and promote biocontrol of toxic cyanobacteria blooms.

蓝藻是原核生物中唯一的含氧光能自养型生物,它既是碳构件,也是生成各种生物产品的能量自养底盘。然而,要将其优化为一个更具可持续性的平台,面临的挑战之一是如何释放胞内生物产品,以便于下游生物精炼工艺。迄今为止,蓝藻细胞裂解的主要方法是基于机械力,这种方法能源密集,在经济上不可持续。噬菌体介导的细菌细胞裂解具有物种特异性和高效性,并且可以在温和的条件下进行;因此,人们将其作为细菌细胞裂解武器进行了深入研究。与异养菌相比,蓝藻的生物细胞裂解研究则相对滞后。在本研究中,我们回顾了可能影响细胞强度的蓝藻细胞包膜特征,并全面介绍了高效细胞裂解所需的噬菌体溶酶成分。然后,我们总结了所有用于优化溶菌素成分的生物工程操作管道,并进一步揭示了蓝藻细胞裂解中每种以目的为导向的应用所面临的挑战。除了应用生物技术之外,噬菌体介导的蓝藻细胞裂解还能推动复杂的生物化学研究,促进有毒蓝藻藻华的生物控制。
{"title":"Advances in the development of phage-mediated cyanobacterial cell lysis.","authors":"Haojie Jin, Wanzhao Ge, Mengzhe Li, Yan Wang, Yanjing Jiang, Jiaqi Zhang, Yike Jing, Yigang Tong, Yujie Fu","doi":"10.1080/07388551.2024.2399530","DOIUrl":"https://doi.org/10.1080/07388551.2024.2399530","url":null,"abstract":"<p><p>Cyanobacteria, the only oxygenic photoautotrophs among prokaryotes, are developing as both carbon building blocks and energetic self-supported chassis for the generation of various bioproducts. However, one of the challenges to optimize it as a more sustainable platform is how to release intracellular bioproducts for an easier downstream biorefinery process. To date, the major method used for cyanobacterial cell lysis is based on mechanical force, which is energy-intensive and economically unsustainable. Phage-mediated bacterial cell lysis is species-specific and highly efficient and can be conducted under mild conditions; therefore, it has been intensively studied as a bacterial cell lysis weapon. In contrast to heterotrophic bacteria, biological cell lysis studies in cyanobacteria are lagging behind. In this study, we reviewed cyanobacterial cell envelope features that could affect cell strength and elicited a thorough presentation of the necessary phage lysin components for efficient cell lysis. We then summarized all bioengineering manipulated pipelines for lysin component optimization and further revealed the challenges for each intent-oriented application in cyanobacterial cell lysis. In addition to applied biotechnology usage, the significance of phage-mediated cyanobacterial cell lysis could also advance sophisticated biochemical studies and promote biocontrol of toxic cyanobacteria blooms.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-17"},"PeriodicalIF":8.1,"publicationDate":"2024-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281513","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in microbial production of geraniol: from metabolic engineering to potential industrial applications. 微生物生产香叶醇的进展:从代谢工程到潜在的工业应用。
IF 9 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-12 DOI: 10.1080/07388551.2024.2391881
Xun Wang,Xinyi Zhang,Jia Zhang,Yujunjie Zhou,Fei Wang,Zhiguo Wang,Xun Li
Geraniol, an acyclic monoterpene alcohol, has significant potential applications in various fields, including: food, cosmetics, biofuels, and pharmaceuticals. However, the current sources of geraniol mainly include plant tissue extraction or chemical synthesis, which are unsustainable and suffer severely from high energy consumption and severe environmental problems. The process of microbial production of geraniol has recently undergone vigorous development. Particularly, the sustainable construction of recombinant Escherichia coli (13.2 g/L) and Saccharomyces cerevisiae (5.5 g/L) laid a solid foundation for the microbial production of geraniol. In this review, recent advances in the development of geraniol-producing strains, including: metabolic pathway construction, key enzyme improvement, genetic modification strategies, and cytotoxicity alleviation, are critically summarized. Furthermore, the key challenges in scaling up geraniol production and future perspectives for the development of robust geraniol-producing strains are suggested. This review provides theoretical guidance for the industrial production of geraniol using microbial cell factories.
香叶醇是一种无环单萜醇,在食品、化妆品、生物燃料和制药等多个领域都有重要的潜在应用。然而,目前的香叶醇来源主要包括植物组织提取或化学合成,这两种方法都是不可持续的,而且存在严重的高能耗和严重的环境问题。近年来,微生物生产香叶醇的工艺得到了蓬勃发展。特别是重组大肠杆菌(13.2 克/升)和酿酒酵母(5.5 克/升)的可持续构建为香叶醇的微生物生产奠定了坚实的基础。在这篇综述中,对最近在开发香叶醇生产菌株方面取得的进展进行了批判性总结,包括:代谢途径构建、关键酶改良、基因修饰策略和细胞毒性缓解。此外,还提出了扩大香叶醇生产规模所面临的主要挑战,以及开发稳健的香叶醇生产菌株的未来前景。本综述为利用微生物细胞工厂进行香叶醇的工业化生产提供了理论指导。
{"title":"Advances in microbial production of geraniol: from metabolic engineering to potential industrial applications.","authors":"Xun Wang,Xinyi Zhang,Jia Zhang,Yujunjie Zhou,Fei Wang,Zhiguo Wang,Xun Li","doi":"10.1080/07388551.2024.2391881","DOIUrl":"https://doi.org/10.1080/07388551.2024.2391881","url":null,"abstract":"Geraniol, an acyclic monoterpene alcohol, has significant potential applications in various fields, including: food, cosmetics, biofuels, and pharmaceuticals. However, the current sources of geraniol mainly include plant tissue extraction or chemical synthesis, which are unsustainable and suffer severely from high energy consumption and severe environmental problems. The process of microbial production of geraniol has recently undergone vigorous development. Particularly, the sustainable construction of recombinant Escherichia coli (13.2 g/L) and Saccharomyces cerevisiae (5.5 g/L) laid a solid foundation for the microbial production of geraniol. In this review, recent advances in the development of geraniol-producing strains, including: metabolic pathway construction, key enzyme improvement, genetic modification strategies, and cytotoxicity alleviation, are critically summarized. Furthermore, the key challenges in scaling up geraniol production and future perspectives for the development of robust geraniol-producing strains are suggested. This review provides theoretical guidance for the industrial production of geraniol using microbial cell factories.","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":"19 1","pages":"1-16"},"PeriodicalIF":9.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252375","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in metabolic engineering for enhanced acetyl-CoA availability in yeast. 提高酵母乙酰-CoA 利用率的代谢工程研究进展。
IF 9 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-12 DOI: 10.1080/07388551.2024.2399542
Yuanyuan Sha,Mianshen Ge,Minrui Lu,Zhaoxian Xu,Rui Zhai,Mingjie Jin
Acetyl-CoA is an intermediate metabolite in cellular central metabolism. It's a precursor for various valuable commercial products, including: terpenoids, fatty acids, and polyketides. With the advancement of metabolic and synthetic biology tools, microbial cell factories have been constructed for the efficient synthesis of acetyl-CoA and derivatives, with the Saccharomyces cerevisiae and Yarrowia lipolytica as two prominent chassis. This review summarized the recent developments in the biosynthetic pathways and metabolic engineering approaches for acetyl-CoA and its derivatives synthesis in these two yeasts. First, the metabolic routes involved in the biosynthesis of acetyl-CoA and derived products were outlined. Then, the advancements in metabolic engineering strategies for channeling acetyl-CoA toward the desired products were summarized, with particular emphasis on: enhancing metabolic flux in different organelles, refining precursor CoA synthesis, optimizing substrate utilization, and modifying protein acetylation level. Finally, future developments in advancing the metabolic engineering strategies for acetyl-CoA and related derivatives synthesis, including: reducing CO2 emissions, dynamically regulating metabolic pathways, and exploring the regulatory functions between acetyl-CoA levels and protein acetylation, are highlighted. This review provided new insights into regulating acetyl-CoA synthesis to create more effective microbial cell factories for bio-manufacturing.
乙酰-CoA 是细胞中心代谢的中间代谢产物。它是各种有价值的商业产品的前体,包括:萜类化合物、脂肪酸和多酮类化合物。随着代谢和合成生物学工具的进步,人们已经构建了高效合成乙酰-CoA 及其衍生物的微生物细胞工厂,其中酿酒酵母和脂肪分解亚罗菌是两个突出的底盘。本综述总结了这两种酵母合成乙酰-CoA 及其衍生物的生物合成途径和代谢工程方法的最新进展。首先,概述了乙酰-CoA 及其衍生物的生物合成代谢途径。然后,总结了将乙酰-CoA 引向所需产物的代谢工程策略的进展,重点是:提高不同细胞器中的代谢通量、完善前体 CoA 合成、优化底物利用以及改变蛋白质乙酰化水平。最后,重点介绍了推进乙酰-CoA 及相关衍生物合成代谢工程策略的未来发展,包括:减少二氧化碳排放、动态调节代谢途径以及探索乙酰-CoA 水平与蛋白质乙酰化之间的调节功能。这篇综述为调控乙酰-CoA 合成以创建更有效的生物制造微生物细胞工厂提供了新的见解。
{"title":"Advances in metabolic engineering for enhanced acetyl-CoA availability in yeast.","authors":"Yuanyuan Sha,Mianshen Ge,Minrui Lu,Zhaoxian Xu,Rui Zhai,Mingjie Jin","doi":"10.1080/07388551.2024.2399542","DOIUrl":"https://doi.org/10.1080/07388551.2024.2399542","url":null,"abstract":"Acetyl-CoA is an intermediate metabolite in cellular central metabolism. It's a precursor for various valuable commercial products, including: terpenoids, fatty acids, and polyketides. With the advancement of metabolic and synthetic biology tools, microbial cell factories have been constructed for the efficient synthesis of acetyl-CoA and derivatives, with the Saccharomyces cerevisiae and Yarrowia lipolytica as two prominent chassis. This review summarized the recent developments in the biosynthetic pathways and metabolic engineering approaches for acetyl-CoA and its derivatives synthesis in these two yeasts. First, the metabolic routes involved in the biosynthesis of acetyl-CoA and derived products were outlined. Then, the advancements in metabolic engineering strategies for channeling acetyl-CoA toward the desired products were summarized, with particular emphasis on: enhancing metabolic flux in different organelles, refining precursor CoA synthesis, optimizing substrate utilization, and modifying protein acetylation level. Finally, future developments in advancing the metabolic engineering strategies for acetyl-CoA and related derivatives synthesis, including: reducing CO2 emissions, dynamically regulating metabolic pathways, and exploring the regulatory functions between acetyl-CoA levels and protein acetylation, are highlighted. This review provided new insights into regulating acetyl-CoA synthesis to create more effective microbial cell factories for bio-manufacturing.","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":"192 1","pages":"1-19"},"PeriodicalIF":9.0,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142252374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synthesis of C-N bonds by nicotinamide-dependent oxidoreductase: an overview. 烟酰胺依赖性氧化还原酶合成 C-N 键:概述。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-04 DOI: 10.1080/07388551.2024.2390082
Tianfu Wu, Wanqing Wei, Changzheng Gao, Jing Wu, Cong Gao, Xiulai Chen, Liming Liu, Wei Song

Compounds containing chiral C-N bonds play a vital role in the composition of biologically active natural products and small pharmaceutical molecules. Therefore, the development of efficient and convenient methods for synthesizing compounds containing chiral C-N bonds is a crucial area of research. Nicotinamide-dependent oxidoreductases (NDOs) emerge as promising biocatalysts for asymmetric synthesis of chiral C-N bonds due to their mild reaction conditions, exceptional stereoselectivity, high atom economy, and environmentally friendly nature. This review aims to present the structural characteristics and catalytic mechanisms of various NDOs, including imine reductases/ketimine reductases, reductive aminases, EneIRED, and amino acid dehydrogenases. Additionally, the review highlights protein engineering strategies employed to modify the stereoselectivity, substrate specificity, and cofactor preference of NDOs. Furthermore, the applications of NDOs in synthesizing essential medicinal chemicals, such as noncanonical amino acids and chiral amine compounds, are extensively examined. Finally, the review outlines future perspectives by addressing challenges and discussing the potential of utilizing NDOs to establish efficient biosynthesis platforms for C-N bond synthesis. In conclusion, NDOs provide an economical, efficient, and environmentally friendly toolbox for asymmetric synthesis of C-N bonds, thus contributing significantly to the field of pharmaceutical chemical development.

含有手性 C-N 键的化合物在具有生物活性的天然产物和医药小分子的组成中发挥着重要作用。因此,开发高效便捷的方法来合成含有手性 C-N 键的化合物是一个至关重要的研究领域。烟酰胺依赖性氧化还原酶(NDOs)反应条件温和,具有优异的立体选择性、高原子经济性和环境友好性,是手性 C-N 键不对称合成的理想生物催化剂。本综述旨在介绍各种 NDO 的结构特征和催化机理,包括亚胺还原酶/酮亚胺还原酶、还原性胺酶、EneIRED 和氨基酸脱氢酶。此外,综述还重点介绍了为改变 NDOs 的立体选择性、底物特异性和辅助因子偏好而采用的蛋白质工程策略。此外,还广泛探讨了 NDOs 在合成非典型氨基酸和手性胺化合物等基本医药化学品方面的应用。最后,本综述通过应对挑战和讨论利用 NDOs 建立 C-N 键合成的高效生物合成平台的潜力,概述了未来的发展前景。总之,NDO 为 C-N 键的不对称合成提供了一个经济、高效和环保的工具箱,从而为药物化学开发领域做出了重大贡献。
{"title":"Synthesis of C-N bonds by nicotinamide-dependent oxidoreductase: an overview.","authors":"Tianfu Wu, Wanqing Wei, Changzheng Gao, Jing Wu, Cong Gao, Xiulai Chen, Liming Liu, Wei Song","doi":"10.1080/07388551.2024.2390082","DOIUrl":"https://doi.org/10.1080/07388551.2024.2390082","url":null,"abstract":"<p><p>Compounds containing chiral C-N bonds play a vital role in the composition of biologically active natural products and small pharmaceutical molecules. Therefore, the development of efficient and convenient methods for synthesizing compounds containing chiral C-N bonds is a crucial area of research. Nicotinamide-dependent oxidoreductases (NDOs) emerge as promising biocatalysts for asymmetric synthesis of chiral C-N bonds due to their mild reaction conditions, exceptional stereoselectivity, high atom economy, and environmentally friendly nature. This review aims to present the structural characteristics and catalytic mechanisms of various NDOs, including imine reductases/ketimine reductases, reductive aminases, EneIRED, and amino acid dehydrogenases. Additionally, the review highlights protein engineering strategies employed to modify the stereoselectivity, substrate specificity, and cofactor preference of NDOs. Furthermore, the applications of NDOs in synthesizing essential medicinal chemicals, such as noncanonical amino acids and chiral amine compounds, are extensively examined. Finally, the review outlines future perspectives by addressing challenges and discussing the potential of utilizing NDOs to establish efficient biosynthesis platforms for C-N bond synthesis. In conclusion, NDOs provide an economical, efficient, and environmentally friendly toolbox for asymmetric synthesis of C-N bonds, thus contributing significantly to the field of pharmaceutical chemical development.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-25"},"PeriodicalIF":8.1,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142125086","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Valorization of dragon fruit waste to value-added bioproducts and formulations: A review. 火龙果废料的增值生物产品和配方:综述。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2023-09-24 DOI: 10.1080/07388551.2023.2254930
Manikant Tripathi, Deepti Diwan, Amritesh Chandra Shukla, James Gaffey, Neelam Pathak, Kavya Dashora, Ashok Pandey, Minaxi Sharma, Sanjay Guleria, Sunita Varjani, Quang D Nguyen, Vijai K Gupta

Owing to the increasing worldwide population explosion, managing waste generated from the food sector has become a cross-cutting issue globally, leading to environmental, economic, and social issues. Circular economy-inspired waste valorization approaches have been increasing steadily, generating new business opportunities developing valuable bioproducts using food waste, especially fruit wastes, that may have several applications in energy-food-pharma sectors. Dragon fruit waste is one such waste resource, which is rich in several value-added chemicals and oils, and can be a renewable resource to produce several value-added compounds of potential applications in different industries. Pretreatment and extraction processes in biorefineries are important strategies for recovering value-added biomolecules. There are different methods of valorization, including green extractions and biological conversion approaches. However, microbe-based conversion is one of the advanced technologies for valorizing dragon fruit waste into bioethanol, bioactive products, pharmaceuticals, and other valued products by reusing or recycling them. This state-of-the-art review briefly overviews the dragon fruit waste management strategies and advanced eco-friendly and cost-effective valorization technologies. Furthermore, various applications of different valuable bioactive components obtained from dragon fruit waste have been critically discussed concerning various industrial sectors. Several industrial sectors, such as food, pharmaceuticals, and biofuels, have been critically reviewed in detail.

由于全球人口爆炸性增长,管理食品部门产生的废物已成为全球一个贯穿各领域的问题,导致环境、经济和社会问题。循环经济启发的废物定价方法一直在稳步增加,创造了新的商业机会,利用食物垃圾,特别是水果垃圾开发有价值的生物产品,这些产品可能在能源、食品和制药行业有多种应用。火龙果废料就是这样一种废料资源,它富含多种增值化学品和油脂,可以作为可再生资源生产多种增值化合物,在不同行业具有潜在应用。生物炼制中的预处理和提取过程是回收增值生物分子的重要策略。有不同的估价方法,包括绿色提取和生物转化方法。然而,基于微生物的转化是通过重复使用或回收将火龙果废料转化为生物乙醇、生物活性产品、药品和其他有价值产品的先进技术之一。这篇最新综述简要概述了火龙果废物管理策略和先进的环保和成本效益评估技术。此外,从火龙果废料中获得的不同有价值的生物活性成分在各个工业部门的各种应用也进行了批判性的讨论。对食品、制药和生物燃料等几个工业部门进行了详细的审查。
{"title":"Valorization of dragon fruit waste to value-added bioproducts and formulations: A review.","authors":"Manikant Tripathi, Deepti Diwan, Amritesh Chandra Shukla, James Gaffey, Neelam Pathak, Kavya Dashora, Ashok Pandey, Minaxi Sharma, Sanjay Guleria, Sunita Varjani, Quang D Nguyen, Vijai K Gupta","doi":"10.1080/07388551.2023.2254930","DOIUrl":"10.1080/07388551.2023.2254930","url":null,"abstract":"<p><p>Owing to the increasing worldwide population explosion, managing waste generated from the food sector has become a cross-cutting issue globally, leading to environmental, economic, and social issues. Circular economy-inspired waste valorization approaches have been increasing steadily, generating new business opportunities developing valuable bioproducts using food waste, especially fruit wastes, that may have several applications in energy-food-pharma sectors. Dragon fruit waste is one such waste resource, which is rich in several value-added chemicals and oils, and can be a renewable resource to produce several value-added compounds of potential applications in different industries. Pretreatment and extraction processes in biorefineries are important strategies for recovering value-added biomolecules. There are different methods of valorization, including green extractions and biological conversion approaches. However, microbe-based conversion is one of the advanced technologies for valorizing dragon fruit waste into bioethanol, bioactive products, pharmaceuticals, and other valued products by reusing or recycling them. This state-of-the-art review briefly overviews the dragon fruit waste management strategies and advanced eco-friendly and cost-effective valorization technologies. Furthermore, various applications of different valuable bioactive components obtained from dragon fruit waste have been critically discussed concerning various industrial sectors. Several industrial sectors, such as food, pharmaceuticals, and biofuels, have been critically reviewed in detail.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1061-1079"},"PeriodicalIF":8.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41104764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diversity and regioselectivity of O-methyltransferases catalyzing the formation of O-methylated flavonoids. 催化o -甲基化黄酮形成的o -甲基转移酶的多样性和区域选择性。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2023-11-30 DOI: 10.1080/07388551.2023.2280755
Juan Wang, Ning Liao, Guanwen Liu, Yinghui Li, Fengqin Xu, Junling Shi

Flavonoids and their methylated derivatives have immense market potential in the food and biomedical industries due to their multiple beneficial effects, such as antimicrobial, anti-inflammatory, and anticancer activities. The biological synthesis of flavonoids and their derivatives is often accomplished via the use of genetically modified microorganisms to ensure large-scale production. Therefore, it is pivotal to understand the properties of O-methyltransferases (OMTs) that mediate the methylation of flavonoids. However, the properties of these OMTs are governed by their: sources, substrate specificity, amino acid residues in the active sites, and the intricate mechanism. In order to obtain a clue for the selection of suitable OMTs for the biosynthesis of a target methylated flavonoid, we made a comprehensive review of the currently reported results, with a particular focus on their comparative regioselectivity for different flavonoid substrates. Additionally, the possible mechanisms for the diversity of this class of enzymes were explored using molecular simulation technology. Finally, major gaps in our understanding and areas for future studies were discussed. The findings of this study may be useful in selecting genes that encode OMTs and designing enzyme-based processes for synthesizing O-methylated flavonoids.

黄酮类化合物及其甲基化衍生物具有抗菌、抗炎、抗癌等多种功效,在食品和生物医药领域具有巨大的市场潜力。类黄酮及其衍生物的生物合成通常是通过使用转基因微生物来确保大规模生产。因此,了解介导类黄酮甲基化的o -甲基转移酶(OMTs)的特性是至关重要的。然而,这些omt的性质取决于它们的来源、底物特异性、活性位点的氨基酸残基以及复杂的机制。为了获得选择合适的omt用于目标甲基化类黄酮生物合成的线索,我们对目前报道的结果进行了全面的回顾,特别关注它们对不同类黄酮底物的比较区域选择性。此外,利用分子模拟技术探讨了该类酶多样性的可能机制。最后,讨论了我们在认识上的主要差距和未来研究的领域。该研究结果可能有助于选择编码omt的基因和设计基于酶的合成o -甲基化黄酮类化合物的过程。
{"title":"Diversity and regioselectivity of <i>O</i>-methyltransferases catalyzing the formation of <i>O</i>-methylated flavonoids.","authors":"Juan Wang, Ning Liao, Guanwen Liu, Yinghui Li, Fengqin Xu, Junling Shi","doi":"10.1080/07388551.2023.2280755","DOIUrl":"10.1080/07388551.2023.2280755","url":null,"abstract":"<p><p>Flavonoids and their methylated derivatives have immense market potential in the food and biomedical industries due to their multiple beneficial effects, such as antimicrobial, anti-inflammatory, and anticancer activities. The biological synthesis of flavonoids and their derivatives is often accomplished <i>via</i> the use of genetically modified microorganisms to ensure large-scale production. Therefore, it is pivotal to understand the properties of <i>O</i>-methyltransferases (OMTs) that mediate the methylation of flavonoids. However, the properties of these OMTs are governed by their: sources, substrate specificity, amino acid residues in the active sites, and the intricate mechanism. In order to obtain a clue for the selection of suitable OMTs for the biosynthesis of a target methylated flavonoid, we made a comprehensive review of the currently reported results, with a particular focus on their comparative regioselectivity for different flavonoid substrates. Additionally, the possible mechanisms for the diversity of this class of enzymes were explored using molecular simulation technology. Finally, major gaps in our understanding and areas for future studies were discussed. The findings of this study may be useful in selecting genes that encode OMTs and designing enzyme-based processes for synthesizing <i>O</i>-methylated flavonoids.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1203-1225"},"PeriodicalIF":8.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138458392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biomaterials with antifungal strategies to fight oral infections. 采用抗真菌策略的生物材料对抗口腔感染。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2023-08-16 DOI: 10.1080/07388551.2023.2236784
Jontana Allkja, Maryam Roudbary, Anelise Maria Vasconcelos Alves, Lucia Černáková, Célia Fortuna Rodrigues

Oral fungal infections pose a threat to human health and increase the economic burden of oral diseases by prolonging and complicating treatment. A cost-effective strategy is to try to prevent these infections from happening in the first place. With this purpose, biomaterials with antifungal properties are a crucial element to overcome fungal infections in the oral cavity. In this review, we go through different kinds of biomaterials and coatings that can be used to functionalize them. We also review their potential as a therapeutic approach in addition to prophylaxis, by going through traditional and alternative antifungal compounds, e.g., essential oils, that could be incorporated in them, to enhance their efficacy against fungal pathogens. We aim to highlight the potential of these technologies and propose questions that need to be addressed in prospective research. Finally, we intend to concatenate the key aspects and technologies on the use of biomaterials in oral health, to create an easy to find summary of the current state-of-the-art for researchers in the field.

口腔真菌感染对人类健康构成威胁,并因治疗时间延长和复杂化而增加了口腔疾病的经济负担。一种具有成本效益的策略是从一开始就努力预防这些感染的发生。为此,具有抗真菌特性的生物材料是克服口腔真菌感染的关键因素。在这篇综述中,我们将介绍不同种类的生物材料以及可用于对其进行功能化的涂层。此外,我们还探讨了除预防外,生物材料作为一种治疗方法的潜力,并将传统和替代性抗真菌化合物(如精油)融入其中,以增强其对真菌病原体的功效。我们旨在强调这些技术的潜力,并提出需要在未来研究中解决的问题。最后,我们打算将生物材料在口腔健康领域应用的关键方面和技术汇总起来,为该领域的研究人员提供一份易于查找的当前最新技术摘要。
{"title":"Biomaterials with antifungal strategies to fight oral infections.","authors":"Jontana Allkja, Maryam Roudbary, Anelise Maria Vasconcelos Alves, Lucia Černáková, Célia Fortuna Rodrigues","doi":"10.1080/07388551.2023.2236784","DOIUrl":"10.1080/07388551.2023.2236784","url":null,"abstract":"<p><p>Oral fungal infections pose a threat to human health and increase the economic burden of oral diseases by prolonging and complicating treatment. A cost-effective strategy is to try to prevent these infections from happening in the first place. With this purpose, biomaterials with antifungal properties are a crucial element to overcome fungal infections in the oral cavity. In this review, we go through different kinds of biomaterials and coatings that can be used to functionalize them. We also review their potential as a therapeutic approach in addition to prophylaxis, by going through traditional and alternative antifungal compounds, e.g., essential oils, that could be incorporated in them, to enhance their efficacy against fungal pathogens. We aim to highlight the potential of these technologies and propose questions that need to be addressed in prospective research. Finally, we intend to concatenate the key aspects and technologies on the use of biomaterials in oral health, to create an easy to find summary of the current state-of-the-art for researchers in the field.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1151-1163"},"PeriodicalIF":8.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10013794","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Synergetic anaerobic digestion of food waste for enhanced production of biogas and value-added products: strategies, challenges, and techno-economic analysis. 协同厌氧消化食物垃圾以提高沼气和增值产品的产量:战略、挑战和技术经济分析。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2023-08-29 DOI: 10.1080/07388551.2023.2241112
Pooja Sharma, Sheetal Kishor Parakh, To Hung Tsui, Ambreen Bano, Surendra Pratap Singh, Vijay Pratap Singh, Su Shiung Lam, Ashok Kumar Nadda, Yen Wah Tong

The generation of food waste (FW) is increasing at an alarming rate, contributing to a total of 32% of all the waste produced globally. Anaerobic digestion (AD) is an effective method for dealing with organic wastes of various compositions, like FW. Waste valorization into value-added products has increased due to the conversion of FW into biogas using AD technology. A variety of pathways are adopted by microbes to avoid unfavorable conditions in AD, including competition between sulfate-reducing bacteria and methane (CH4)-forming bacteria. Anaerobic bacteria decompose organic matter to produce biogas, a digester gas. The composition depends on the type of raw material and the method by which the digestion process is conducted. Studies have shown that the biogas produced by AD contains 65-75% CH4 and 35-45% carbon dioxide (CO2). Methanothrix soehngenii and Methanosaeta concilii are examples of species that convert acetate to CH4 and CO2. Methanobacterium bryantii, Methanobacterium thermoautotrophicum, and Methanobrevibacter arboriphilus are examples of species that produce CH4 from hydrogen and CO2. Methanobacterium formicicum, Methanobrevibacter smithii, and Methanococcus voltae are examples of species that consume formate, hydrogen, and CO2 and produce CH4. The popularity of AD has increased for the development of biorefinery because it is seen as a more environmentally acceptable alternative in comparison to physico-chemical techniques for resource and energy recovery. The review examines the possibility of using accessible FW to produce important value-added products such as organic acids (acetate/butyrate), biopolymers, and other essential value-added products.

厨余垃圾(FW)的产生量正以惊人的速度增长,占全球垃圾总量的 32%。厌氧消化(AD)是处理各种成分的有机废物(如厨余垃圾)的有效方法。由于使用厌氧消化技术将 FW 转化为沼气,废物价值转化为增值产品的情况有所增加。在厌氧消化(AD)过程中,微生物采用多种途径来避免不利条件,包括硫酸盐还原菌和甲烷(CH4)形成菌之间的竞争。厌氧细菌分解有机物产生沼气,即沼气池气体。其成分取决于原料的类型和消化过程的方法。研究表明,厌氧发酵产生的沼气含有 65-75% 的甲烷(CH4)和 35-45% 的二氧化碳(CO2)。Methanothrix soehngenii 和 Methanosaeta concilii 是将醋酸盐转化为甲烷和二氧化碳的物种。白云甲烷杆菌、热自养甲烷杆菌和树木甲烷杆菌是利用氢气和二氧化碳产生 CH4 的菌种。甲酸甲烷杆菌(Methanobacterium formicicum)、冶金甲烷杆菌(Methanobrevibacter smithii)和伏特甲烷球菌(Methanococcus voltae)是消耗甲酸盐、氢气和二氧化碳并产生 CH4 的菌种。在发展生物精炼方面,厌氧消化(AD)越来越受欢迎,因为与回收资源和能源的物理化学技术相比,厌氧消化(AD)被认为是一种更环保的替代技术。本综述探讨了利用可获得的 FW 生产重要增值产品的可能性,如有机酸(醋酸/丁酸)、生物聚合物和其他重要增值产品。
{"title":"Synergetic anaerobic digestion of food waste for enhanced production of biogas and value-added products: strategies, challenges, and techno-economic analysis.","authors":"Pooja Sharma, Sheetal Kishor Parakh, To Hung Tsui, Ambreen Bano, Surendra Pratap Singh, Vijay Pratap Singh, Su Shiung Lam, Ashok Kumar Nadda, Yen Wah Tong","doi":"10.1080/07388551.2023.2241112","DOIUrl":"10.1080/07388551.2023.2241112","url":null,"abstract":"<p><p>The generation of food waste (FW) is increasing at an alarming rate, contributing to a total of 32% of all the waste produced globally. Anaerobic digestion (AD) is an effective method for dealing with organic wastes of various compositions, like FW. Waste valorization into value-added products has increased due to the conversion of FW into biogas using AD technology. A variety of pathways are adopted by microbes to avoid unfavorable conditions in AD, including competition between sulfate-reducing bacteria and methane (CH<sub>4</sub>)-forming bacteria. Anaerobic bacteria decompose organic matter to produce biogas, a digester gas. The composition depends on the type of raw material and the method by which the digestion process is conducted. Studies have shown that the biogas produced by AD contains 65-75% CH<sub>4</sub> and 35-45% carbon dioxide (CO<sub>2</sub>). <i>Methanothrix soehngenii</i> and <i>Methanosaeta concilii</i> are examples of species that convert acetate to CH<sub>4</sub> and CO<sub>2</sub>. <i>Methanobacterium bryantii</i>, <i>Methanobacterium thermoautotrophicum</i>, and <i>Methanobrevibacter arboriphilus</i> are examples of species that produce CH<sub>4</sub> from hydrogen and CO<sub>2</sub>. <i>Methanobacterium formicicum</i>, <i>Methanobrevibacter smithii</i>, and <i>Methanococcus voltae</i> are examples of species that consume formate, hydrogen, and CO<sub>2</sub> and produce CH<sub>4</sub>. The popularity of AD has increased for the development of biorefinery because it is seen as a more environmentally acceptable alternative in comparison to physico-chemical techniques for resource and energy recovery. The review examines the possibility of using accessible FW to produce important value-added products such as organic acids (acetate/butyrate), biopolymers, and other essential value-added products.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1040-1060"},"PeriodicalIF":8.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10112464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Field and laboratory guidelines for reliable bioinformatic and statistical analysis of bacterial shotgun metagenomic data. 细菌霰弹枪宏基因组数据的可靠生物信息学和统计分析的现场和实验室指南。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-01 Epub Date: 2023-09-20 DOI: 10.1080/07388551.2023.2254933
Ostaizka Aizpurua, Robert R Dunn, Lars H Hansen, M T P Gilbert, Antton Alberdi

Shotgun metagenomics is an increasingly cost-effective approach for profiling environmental and host-associated microbial communities. However, due to the complexity of both microbiomes and the molecular techniques required to analyze them, the reliability and representativeness of the results are contingent upon the field, laboratory, and bioinformatic procedures employed. Here, we consider 15 field and laboratory issues that critically impact downstream bioinformatic and statistical data processing, as well as result interpretation, in bacterial shotgun metagenomic studies. The issues we consider encompass intrinsic properties of samples, study design, and laboratory-processing strategies. We identify the links of field and laboratory steps with downstream analytical procedures, explain the means for detecting potential pitfalls, and propose mitigation measures to overcome or minimize their impact in metagenomic studies. We anticipate that our guidelines will assist data scientists in appropriately processing and interpreting their data, while aiding field and laboratory researchers to implement strategies for improving the quality of the generated results.

Shotgun宏基因组学是一种越来越具有成本效益的方法,用于分析环境和宿主相关的微生物群落。然而,由于微生物组和分析它们所需的分子技术的复杂性,结果的可靠性和代表性取决于所采用的现场、实验室和生物信息学程序。在这里,我们考虑了细菌鸟枪宏基因组研究中严重影响下游生物信息学和统计数据处理以及结果解释的15个现场和实验室问题。我们考虑的问题包括样品的内在特性、研究设计和实验室处理策略。我们确定了现场和实验室步骤与下游分析程序的联系,解释了检测潜在陷阱的方法,并提出了缓解措施,以克服或最大限度地减少其在宏基因组研究中的影响。我们预计,我们的指南将帮助数据科学家适当处理和解释他们的数据,同时帮助现场和实验室研究人员实施提高生成结果质量的策略。
{"title":"Field and laboratory guidelines for reliable bioinformatic and statistical analysis of bacterial shotgun metagenomic data.","authors":"Ostaizka Aizpurua, Robert R Dunn, Lars H Hansen, M T P Gilbert, Antton Alberdi","doi":"10.1080/07388551.2023.2254933","DOIUrl":"10.1080/07388551.2023.2254933","url":null,"abstract":"<p><p>Shotgun metagenomics is an increasingly cost-effective approach for profiling environmental and host-associated microbial communities. However, due to the complexity of both microbiomes and the molecular techniques required to analyze them, the reliability and representativeness of the results are contingent upon the field, laboratory, and bioinformatic procedures employed. Here, we consider 15 field and laboratory issues that critically impact downstream bioinformatic and statistical data processing, as well as result interpretation, in bacterial shotgun metagenomic studies. The issues we consider encompass intrinsic properties of samples, study design, and laboratory-processing strategies. We identify the links of field and laboratory steps with downstream analytical procedures, explain the means for detecting potential pitfalls, and propose mitigation measures to overcome or minimize their impact in metagenomic studies. We anticipate that our guidelines will assist data scientists in appropriately processing and interpreting their data, while aiding field and laboratory researchers to implement strategies for improving the quality of the generated results.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1164-1182"},"PeriodicalIF":8.1,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41113414","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Critical Reviews in Biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1