首页 > 最新文献

Critical Reviews in Biotechnology最新文献

英文 中文
A comprehensive review on the recent advances for 5-aminolevulinic acid production by the engineered bacteria. 全面回顾工程菌生产 5-氨基乙酰丙酸的最新进展。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-02-01 Epub Date: 2024-05-05 DOI: 10.1080/07388551.2024.2336532
Ying-Ying Chen, Jia-Cong Huang, Cai-Yun Wu, Shi-Qin Yu, Yue-Tong Wang, Chao Ye, Tian-Qiong Shi, He Huang

5-Aminolevulinic acid (5-ALA) is a non-proteinogenic amino acid essential for synthesizing tetrapyrrole compounds, including heme, chlorophyll, cytochrome, and vitamin B12. As a plant growth regulator, 5-ALA is extensively used in agriculture to enhance crop yield and quality. The complexity and low yield of chemical synthesis methods have led to significant interest in the microbial synthesis of 5-ALA. Advanced strategies, including the: enhancement of precursor and cofactor supply, compartmentalization of key enzymes, product transporters engineering, by-product formation reduction, and biosensor-based dynamic regulation, have been implemented in bacteria for 5-ALA production, significantly advancing its industrialization. This article offers a comprehensive review of recent developments in 5-ALA production using engineered bacteria and presents new insights to propel the field forward.

5- 氨基乙酰丙酸(5-ALA)是合成四吡咯化合物(包括血红素、叶绿素、细胞色素和维生素 B12)所必需的一种非蛋白源氨基酸。作为一种植物生长调节剂,5-ALA 被广泛用于农业,以提高作物产量和质量。由于化学合成方法的复杂性和低产量,人们对 5-ALA 的微生物合成产生了浓厚的兴趣。先进的策略包括:加强前体和辅助因子的供应、关键酶的区隔、产物转运体工程、减少副产物的形成以及基于生物传感器的动态调控,这些策略已在细菌中用于 5-ALA 的生产,极大地推动了其工业化进程。本文全面回顾了利用工程菌生产 5-ALA 的最新进展,并提出了推动该领域发展的新见解。
{"title":"A comprehensive review on the recent advances for 5-aminolevulinic acid production by the engineered bacteria.","authors":"Ying-Ying Chen, Jia-Cong Huang, Cai-Yun Wu, Shi-Qin Yu, Yue-Tong Wang, Chao Ye, Tian-Qiong Shi, He Huang","doi":"10.1080/07388551.2024.2336532","DOIUrl":"10.1080/07388551.2024.2336532","url":null,"abstract":"<p><p>5-Aminolevulinic acid (5-ALA) is a non-proteinogenic amino acid essential for synthesizing tetrapyrrole compounds, including heme, chlorophyll, cytochrome, and vitamin B12. As a plant growth regulator, 5-ALA is extensively used in agriculture to enhance crop yield and quality. The complexity and low yield of chemical synthesis methods have led to significant interest in the microbial synthesis of 5-ALA. Advanced strategies, including the: enhancement of precursor and cofactor supply, compartmentalization of key enzymes, product transporters engineering, by-product formation reduction, and biosensor-based dynamic regulation, have been implemented in bacteria for 5-ALA production, significantly advancing its industrialization. This article offers a comprehensive review of recent developments in 5-ALA production using engineered bacteria and presents new insights to propel the field forward.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"148-163"},"PeriodicalIF":8.1,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140864330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Endosymbionts as hidden players in tripartite pathosystem of interactions and potential candidates for sustainable viral disease management.
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-23 DOI: 10.1080/07388551.2024.2449403
Muhammad Dilshad Hussain, Tahir Farooq, Ali Kamran, Abdul Basit, Yong Wang, Guy Smagghe, Xiangru Chen

The convoluted relationships between plants, viruses, and arthropod vectors housing bacterial endosymbionts are pivotal in the spread of harmful plant viral diseases. Endosymbionts play key roles in: manipulating host responses, influencing insect resistance to pesticides, shaping insect evolution, and bolstering virus acquisition, retention, and transmission. This interplay presents an innovative approach for developing sustainable strategies to manage plant diseases. Recent progress in targeting specific endosymbionts through genetic modifications, biotechnological advancements, and RNA interference shows potential for curbing viral spread and disease progression. Additionally, employing synthetic biology techniques like CRISPR/Cas9 to engineer endosymbionts and disrupt crucial interactions necessary for viral transmission in arthropod vectors holds promise for effective control measures. In this review, these obligate and facultative bacterial cruxes have been discussed to elaborate on their mechanistic involvement in the regulation and/or inhibition of tripartite pathways of interactions. Furthermore, we provide an in-depth understanding of endosymbionts' synergistic and antagonistic effects on: insect biology, plant immunity, and virus acquisition and transmission. Finally, we point out open questions for future research and provide research directions concerning the deployment of genetically engineered symbionts to affect plant-virus-vector interactions for sustainable disease management. By addressing existing knowledge gaps and charting future research paths, a deeper comprehension of the role of endosymbionts in plant-virus-vector interactions can pave the way for innovative and successful disease management strategies. The exploration of antiviral therapies, paratransgenesis, and pathogen-blocking tactics using engineered endosymbionts introduces pioneering solutions for lessening the impact of plant viral diseases and green pest management.

{"title":"Endosymbionts as hidden players in tripartite pathosystem of interactions and potential candidates for sustainable viral disease management.","authors":"Muhammad Dilshad Hussain, Tahir Farooq, Ali Kamran, Abdul Basit, Yong Wang, Guy Smagghe, Xiangru Chen","doi":"10.1080/07388551.2024.2449403","DOIUrl":"https://doi.org/10.1080/07388551.2024.2449403","url":null,"abstract":"<p><p>The convoluted relationships between plants, viruses, and arthropod vectors housing bacterial endosymbionts are pivotal in the spread of harmful plant viral diseases. Endosymbionts play key roles in: manipulating host responses, influencing insect resistance to pesticides, shaping insect evolution, and bolstering virus acquisition, retention, and transmission. This interplay presents an innovative approach for developing sustainable strategies to manage plant diseases. Recent progress in targeting specific endosymbionts through genetic modifications, biotechnological advancements, and RNA interference shows potential for curbing viral spread and disease progression. Additionally, employing synthetic biology techniques like CRISPR/Cas9 to engineer endosymbionts and disrupt crucial interactions necessary for viral transmission in arthropod vectors holds promise for effective control measures. In this review, these obligate and facultative bacterial cruxes have been discussed to elaborate on their mechanistic involvement in the regulation and/or inhibition of tripartite pathways of interactions. Furthermore, we provide an in-depth understanding of endosymbionts' synergistic and antagonistic effects on: insect biology, plant immunity, and virus acquisition and transmission. Finally, we point out open questions for future research and provide research directions concerning the deployment of genetically engineered symbionts to affect plant-virus-vector interactions for sustainable disease management. By addressing existing knowledge gaps and charting future research paths, a deeper comprehension of the role of endosymbionts in plant-virus-vector interactions can pave the way for innovative and successful disease management strategies. The exploration of antiviral therapies, paratransgenesis, and pathogen-blocking tactics using engineered endosymbionts introduces pioneering solutions for lessening the impact of plant viral diseases and green pest management.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-23"},"PeriodicalIF":8.1,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vitro cellular model systems provide a promising alternative to animal experiments for studying the intestine-organ axis.
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-23 DOI: 10.1080/07388551.2025.2452620
Alessandra Vitale, Cristiana De Musis, Marida Bimonte, Josep Rubert, Vincenzo Fogliano

Limiting animal experiments is essential for ethical issues and also because scientific evidence highlights the discrepancies between human and animal metabolism. This review aims to provide a critical discussion of the strengths and limitations of the most appropriate in vitro intestine model to answer complex research questions in pharmaceutical and nutraceutical fields. This review describes the components contributing to the definition of the gut barrier structure, from the outer mucus layer to the inner part of lamina propria, including endothelial and neuronal networks. We conclude that the main advantage of these co-culture models is their versatility since they are modulable systems in which each component can be added, changed, or removed to reproduce a specific physiological condition each time. Additionally, we compare intestinal organoid models and microfluidic systems with well-established co-culture models.

{"title":"<i>In vitro</i> cellular model systems provide a promising alternative to animal experiments for studying the intestine-organ axis.","authors":"Alessandra Vitale, Cristiana De Musis, Marida Bimonte, Josep Rubert, Vincenzo Fogliano","doi":"10.1080/07388551.2025.2452620","DOIUrl":"https://doi.org/10.1080/07388551.2025.2452620","url":null,"abstract":"<p><p>Limiting animal experiments is essential for ethical issues and also because scientific evidence highlights the discrepancies between human and animal metabolism. This review aims to provide a critical discussion of the strengths and limitations of the most appropriate <i>in vitro</i> intestine model to answer complex research questions in pharmaceutical and nutraceutical fields. This review describes the components contributing to the definition of the gut barrier structure, from the outer mucus layer to the inner part of lamina propria, including endothelial and neuronal networks. We conclude that the main advantage of these co-culture models is their versatility since they are modulable systems in which each component can be added, changed, or removed to reproduce a specific physiological condition each time. Additionally, we compare intestinal organoid models and microfluidic systems with well-established co-culture models.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-18"},"PeriodicalIF":8.1,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143028123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioactive peptides with potential anticancer properties from various food protein sources: status of recent research, production technologies, and developments. 从各种食物蛋白质来源中提取具有潜在抗癌特性的生物活性肽:最新研究现状、生产技术及发展。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-05 DOI: 10.1080/07388551.2024.2435965
Marwa Hamdi, Bhanu Priya Kilari, Priti Mudgil, Nilesh Prakash Nirmal, Shreesh Ojha, Mohammed Akli Ayoub, Amr Amin, Sajid Maqsood

Recently, bioactive peptides, from natural resources, have attracted remarkable attention as nutraceutical treasures and the health benefits of their consumption have extensively been studied. Therapies based on bioactive peptides have been recognized as an innovative and promising alternative method for dangerous diseases such as cancer. Indeed, there has been enormous interest in nutraceuticals and bioactive-based chemopreventive molecules as a potential opportunity to manage chronic diseases, including cancer at different stages, rather than the traditionally used therapies. The relative safety and efficacy of these peptides in targeting only the tumor cells without affecting the normal cells make them attractive alternatives to existing pharmaceuticals for the treatment, management, and prevention of cancer, being able to act as potential physiological modulators of metabolism during their intestinal digestion. Novel bioactive peptides derived from food sources can be beneficial as anticancer nutraceuticals and provide a basis for the pharmaceutical development of food-derived bioactive peptides. Bioactive peptides can be generated through different protein hydrolysis methods and purified using advanced chromatographic techniques. Moreover, establishing bioactive peptides' efficacy and mechanism of action can provide alternative methods for cancer prevention and management. Most of the research on anticancer peptides is carried out on cell lines with very limited research being investigated in animal models or human clinical models. In this context, this review article comprehensively discusses anticancer peptides': production, isolation, therapeutic strategies, mechanism of action, and application in cancer therapy.

近年来,来自天然资源的生物活性肽作为一种营养保健珍品引起了人们的广泛关注,人们对其食用的健康益处进行了广泛的研究。基于生物活性肽的治疗已被认为是治疗癌症等危险疾病的一种创新和有前途的替代方法。事实上,人们对营养品和基于生物活性的化学预防分子非常感兴趣,因为它们是控制慢性疾病(包括不同阶段的癌症)的潜在机会,而不是传统的治疗方法。这些肽仅针对肿瘤细胞而不影响正常细胞的相对安全性和有效性使其成为治疗、管理和预防癌症的现有药物的有吸引力的替代品,能够在肠道消化过程中充当代谢的潜在生理调节剂。从食品中提取的新型生物活性肽可作为抗癌营养品,为食品生物活性肽的药物开发提供了基础。生物活性肽可以通过不同的蛋白质水解方法产生,并使用先进的色谱技术纯化。此外,建立生物活性肽的功效和作用机制可以为癌症的预防和治疗提供替代方法。大多数关于抗癌肽的研究都是在细胞系上进行的,在动物模型或人类临床模型上进行的研究非常有限。本文就抗癌肽的制备、分离、治疗策略、作用机制及其在癌症治疗中的应用进行了综述。
{"title":"Bioactive peptides with potential anticancer properties from various food protein sources: status of recent research, production technologies, and developments.","authors":"Marwa Hamdi, Bhanu Priya Kilari, Priti Mudgil, Nilesh Prakash Nirmal, Shreesh Ojha, Mohammed Akli Ayoub, Amr Amin, Sajid Maqsood","doi":"10.1080/07388551.2024.2435965","DOIUrl":"https://doi.org/10.1080/07388551.2024.2435965","url":null,"abstract":"<p><p>Recently, bioactive peptides, from natural resources, have attracted remarkable attention as nutraceutical treasures and the health benefits of their consumption have extensively been studied. Therapies based on bioactive peptides have been recognized as an innovative and promising alternative method for dangerous diseases such as cancer. Indeed, there has been enormous interest in nutraceuticals and bioactive-based chemopreventive molecules as a potential opportunity to manage chronic diseases, including cancer at different stages, rather than the traditionally used therapies. The relative safety and efficacy of these peptides in targeting only the tumor cells without affecting the normal cells make them attractive alternatives to existing pharmaceuticals for the treatment, management, and prevention of cancer, being able to act as potential physiological modulators of metabolism during their intestinal digestion. Novel bioactive peptides derived from food sources can be beneficial as anticancer nutraceuticals and provide a basis for the pharmaceutical development of food-derived bioactive peptides. Bioactive peptides can be generated through different protein hydrolysis methods and purified using advanced chromatographic techniques. Moreover, establishing bioactive peptides' efficacy and mechanism of action can provide alternative methods for cancer prevention and management. Most of the research on anticancer peptides is carried out on cell lines with very limited research being investigated in animal models or human clinical models. In this context, this review article comprehensively discusses anticancer peptides': production, isolation, therapeutic strategies, mechanism of action, and application in cancer therapy.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-22"},"PeriodicalIF":8.1,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cold-active enzymes from deep marine psychrophiles: harnessing their potential in enhanced food production and sustainability. 深海嗜冷生物的冷活性酶:利用其在提高粮食生产和可持续性方面的潜力。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2025-01-05 DOI: 10.1080/07388551.2024.2435974
Mrinmoy Ghosh, Yunji Heo, Krishna Kanth Pulicherla, Min Woo Ha, Kyoungtag Do, Young-Ok Son

Exploring the untapped potential of deep-sea microorganisms, particularly their cold-active enzymes, or psychrozymes, offers exciting possibilities for revolutionizing various aspects of the food processing industry. This review focuses on these enzymes, derived from the largely unexplored depths of the deep ocean, where microorganisms have developed unique adaptations to extreme conditions. Psychrozymes, as bioactive molecules, hold significant promise for food industry applications. However, despite their potential, the understanding and industrial utilization of psychrozymes remains limited. This review provides an in-depth analysis of how psychrozymes can: improve processing efficiency, enhance sensory qualities, extend product shelf life, and reduce energy consumption across the food production chain. We explore the cryodefense strategies and cold-adaptation mechanisms that support these enzymes, shedding light on the most extensively studied psychrozymes and assessing their journey from theoretical applications to practical use in food production. The key properties, such as stability, substrate specificity, and catalytic efficiency in cold environments, are also discussed. Although psychrozymes show considerable promise, their large-scale application in the food industry remains largely unexplored. This review emphasizes the need for further research to unlock the full potential of psychrozymes, encouraging their broader integration into the food sector to contribute to more sustainable food production processes.

探索深海微生物未开发的潜力,特别是它们的冷活性酶,或称冷酵素,为食品加工业的各个方面带来了令人兴奋的可能性。这篇综述的重点是这些酶,它们来源于大部分未开发的深海深处,那里的微生物已经发展出对极端条件的独特适应。冷酵素作为一种生物活性分子,在食品工业中有着重要的应用前景。然而,尽管它们具有潜力,但对其的理解和工业利用仍然有限。本文综述深入分析了冷酵素如何在整个食品生产链中提高加工效率、增强感官质量、延长产品保质期和降低能源消耗。我们探索了支持这些酶的低温防御策略和冷适应机制,揭示了最广泛研究的低温酶,并评估了它们从理论应用到食品生产中的实际应用的历程。讨论了其稳定性、底物特异性和低温环境下的催化效率等关键性能。尽管冷酵素显示出相当大的前景,但它们在食品工业中的大规模应用在很大程度上仍未得到探索。这篇综述强调需要进一步研究,以释放精神酵素的全部潜力,鼓励其更广泛地融入食品部门,以促进更可持续的食品生产过程。
{"title":"Cold-active enzymes from deep marine psychrophiles: harnessing their potential in enhanced food production and sustainability.","authors":"Mrinmoy Ghosh, Yunji Heo, Krishna Kanth Pulicherla, Min Woo Ha, Kyoungtag Do, Young-Ok Son","doi":"10.1080/07388551.2024.2435974","DOIUrl":"https://doi.org/10.1080/07388551.2024.2435974","url":null,"abstract":"<p><p>Exploring the untapped potential of deep-sea microorganisms, particularly their cold-active enzymes, or psychrozymes, offers exciting possibilities for revolutionizing various aspects of the food processing industry. This review focuses on these enzymes, derived from the largely unexplored depths of the deep ocean, where microorganisms have developed unique adaptations to extreme conditions. Psychrozymes, as bioactive molecules, hold significant promise for food industry applications. However, despite their potential, the understanding and industrial utilization of psychrozymes remains limited. This review provides an in-depth analysis of how psychrozymes can: improve processing efficiency, enhance sensory qualities, extend product shelf life, and reduce energy consumption across the food production chain. We explore the cryodefense strategies and cold-adaptation mechanisms that support these enzymes, shedding light on the most extensively studied psychrozymes and assessing their journey from theoretical applications to practical use in food production. The key properties, such as stability, substrate specificity, and catalytic efficiency in cold environments, are also discussed. Although psychrozymes show considerable promise, their large-scale application in the food industry remains largely unexplored. This review emphasizes the need for further research to unlock the full potential of psychrozymes, encouraging their broader integration into the food sector to contribute to more sustainable food production processes.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-25"},"PeriodicalIF":8.1,"publicationDate":"2025-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930756","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biological production of nicotinamide mononucleotide: a review. 烟酰胺单核苷酸的生物生产:综述。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-15 DOI: 10.1080/07388551.2024.2433993
Rhudith B Cabulong, Saroj Raj Kafle, Anju Singh, Mukesh Sharma, Beom Soo Kim

Nicotinamide mononucleotide (NMN) presents significant therapeutic potential against aging-related conditions, such as Alzheimer's disease, due to its consistent and strong pharmacological effects. Aside from its anti-aging effect, NMN is also an emerging noncanonical cofactor for orthogonal metabolic pathways in the field of biomanufacturing. This has significant advantages in the field of metabolic engineering, allowing cells to produce unnatural chemicals without disrupting the natural cellular processes. NMN is produced through both the chemical and biological methods, with the latter being more environmentally sustainable. The primary biological production pathway centers on the enzyme nicotinamide phosphoribosyltransferase, which transforms nicotinamide and phosphoribosyl pyrophosphate to NMN. Efforts to increase NMN production have been explored in microorganisms, such as: Escherichia coli, Bacillus subtilis, and yeast, serving as biocatalysts, by rewiring their metabolic processes. Although most researchers are focusing on genetically and metabolically manipulating microorganisms to act as biocatalysts, a growing number of studies on cell-free synthesis are emerging as a promising strategy for producing NMN. This review explores the different biological production techniques of NMN employing microorganisms. This article, in particular, is essential to those who are working on NMN production using microbial strain engineering and cell-free systems.

烟酰胺单核苷酸(NMN)因其持续而强大的药理作用,对阿尔茨海默病等与衰老有关的疾病具有巨大的治疗潜力。除了抗衰老作用外,NMN 还是生物制造领域正交代谢途径中一种新兴的非经典辅助因子。这在新陈代谢工程领域具有重大优势,可使细胞在不破坏自然细胞过程的情况下生产非天然化学物质。NMN 可通过化学和生物两种方法生产,其中生物方法更具环境可持续性。主要的生物生产途径以烟酰胺磷酸核糖基转移酶为中心,它将烟酰胺和焦磷酸磷酸核糖基转化为 NMN。人们已经在微生物中探索如何提高 NMN 的产量,例如:大肠杆菌、芽孢杆菌和酵母菌:大肠杆菌、枯草芽孢杆菌和酵母等微生物作为生物催化剂,通过重新连接它们的代谢过程来提高 NMN 的产量。尽管大多数研究人员都把重点放在从基因和代谢方面操纵微生物以充当生物催化剂上,但越来越多关于无细胞合成的研究正在成为生产 NMN 的一种有前途的策略。本综述探讨了利用微生物生产 NMN 的各种生物技术。对于那些利用微生物菌种工程和无细胞系统生产 NMN 的研究人员来说,这篇文章尤其重要。
{"title":"Biological production of nicotinamide mononucleotide: a review.","authors":"Rhudith B Cabulong, Saroj Raj Kafle, Anju Singh, Mukesh Sharma, Beom Soo Kim","doi":"10.1080/07388551.2024.2433993","DOIUrl":"https://doi.org/10.1080/07388551.2024.2433993","url":null,"abstract":"<p><p>Nicotinamide mononucleotide (NMN) presents significant therapeutic potential against aging-related conditions, such as Alzheimer's disease, due to its consistent and strong pharmacological effects. Aside from its anti-aging effect, NMN is also an emerging noncanonical cofactor for orthogonal metabolic pathways in the field of biomanufacturing. This has significant advantages in the field of metabolic engineering, allowing cells to produce unnatural chemicals without disrupting the natural cellular processes. NMN is produced through both the chemical and biological methods, with the latter being more environmentally sustainable. The primary biological production pathway centers on the enzyme nicotinamide phosphoribosyltransferase, which transforms nicotinamide and phosphoribosyl pyrophosphate to NMN. Efforts to increase NMN production have been explored in microorganisms, such as: <i>Escherichia coli, Bacillus subtilis,</i> and yeast, serving as biocatalysts, by rewiring their metabolic processes. Although most researchers are focusing on genetically and metabolically manipulating microorganisms to act as biocatalysts, a growing number of studies on cell-free synthesis are emerging as a promising strategy for producing NMN. This review explores the different biological production techniques of NMN employing microorganisms. This article, in particular, is essential to those who are working on NMN production using microbial strain engineering and cell-free systems.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-18"},"PeriodicalIF":8.1,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142827649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current status and advances in the green synthesis of muconic acid. 绿色合成黏液酸的现状与进展。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-09 DOI: 10.1080/07388551.2024.2433998
Haoyi Yang, Xiaoyu Lin, Xianen Zhong, Mingfeng Cao, Jifeng Yuan, Zhipeng Li, Xueping Ling, Ning He

Muconic acid (MA) is a valuable dicarboxylic acid with three isomers that are extensively utilized in textile and chemical industries. Traditionally, the chemical synthesis of MA consumes nonrenewable petrochemical raw materials and causes significant environmental problems. With the rapid increase in demand for MA, eco-friendly biosynthetic technologies with renewable sources are becoming ideal alternative solutions. This paper systematically reviews recent advances in the biosynthesis of MA isomers, describing not only the mechanism for MA biosynthesis in different microorganisms, including wild and engineered strains, but also focuses on MA production from various renewable resources, especially lignin hydrolysate and lignin-derived aromatics hydrocarbons, such as: benzoic acid, isoeugenol, vanillic acid and phenol. Moreover, cis,cis-muconic acid production from xylose, PET, methane, and glycerol are discussed in detail, providing a much broader substrate spectra and further possibilities for MA large scale industrialization economically. Challenges facing biosynthesis of cis, trans muconic acid and trans, trans muconic acid are discussed finally.

黏液酸(MA)是一种具有三种异构体的有价值的二羧酸,广泛应用于纺织和化学工业。传统上,MA的化学合成消耗不可再生的石化原料,造成严重的环境问题。随着MA需求的快速增长,利用可再生资源的生态友好型生物合成技术正成为理想的替代解决方案。本文系统地综述了近年来MA异构体的生物合成进展,不仅描述了不同微生物(包括野生菌株和工程菌株)生物合成MA的机制,而且重点介绍了各种可再生资源,特别是木质素水解物和木质素衍生的芳烃,如苯甲酸、异丁香酚、香草酸和苯酚。此外,详细讨论了从木糖、PET、甲烷和甘油中生产顺式、顺式粘膜酸,为MA大规模工业化提供了更广泛的底物光谱和进一步的可能性。最后讨论了生物合成顺式、反式、反式粘膜酸面临的挑战。
{"title":"Current status and advances in the green synthesis of muconic acid.","authors":"Haoyi Yang, Xiaoyu Lin, Xianen Zhong, Mingfeng Cao, Jifeng Yuan, Zhipeng Li, Xueping Ling, Ning He","doi":"10.1080/07388551.2024.2433998","DOIUrl":"https://doi.org/10.1080/07388551.2024.2433998","url":null,"abstract":"<p><p>Muconic acid (MA) is a valuable dicarboxylic acid with three isomers that are extensively utilized in textile and chemical industries. Traditionally, the chemical synthesis of MA consumes nonrenewable petrochemical raw materials and causes significant environmental problems. With the rapid increase in demand for MA, eco-friendly biosynthetic technologies with renewable sources are becoming ideal alternative solutions. This paper systematically reviews recent advances in the biosynthesis of MA isomers, describing not only the mechanism for MA biosynthesis in different microorganisms, including wild and engineered strains, but also focuses on MA production from various renewable resources, especially lignin hydrolysate and lignin-derived aromatics hydrocarbons, such as: benzoic acid, isoeugenol, vanillic acid and phenol. Moreover, <i>cis,cis</i>-muconic acid production from xylose, PET, methane, and glycerol are discussed in detail, providing a much broader substrate spectra and further possibilities for MA large scale industrialization economically. Challenges facing biosynthesis of cis, trans muconic acid and trans, trans muconic acid are discussed finally.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-18"},"PeriodicalIF":8.1,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142799665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitigating toxic formaldehyde to promote efficient utilization of C1 resources. 减少有毒甲醛,促进C1资源的高效利用。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-08 DOI: 10.1080/07388551.2024.2430476
Mengshi Jia, Lei Shao, Jie Jiang, Wankui Jiang, Fengxue Xin, Wenming Zhang, Yujia Jiang, Min Jiang

The C1 resource is widely considered because of its abundance and affordability. In the context of extensive utilization of C1 resources by methylotrophic microorganisms, especially for methanol, formaldehyde is an important intermediate metabolite that is at the crossroads of assimilation and dissimilation pathways. However, formaldehyde is an exceedingly reactive compound that can form covalent cross-linked complexes with amine and thiol groups in cells, which causes irreversible damage to the organism. Thus, it is important to balance the intensity of the assimilation and dissimilation pathways of formaldehyde, which can avoid formaldehyde toxicity and improve the full utilization of C1 resources. This review details the source of endogenous formaldehyde and its toxicity mechanism, explaining the harm of excessive accumulation of formaldehyde to metabolism. Importantly, the self-detoxification and various feasible strategies to mitigate formaldehyde toxicity are discussed and proposed. These strategies are meant to help appropriately handle formaldehyde toxicity and accelerate the effective use of C1 resources.

C1资源因其丰富和可负担性而被广泛考虑。在甲基营养微生物广泛利用C1资源的背景下,尤其是甲醇,甲醛是一种重要的中间代谢物,处于同化和异化途径的十字路口。然而,甲醛是一种极具活性的化合物,它可以与细胞中的胺和巯基形成共价交联复合物,对生物体造成不可逆转的损害。因此,平衡甲醛同化和异化途径的强度,可以避免甲醛毒性,提高C1资源的充分利用。本文详细介绍了内源性甲醛的来源及其毒性机制,阐述了甲醛过度积累对代谢的危害。重要的是,讨论和提出了自解毒和各种可行的策略来减轻甲醛毒性。这些策略旨在帮助适当处理甲醛毒性,加速C1资源的有效利用。
{"title":"Mitigating toxic formaldehyde to promote efficient utilization of C1 resources.","authors":"Mengshi Jia, Lei Shao, Jie Jiang, Wankui Jiang, Fengxue Xin, Wenming Zhang, Yujia Jiang, Min Jiang","doi":"10.1080/07388551.2024.2430476","DOIUrl":"https://doi.org/10.1080/07388551.2024.2430476","url":null,"abstract":"<p><p>The C1 resource is widely considered because of its abundance and affordability. In the context of extensive utilization of C1 resources by methylotrophic microorganisms, especially for methanol, formaldehyde is an important intermediate metabolite that is at the crossroads of assimilation and dissimilation pathways. However, formaldehyde is an exceedingly reactive compound that can form covalent cross-linked complexes with amine and thiol groups in cells, which causes irreversible damage to the organism. Thus, it is important to balance the intensity of the assimilation and dissimilation pathways of formaldehyde, which can avoid formaldehyde toxicity and improve the full utilization of C1 resources. This review details the source of endogenous formaldehyde and its toxicity mechanism, explaining the harm of excessive accumulation of formaldehyde to metabolism. Importantly, the self-detoxification and various feasible strategies to mitigate formaldehyde toxicity are discussed and proposed. These strategies are meant to help appropriately handle formaldehyde toxicity and accelerate the effective use of C1 resources.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-13"},"PeriodicalIF":8.1,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794529","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
RNAi-biofungicides: a quantum leap for tree fungal pathogen management. rnai生物杀菌剂:树木真菌病原体管理的巨大飞跃。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-08 DOI: 10.1080/07388551.2024.2430478
Gothandapani Sellamuthu, Amrita Chakraborty, Ramesh R Vetukuri, Saravanasakthi Sarath, Amit Roy

Fungal diseases threaten the forest ecosystem, impacting tree health, productivity, and biodiversity. Conventional approaches to combating diseases, such as biological control or fungicides, often reach limits regarding efficacy, resistance, non-target organisms, and environmental impact, enforcing alternative approaches. From an environmental and ecological standpoint, an RNA interference (RNAi) mediated double-stranded RNA (dsRNA)-based strategy can effectively manage forest fungal pathogens. The RNAi approach explicitly targets and suppresses gene expression through a conserved regulatory mechanism. Recently, it has evolved to be an effective tool in combating fungal diseases and promoting sustainable forest management approaches. RNAi bio-fungicides provide efficient and eco-friendly disease control alternatives using species-specific gene targeting, minimizing the off-target effects. With accessible data on fungal disease outbreaks, genomic resources, and effective delivery systems, RNAi-based biofungicides can be a promising tool for managing fungal pathogens in forests. However, concerns regarding the environmental fate of RNAi molecules and their potential impact on non-target organisms require an extensive investigation on a case-to-case basis. The current review critically evaluates the feasibility of RNAi bio-fungicides against forest pathogens by delving into the accessible delivery methods, environmental persistence, regulatory aspects, cost-effectiveness, community acceptance, and plausible future of RNAi-based forest protection products.

真菌病害威胁着森林生态系统,影响树木健康、生产力和生物多样性。防治疾病的传统方法,如生物防治或杀菌剂,在功效、耐药性、非目标生物和环境影响方面往往达到极限,因此必须采用替代方法。从环境和生态的角度来看,RNA干扰(RNAi)介导的双链RNA (dsRNA)策略可以有效地管理森林真菌病原体。RNAi方法通过保守的调控机制明确靶向和抑制基因表达。最近,它已发展成为防治真菌疾病和促进可持续森林管理方法的有效工具。RNAi生物杀菌剂利用物种特异性基因靶向提供了高效和环保的疾病控制替代方案,最大限度地减少了脱靶效应。有了可获得的真菌疾病暴发数据、基因组资源和有效的递送系统,基于rnai的生物杀菌剂可以成为管理森林真菌病原体的一种有前途的工具。然而,关于RNAi分子的环境命运及其对非目标生物的潜在影响的担忧需要在个案基础上进行广泛的调查。本综述通过深入研究基于RNAi的森林保护产品的可获得的递送方法、环境持久性、监管方面、成本效益、社区接受度和合理的未来,批判性地评估了RNAi生物杀菌剂对抗森林病原体的可行性。
{"title":"RNAi-biofungicides: a quantum leap for tree fungal pathogen management.","authors":"Gothandapani Sellamuthu, Amrita Chakraborty, Ramesh R Vetukuri, Saravanasakthi Sarath, Amit Roy","doi":"10.1080/07388551.2024.2430478","DOIUrl":"https://doi.org/10.1080/07388551.2024.2430478","url":null,"abstract":"<p><p>Fungal diseases threaten the forest ecosystem, impacting tree health, productivity, and biodiversity. Conventional approaches to combating diseases, such as biological control or fungicides, often reach limits regarding efficacy, resistance, non-target organisms, and environmental impact, enforcing alternative approaches. From an environmental and ecological standpoint, an RNA interference (RNAi) mediated double-stranded RNA (dsRNA)-based strategy can effectively manage forest fungal pathogens. The RNAi approach explicitly targets and suppresses gene expression through a conserved regulatory mechanism. Recently, it has evolved to be an effective tool in combating fungal diseases and promoting sustainable forest management approaches. RNAi bio-fungicides provide efficient and eco-friendly disease control alternatives using species-specific gene targeting, minimizing the off-target effects. With accessible data on fungal disease outbreaks, genomic resources, and effective delivery systems, RNAi-based biofungicides can be a promising tool for managing fungal pathogens in forests. However, concerns regarding the environmental fate of RNAi molecules and their potential impact on non-target organisms require an extensive investigation on a case-to-case basis. The current review critically evaluates the feasibility of RNAi bio-fungicides against forest pathogens by delving into the accessible delivery methods, environmental persistence, regulatory aspects, cost-effectiveness, community acceptance, and plausible future of RNAi-based forest protection products.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-28"},"PeriodicalIF":8.1,"publicationDate":"2024-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794534","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
APETALA2/ethylene-responsive factors in higher plant and their roles in regulation of plant stress response. 高等植物中的 APETALA2/乙烯反应因子及其在调控植物胁迫反应中的作用。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-12-01 Epub Date: 2024-01-24 DOI: 10.1080/07388551.2023.2299769
Qiong Tang, Sishan Wei, Xiaodong Zheng, Pengcheng Tu, Fei Tao

Plants, anchored throughout their life cycles, face a unique set of challenges from fluctuating environments and pathogenic assaults. Central to their adaptative mechanisms are transcription factors (TFs), particularly the AP2/ERF superfamily-one of the most extensive TF families unique to plants. This family plays instrumental roles in orchestrating diverse biological processes ranging from growth and development to secondary metabolism, and notably, responses to both biotic and abiotic stresses. Distinguished by the presence of the signature AP2 domain or its responsiveness to ethylene signals, the AP2/ERF superfamily has become a nexus of research focus, with increasing literature elucidating its multifaceted roles. This review provides a synoptic overview of the latest research advancements on the AP2/ERF family, spanning its taxonomy, structural nuances, prevalence in higher plants, transcriptional and post-transcriptional dynamics, and the intricate interplay in DNA-binding and target gene regulation. Special attention is accorded to the ethylene response factor B3 subgroup protein Pti5 and its role in stress response, with speculative insights into its functionalities and interaction matrix in tomatoes. The overarching goal is to pave the way for harnessing these TFs in the realms of plant genetic enhancement and novel germplasm development.

植物在其整个生命周期中都要面对环境波动和病原体攻击所带来的一系列独特挑战。植物适应机制的核心是转录因子(TF),尤其是 AP2/ERF 超家族--植物特有的最广泛的 TF 家族之一。该家族在协调从生长发育到次生代谢的各种生物过程中发挥着重要作用,尤其是在应对生物和非生物胁迫方面。AP2/ERF 超家族因其标志性 AP2 结构域的存在或对乙烯信号的响应而与众不同,已成为研究的焦点,越来越多的文献阐明了其多方面的作用。本综述概述了 AP2/ERF 家族的最新研究进展,包括其分类、结构上的细微差别、在高等植物中的普遍性、转录和转录后动态以及 DNA 结合和靶基因调控中错综复杂的相互作用。本研究特别关注乙烯响应因子 B3 亚群蛋白 Pti5 及其在胁迫响应中的作用,并对其在番茄中的功能和相互作用矩阵进行了推测。总体目标是为在植物遗传改良和新种质开发领域利用这些 TFs 铺平道路。
{"title":"APETALA2/ethylene-responsive factors in higher plant and their roles in regulation of plant stress response.","authors":"Qiong Tang, Sishan Wei, Xiaodong Zheng, Pengcheng Tu, Fei Tao","doi":"10.1080/07388551.2023.2299769","DOIUrl":"10.1080/07388551.2023.2299769","url":null,"abstract":"<p><p>Plants, anchored throughout their life cycles, face a unique set of challenges from fluctuating environments and pathogenic assaults. Central to their adaptative mechanisms are transcription factors (TFs), particularly the AP2/ERF superfamily-one of the most extensive TF families unique to plants. This family plays instrumental roles in orchestrating diverse biological processes ranging from growth and development to secondary metabolism, and notably, responses to both biotic and abiotic stresses. Distinguished by the presence of the signature AP2 domain or its responsiveness to ethylene signals, the AP2/ERF superfamily has become a nexus of research focus, with increasing literature elucidating its multifaceted roles. This review provides a synoptic overview of the latest research advancements on the AP2/ERF family, spanning its taxonomy, structural nuances, prevalence in higher plants, transcriptional and post-transcriptional dynamics, and the intricate interplay in DNA-binding and target gene regulation. Special attention is accorded to the ethylene response factor B3 subgroup protein Pti5 and its role in stress response, with speculative insights into its functionalities and interaction matrix in tomatoes. The overarching goal is to pave the way for harnessing these TFs in the realms of plant genetic enhancement and novel germplasm development.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1533-1551"},"PeriodicalIF":8.1,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139545425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Critical Reviews in Biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1