首页 > 最新文献

Critical Reviews in Biotechnology最新文献

英文 中文
Every road leads to Rome: diverse biosynthetic regulation of plant cell wall-degrading enzymes in filamentous fungi Penicillium oxalicum and Trichoderma reesei. 条条大路通罗马:丝状真菌草青霉和里氏木霉中植物细胞壁降解酶的多种生物合成调控。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-01 Epub Date: 2023-11-30 DOI: 10.1080/07388551.2023.2280810
Shuai Zhao, Ting Zhang, Tomohisa Hasunuma, Akihiko Kondo, Xin-Qing Zhao, Jia-Xun Feng

Cellulases and xylanases are plant cell wall-degrading enzymes (CWDEs) that are critical to sustainable bioproduction based on renewable lignocellulosic biomass to reduce carbon dioxide emission. Currently, these enzymes are mainly produced from filamentous fungi, especially Trichoderma reesei and Penicillium oxalicum. However, an in-depth comparison of these two producers has not been performed. Although both P. oxalicum and T. reesei harbor CWDE systems, they exhibit distinct features regulating the production of these enzymes, mainly through different transcriptional regulatory networks. This review presents the strikingly different modes of genome-wide regulation of cellulase and xylanase biosynthesis in P. oxalicum and T. reesei, including sugar transporters, signal transduction cascades, transcription factors, chromatin remodeling, and three-dimensional organization of chromosomes. In addition, different molecular breeding approaches employed, based on the understanding of the regulatory networks, are summarized. This review highlights the existence of very different regulatory modes leading to the efficient regulation of CWDE production in filamentous fungi, akin to the adage that "every road leads to Rome." An understanding of this divergence may help further improvements in fungal enzyme production through the metabolic engineering and synthetic biology of certain fungal species.

纤维素酶和木聚糖酶是植物细胞壁降解酶(CWDEs),它们对基于可再生木质纤维素生物质的可持续生物生产至关重要,以减少二氧化碳排放。目前,这些酶主要由丝状真菌产生,尤其是里氏木霉和草酸青霉。然而,还没有对这两种生产商进行深入的比较。尽管草藻和芦杉都含有CWDE系统,但它们在调节这些酶的产生方面表现出不同的特征,主要是通过不同的转录调控网络。本文从糖转运体、信号转导级联、转录因子、染色质重塑和染色体三维组织等方面综述了草叶苜蓿和芦花苜蓿纤维素酶和木聚糖酶生物合成的全基因组调控模式。此外,基于对调控网络的认识,综述了不同分子育种方法的应用。这篇综述强调了导致丝状真菌中CWDE产生有效调节的非常不同的调节模式的存在,类似于“条条大路通罗马”的谚语。对这种差异的理解可能有助于通过某些真菌物种的代谢工程和合成生物学进一步改进真菌酶的生产。
{"title":"Every road leads to Rome: diverse biosynthetic regulation of plant cell wall-degrading enzymes in filamentous fungi <i>Penicillium oxalicum</i> and <i>Trichoderma reesei</i>.","authors":"Shuai Zhao, Ting Zhang, Tomohisa Hasunuma, Akihiko Kondo, Xin-Qing Zhao, Jia-Xun Feng","doi":"10.1080/07388551.2023.2280810","DOIUrl":"10.1080/07388551.2023.2280810","url":null,"abstract":"<p><p>Cellulases and xylanases are plant cell wall-degrading enzymes (CWDEs) that are critical to sustainable bioproduction based on renewable lignocellulosic biomass to reduce carbon dioxide emission. Currently, these enzymes are mainly produced from filamentous fungi, especially <i>Trichoderma reesei</i> and <i>Penicillium oxalicum</i>. However, an in-depth comparison of these two producers has not been performed. Although both <i>P. oxalicum</i> and <i>T. reesei</i> harbor CWDE systems, they exhibit distinct features regulating the production of these enzymes, mainly through different transcriptional regulatory networks. This review presents the strikingly different modes of genome-wide regulation of cellulase and xylanase biosynthesis in <i>P. oxalicum</i> and <i>T. reesei</i>, including sugar transporters, signal transduction cascades, transcription factors, chromatin remodeling, and three-dimensional organization of chromosomes. In addition, different molecular breeding approaches employed, based on the understanding of the regulatory networks, are summarized. This review highlights the existence of very different regulatory modes leading to the efficient regulation of CWDE production in filamentous fungi, akin to the adage that \"every road leads to Rome.\" An understanding of this divergence may help further improvements in fungal enzyme production through the metabolic engineering and synthetic biology of certain fungal species.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1241-1261"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138458393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bacteriophages: a potential game changer in food processing industry. 噬菌体:食品加工业的潜在变革者。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-01-16 DOI: 10.1080/07388551.2023.2299768
Vandana Chaudhary, Priyanka Kajla, Deepika Lather, Nisha Chaudhary, Priya Dangi, Punit Singh, Ravi Pandiselvam

In the food industry, despite the widespread use of interventions such as preservatives and thermal and non-thermal processing technologies to improve food safety, incidences of foodborne disease continue to happen worldwide, prompting the search for alternative strategies. Bacteriophages, commonly known as phages, have emerged as a promising alternative for controlling pathogenic bacteria in food. This review emphasizes the potential applications of phages in biological sciences, food processing, and preservation, with a particular focus on their role as biocontrol agents for improving food quality and preservation. By shedding light on recent developments and future possibilities, this review highlights the significance of phages in the food industry. Additionally, it addresses crucial aspects such as regulatory status and safety concerns surrounding the use of bacteriophages. The inclusion of up-to-date literature further underscores the relevance of phage-based strategies in reducing foodborne pathogenic bacteria's presence in both food and the production environment. As we look ahead, new phage products are likely to be targeted against emerging foodborne pathogens. This will further advance the efficacy of approaches that are based on phages in maintaining the safety and security of food.

在食品行业,尽管广泛使用防腐剂、热加工和非热加工技术等干预措施来提高食品安全,但食源性疾病的发病率仍在全球范围内持续发生,这促使人们寻找替代策略。噬菌体(俗称 "噬菌体")已成为控制食品中致病菌的一种有前途的替代方法。这篇综述强调了噬菌体在生物科学、食品加工和保存方面的潜在应用,尤其关注噬菌体作为生物控制剂在改善食品质量和保存方面的作用。通过阐明最新发展和未来的可能性,本综述强调了噬菌体在食品工业中的重要意义。此外,本综述还探讨了噬菌体使用的监管状况和安全问题等重要方面。最新文献的加入进一步强调了基于噬菌体的策略在减少食源性致病菌在食品和生产环境中的存在方面的重要性。展望未来,新的噬菌体产品可能会针对新出现的食源性病原体。这将进一步提高以噬菌体为基础的方法在维护食品安全方面的功效。
{"title":"Bacteriophages: a potential game changer in food processing industry.","authors":"Vandana Chaudhary, Priyanka Kajla, Deepika Lather, Nisha Chaudhary, Priya Dangi, Punit Singh, Ravi Pandiselvam","doi":"10.1080/07388551.2023.2299768","DOIUrl":"10.1080/07388551.2023.2299768","url":null,"abstract":"<p><p>In the food industry, despite the widespread use of interventions such as preservatives and thermal and non-thermal processing technologies to improve food safety, incidences of foodborne disease continue to happen worldwide, prompting the search for alternative strategies. Bacteriophages, commonly known as phages, have emerged as a promising alternative for controlling pathogenic bacteria in food. This review emphasizes the potential applications of phages in biological sciences, food processing, and preservation, with a particular focus on their role as biocontrol agents for improving food quality and preservation. By shedding light on recent developments and future possibilities, this review highlights the significance of phages in the food industry. Additionally, it addresses crucial aspects such as regulatory status and safety concerns surrounding the use of bacteriophages. The inclusion of up-to-date literature further underscores the relevance of phage-based strategies in reducing foodborne pathogenic bacteria's presence in both food and the production environment. As we look ahead, new phage products are likely to be targeted against emerging foodborne pathogens. This will further advance the efficacy of approaches that are based on phages in maintaining the safety and security of food.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1325-1349"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139478378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilizing proteomics to identify and optimize microalgae strains for high-quality dietary protein: a review. 利用蛋白质组学技术鉴定和优化微藻菌株获取优质膳食蛋白质的研究进展。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-01 Epub Date: 2023-11-30 DOI: 10.1080/07388551.2023.2283376
Sara Hamzelou, Damien Belobrajdic, James A Broadbent, Angéla Juhász, Kim Lee Chang, Ian Jameson, Peter Ralph, Michelle L Colgrave

Algae-derived protein has immense potential to provide high-quality protein foods for the expanding human population. To meet its potential, a broad range of scientific tools are required to identify optimal algal strains from the hundreds of thousands available and identify ideal growing conditions for strains that produce high-quality protein with functional benefits. A research pipeline that includes proteomics can provide a deeper interpretation of microalgal composition and biochemistry in the pursuit of these goals. To date, proteomic investigations have largely focused on pathways that involve lipid production in selected microalgae species. Herein, we report the current state of microalgal proteome measurement and discuss promising approaches for the development of protein-containing food products derived from algae.

藻类衍生的蛋白质具有巨大的潜力,可以为不断扩大的人口提供高质量的蛋白质食品。为了发挥其潜力,需要广泛的科学工具来从数十万种可用的藻类菌株中确定最佳菌株,并为产生具有功能益处的高质量蛋白质的菌株确定理想的生长条件。包括蛋白质组学在内的研究管道可以在追求这些目标的过程中提供对微藻组成和生物化学的更深层次的解释。迄今为止,蛋白质组学研究主要集中在选定的微藻物种中涉及脂质产生的途径。在此,我们报告了微藻蛋白质组测量的现状,并讨论了从藻类衍生的含蛋白质食品的开发有前途的方法。
{"title":"Utilizing proteomics to identify and optimize microalgae strains for high-quality dietary protein: a review.","authors":"Sara Hamzelou, Damien Belobrajdic, James A Broadbent, Angéla Juhász, Kim Lee Chang, Ian Jameson, Peter Ralph, Michelle L Colgrave","doi":"10.1080/07388551.2023.2283376","DOIUrl":"10.1080/07388551.2023.2283376","url":null,"abstract":"<p><p>Algae-derived protein has immense potential to provide high-quality protein foods for the expanding human population. To meet its potential, a broad range of scientific tools are required to identify optimal algal strains from the hundreds of thousands available and identify ideal growing conditions for strains that produce high-quality protein with functional benefits. A research pipeline that includes proteomics can provide a deeper interpretation of microalgal composition and biochemistry in the pursuit of these goals. To date, proteomic investigations have largely focused on pathways that involve lipid production in selected microalgae species. Herein, we report the current state of microalgal proteome measurement and discuss promising approaches for the development of protein-containing food products derived from algae.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1280-1295"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138458394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Global regulator IrrE on stress tolerance: a review. 关于抗逆性的全球调控因子 IrrE:综述。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-01-21 DOI: 10.1080/07388551.2023.2299766
Li Wang, Yong-Shui Tan, Kai Chen, Samuel Ntakirutimana, Zhi-Hua Liu, Bing-Zhi Li, Ying-Jin Yuan

Stress tolerance is a vital attribute for all living beings to cope with environmental adversities. IrrE (also named PprI) from Deinococcus radiodurans enhances resistance to extreme radiation stress by functioning as a global regulator, mediating the transcription of genes involved in deoxyribonucleic acid (DNA) damage response (DDR). The expression of IrrE augmented the resilience of various species to heat, radiation, oxidation, osmotic stresses and inhibitors, encompassing bacterial, fungal, plant, and mammalian cells. Moreover, IrrE was employed in a global regulator engineering strategy to broaden its applications in stress tolerance. The regulatory impacts of heterologously expressed IrrE have been investigated at the molecular and systems level, including the regulation of genes, proteins, modules, or pathways involved in DNA repair, detoxification proteins, protective molecules, native regulators and other aspects. In this review, we discuss the regulatory role and mechanism of IrrE in the antiradiation response of D. radiodurans. Furthermore, the applications and regulatory effects of heterologous expression of IrrE to enhance abiotic stress tolerance are summarized in particular.

应激耐受性是所有生物应对环境逆境的重要属性。辐射球菌中的IrrE(又名PprI)作为一种全局调节因子,可介导参与脱氧核糖核酸(DNA)损伤应答(DDR)的基因转录,从而增强对极端辐射胁迫的抵抗力。IrrE 的表达增强了各种物种对热、辐射、氧化、渗透胁迫和抑制剂的恢复能力,包括细菌、真菌、植物和哺乳动物细胞。此外,IrrE 还被用于全球调控因子工程战略,以扩大其在抗逆性方面的应用。人们在分子和系统水平上研究了异源表达的IrrE的调控影响,包括对涉及DNA修复、解毒蛋白、保护分子、原生调控因子和其他方面的基因、蛋白、模块或途径的调控。在这篇综述中,我们讨论了 IrrE 在 D. radiodurans 抗辐射反应中的调控作用和机制。此外,还特别总结了异源表达 IrrE 在提高非生物胁迫耐受性方面的应用和调控作用。
{"title":"Global regulator IrrE on stress tolerance: a review.","authors":"Li Wang, Yong-Shui Tan, Kai Chen, Samuel Ntakirutimana, Zhi-Hua Liu, Bing-Zhi Li, Ying-Jin Yuan","doi":"10.1080/07388551.2023.2299766","DOIUrl":"10.1080/07388551.2023.2299766","url":null,"abstract":"<p><p>Stress tolerance is a vital attribute for all living beings to cope with environmental adversities. IrrE (also named PprI) from <i>Deinococcus radiodurans</i> enhances resistance to extreme radiation stress by functioning as a global regulator, mediating the transcription of genes involved in deoxyribonucleic acid (DNA) damage response (DDR). The expression of IrrE augmented the resilience of various species to heat, radiation, oxidation, osmotic stresses and inhibitors, encompassing bacterial, fungal, plant, and mammalian cells. Moreover, IrrE was employed in a global regulator engineering strategy to broaden its applications in stress tolerance. The regulatory impacts of heterologously expressed IrrE have been investigated at the molecular and systems level, including the regulation of genes, proteins, modules, or pathways involved in DNA repair, detoxification proteins, protective molecules, native regulators and other aspects. In this review, we discuss the regulatory role and mechanism of IrrE in the antiradiation response of <i>D. radiodurans</i>. Furthermore, the applications and regulatory effects of heterologous expression of IrrE to enhance abiotic stress tolerance are summarized in particular.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1439-1459"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139512046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Advances in high-throughput screening approaches for biosurfactants: current trends, bottlenecks and perspectives. 生物表面活性剂高通量筛选方法的进展:当前趋势、瓶颈和前景。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-01-17 DOI: 10.1080/07388551.2023.2290981
Muneer Ahmed Qazi, Irfan Ali Phulpoto, Qinhong Wang, Zongjie Dai

The market size of biosurfactants (BSs) has been expanding at an extremely fast pace due to their broad application scope. Therefore, the re-construction of cell factories with modified genomic and metabolic profiles for desired industrial performance has been an intriguing aspect. Typical mutagenesis approaches generate huge mutant libraries, whereas a battery of specific, robust, and cost-effective high-throughput screening (HTS) methods is requisite to screen target strains for desired phenotypes. So far, only a few specialized HTS assays have been developed for BSs that were successfully applied to obtain anticipated mutants. The most important milestones to reach, however, continue to be: specificity, sensitivity, throughput, and the potential for automation. Here, we discuss important colorimetric and fluorometric HTS approaches for possible intervention on automated HTS platforms. Moreover, we explain current bottlenecks in developing specialized HTS platforms for screening high-yielding producers and discuss possible perspectives for addressing such challenges.

由于生物表面活性剂(BS)的应用范围广泛,其市场规模一直在以极快的速度扩大。因此,如何利用经过改造的基因组和代谢特征重建细胞工厂,以实现所需的工业性能,一直是一个引人关注的问题。典型的诱变方法会产生庞大的突变体库,而要想筛选出目标菌株所需的表型,则需要一系列特异、稳健且经济高效的高通量筛选(HTS)方法。迄今为止,只有少数针对 BS 的专门 HTS 检测方法被成功应用于获得预期突变体。然而,最重要的里程碑仍然是:特异性、灵敏度、通量和自动化潜力。在此,我们将讨论重要的比色法和荧光法 HTS 方法,以便对自动化 HTS 平台进行可能的干预。此外,我们还解释了目前在开发用于筛选高产生产者的专用 HTS 平台方面存在的瓶颈,并讨论了应对这些挑战的可能前景。
{"title":"Advances in high-throughput screening approaches for biosurfactants: current trends, bottlenecks and perspectives.","authors":"Muneer Ahmed Qazi, Irfan Ali Phulpoto, Qinhong Wang, Zongjie Dai","doi":"10.1080/07388551.2023.2290981","DOIUrl":"10.1080/07388551.2023.2290981","url":null,"abstract":"<p><p>The market size of biosurfactants (BSs) has been expanding at an extremely fast pace due to their broad application scope. Therefore, the re-construction of cell factories with modified genomic and metabolic profiles for desired industrial performance has been an intriguing aspect. Typical mutagenesis approaches generate huge mutant libraries, whereas a battery of specific, robust, and cost-effective high-throughput screening (HTS) methods is requisite to screen target strains for desired phenotypes. So far, only a few specialized HTS assays have been developed for BSs that were successfully applied to obtain anticipated mutants. The most important milestones to reach, however, continue to be: specificity, sensitivity, throughput, and the potential for automation. Here, we discuss important colorimetric and fluorometric HTS approaches for possible intervention on automated HTS platforms. Moreover, we explain current bottlenecks in developing specialized HTS platforms for screening high-yielding producers and discuss possible perspectives for addressing such challenges.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1403-1421"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139485388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ascorbic acid: a metabolite switch for designing stress-smart crops. 抗坏血酸:设计抗逆作物的代谢开关。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-01-01 DOI: 10.1080/07388551.2023.2286428
Shefali Mishra, Ankush Sharma, Ashish Kumar Srivastava

Plant growth and productivity are continually being challenged by a diverse array of abiotic stresses, including: water scarcity, extreme temperatures, heavy metal exposure, and soil salinity. A common theme in these stresses is the overproduction of reactive oxygen species (ROS), which disrupts cellular redox homeostasis causing oxidative damage. Ascorbic acid (AsA), commonly known as vitamin C, is an essential nutrient for humans, and also plays a crucial role in the plant kingdom. AsA is synthesized by plants through the d-mannose/l-galactose pathway that functions as a powerful antioxidant and protects plant cells from ROS generated during photosynthesis. AsA controls several key physiological processes, including: photosynthesis, respiration, and carbohydrate metabolism, either by acting as a co-factor for metabolic enzymes or by regulating cellular redox-status. AsA's multi-functionality uniquely positions it to integrate and recalibrate redox-responsive transcriptional/metabolic circuits and essential biological processes, in accordance to developmental and environmental cues. In recognition of this, we present a systematic overview of current evidence highlighting AsA as a central metabolite-switch in plants. Further, a comprehensive overview of genetic manipulation of genes involved in AsA metabolism has been provided along with the bottlenecks and future research directions, that could serve as a framework for designing "stress-smart" crops in future.

植物的生长和生产力不断受到各种非生物胁迫的挑战,这些胁迫包括:缺水、极端温度、重金属暴露和土壤盐碱化。这些胁迫的一个共同主题是活性氧(ROS)的过度产生,它破坏了细胞的氧化还原平衡,造成氧化损伤。抗坏血酸(AsA),俗称维生素 C,是人类必需的营养素,在植物界也起着至关重要的作用。植物通过 d-甘露糖/l-半乳糖途径合成 AsA,它是一种强大的抗氧化剂,能保护植物细胞免受光合作用过程中产生的 ROS 的伤害。AsA 通过作为代谢酶的辅助因子或调节细胞氧化还原状态,控制着几个关键的生理过程,包括:光合作用、呼吸作用和碳水化合物代谢。AsA 的多功能性使其能够根据发育和环境线索整合和重新校准氧化还原反应转录/代谢回路和重要的生物过程。有鉴于此,我们系统地综述了当前的证据,强调 AsA 是植物的核心代谢开关。此外,我们还全面概述了参与 AsA 代谢的基因的遗传操作以及瓶颈和未来的研究方向,这可以作为未来设计 "胁迫智能 "作物的框架。
{"title":"Ascorbic acid: a metabolite switch for designing stress-smart crops.","authors":"Shefali Mishra, Ankush Sharma, Ashish Kumar Srivastava","doi":"10.1080/07388551.2023.2286428","DOIUrl":"10.1080/07388551.2023.2286428","url":null,"abstract":"<p><p>Plant growth and productivity are continually being challenged by a diverse array of abiotic stresses, including: water scarcity, extreme temperatures, heavy metal exposure, and soil salinity. A common theme in these stresses is the overproduction of reactive oxygen species (ROS), which disrupts cellular redox homeostasis causing oxidative damage. Ascorbic acid (AsA), commonly known as vitamin C, is an essential nutrient for humans, and also plays a crucial role in the plant kingdom. AsA is synthesized by plants through the d-mannose/l-galactose pathway that functions as a powerful antioxidant and protects plant cells from ROS generated during photosynthesis. AsA controls several key physiological processes, including: photosynthesis, respiration, and carbohydrate metabolism, either by acting as a co-factor for metabolic enzymes or by regulating cellular redox-status. AsA's multi-functionality uniquely positions it to integrate and recalibrate redox-responsive transcriptional/metabolic circuits and essential biological processes, in accordance to developmental and environmental cues. In recognition of this, we present a systematic overview of current evidence highlighting AsA as a central metabolite-switch in plants. Further, a comprehensive overview of genetic manipulation of genes involved in AsA metabolism has been provided along with the bottlenecks and future research directions, that could serve as a framework for designing \"stress-smart\" crops in future.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1350-1366"},"PeriodicalIF":8.1,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139073572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Critical analysis of analytical techniques developed for statins in biological fluids, environmental and fermentation samples. 对针对生物液体、环境和发酵样品中他汀类药物开发的分析技术进行批判性分析。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-21 DOI: 10.1080/07388551.2024.2412128
Seenivasan Ayothiraman, Nithya Murugesan, Gautam Sethi

Statins are the most prescribed drug for regulating the high cholesterol level in the blood, which can lead to severe complications, such as cardiovascular diseases and other health complications. A wide range of analytical techniques have been employed for the quantification of statins from various origins, including fermentation derived (lovastatin, pravastatin, and compactin), semi-synthetic (simvastatin), and synthetic (atorvastatin, rosuvastatin, and fluvastatin) routes. The presence of more than one structural form and structural analogue generated in the biosynthesis pathway, as well as reaction intermediates and macromolecules in the clinical sample, complicates the quantification of statins. Furthermore, significant concentrations of statins in environmental samples pose serious health and ecology hazards, and estimating statins in those diluted samples is extremely difficult. On the other hand, the: cost, accurate estimation of the desired one from other structural forms, sample complexity, time, limits of detection and quantification, were major criteria distinguishing the usability of each technique. As a result, the current manuscript focuses on analytical techniques such as molecular spectroscopy (normal and derivatives UV-Visible spectrophotometer), chromatography (TLC, HP-TLC, HPLC, GC, swing column, micellar, and supercritical fluid), mass spectroscopy (HPLC-MS/MS and GC-MS/MS), sequential flow injection, capillary electrophoresis, and cyclic voltammetry, as well as their: optimal operating conditions, limits of detection and quantification, advancements, and limitations. Furthermore, various online and offline sample preparations (precipitation, solid phase extraction, liquid-liquid extraction, and micellar extraction) have been highlighted as an essential pretreatment technique to avoid the interference caused by structural analogues and other macromolecules. The greener and more sustainable concepts used in analytical approaches for the quantification statins are also highlighted with current advancements.

他汀类药物是调节血液中高胆固醇水平的最常用处方药,高胆固醇会导致严重的并发症,如心血管疾病和其他健康并发症。目前已采用多种分析技术对不同来源的他汀类药物进行定量,包括发酵衍生(洛伐他汀、普伐他汀和紧致素)、半合成(辛伐他汀)和合成(阿托伐他汀、罗苏伐他汀和氟伐他汀)途径。在生物合成途径中产生的不止一种结构形式和结构类似物,以及临床样本中的反应中间体和大分子,都使他汀类药物的定量变得复杂。此外,环境样本中他汀类药物的高浓度会对健康和生态环境造成严重危害,因此估算这些稀释样本中的他汀类药物含量极为困难。另一方面,成本、从其他结构形式中准确估算出所需的结构形式、样品复杂性、时间、检测和定量的限制是区分每种技术可用性的主要标准。因此,本手稿重点介绍了分子光谱(普通紫外-可见分光光度计和衍生物紫外-可见分光光度计)、色谱(TLC、HP-TLC、HPLC、GC、摆动柱、胶束和超临界流体)、质谱(HPLC-MS/MS 和 GC-MS/MS)、顺序流动注射、毛细管电泳和循环伏安法等分析技术,以及它们的最佳操作条件、检测和定量限制、先进性和局限性。此外,各种在线和离线样品制备(沉淀、固相萃取、液液萃取和胶束萃取)作为一种重要的预处理技术,也得到了强调,以避免结构类似物和其他大分子造成的干扰。此外,还重点介绍了目前在他汀类药物定量分析方法中采用的更环保、更可持续的理念。
{"title":"Critical analysis of analytical techniques developed for statins in biological fluids, environmental and fermentation samples.","authors":"Seenivasan Ayothiraman, Nithya Murugesan, Gautam Sethi","doi":"10.1080/07388551.2024.2412128","DOIUrl":"https://doi.org/10.1080/07388551.2024.2412128","url":null,"abstract":"<p><p>Statins are the most prescribed drug for regulating the high cholesterol level in the blood, which can lead to severe complications, such as cardiovascular diseases and other health complications. A wide range of analytical techniques have been employed for the quantification of statins from various origins, including fermentation derived (lovastatin, pravastatin, and compactin), semi-synthetic (simvastatin), and synthetic (atorvastatin, rosuvastatin, and fluvastatin) routes. The presence of more than one structural form and structural analogue generated in the biosynthesis pathway, as well as reaction intermediates and macromolecules in the clinical sample, complicates the quantification of statins. Furthermore, significant concentrations of statins in environmental samples pose serious health and ecology hazards, and estimating statins in those diluted samples is extremely difficult. On the other hand, the: cost, accurate estimation of the desired one from other structural forms, sample complexity, time, limits of detection and quantification, were major criteria distinguishing the usability of each technique. As a result, the current manuscript focuses on analytical techniques such as molecular spectroscopy (normal and derivatives UV-Visible spectrophotometer), chromatography (TLC, HP-TLC, HPLC, GC, swing column, micellar, and supercritical fluid), mass spectroscopy (HPLC-MS/MS and GC-MS/MS), sequential flow injection, capillary electrophoresis, and cyclic voltammetry, as well as their: optimal operating conditions, limits of detection and quantification, advancements, and limitations. Furthermore, various online and offline sample preparations (precipitation, solid phase extraction, liquid-liquid extraction, and micellar extraction) have been highlighted as an essential pretreatment technique to avoid the interference caused by structural analogues and other macromolecules. The greener and more sustainable concepts used in analytical approaches for the quantification statins are also highlighted with current advancements.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-31"},"PeriodicalIF":8.1,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Pilot scale polyhydroxyalkanoates biopolymer production using pure cultures: current status and future opportunities. 利用纯培养物生产中试规模的聚羟基烷酸酯生物聚合物:现状与未来机遇。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-20 DOI: 10.1080/07388551.2024.2409112
Phavit Wongsirichot

The development and commercialization of bio-based and biodegradable polyhydroxyalkanoates (PHAs) biopolymers could be crucial for the transition toward a sustainable circular economy. However, despite potential traditional and novel applications in the packaging, textiles, agriculture, automotive, electronics, and biomedical industries, the commercialization of PHAs is limited by their current market competitiveness. This review provides the first critical assessment of the current pure culture pilot-scale PHA literature, which could be crucial in translating promising laboratory-scale developments into industrial-scale commercial PHA production. It will also complement reviews of mixed microbial cultures currently dominating pilot-scale PHA literature. Pure culture fermentations could provide advantages, such as ease of characterizing microbial producers' behavior, higher PHA productivities, and better alignment with existing PHA commercialization and industrial biotechnology approaches. Key aspects, including producer organisms, fermentation volumes and schemes, control schemes, optimization, and properties of the polymers produced, are discussed in-depth, to elucidate important trends, achievements, and knowledge gaps. Furthermore, specific ways for future pilot-scale studies to help address current PHA commercialization challenges are also identified. The insights, and recommendations provided will be extremely beneficial for the future development of PHA production, at both pilot and commercial scales, whilst also being beneficial to the production of other microbial polymers and industrial biotechnology as a whole.

生物基可生物降解聚羟基烷酸酯(PHAs)生物聚合物的开发和商业化对于向可持续循环经济过渡至关重要。然而,尽管 PHAs 在包装、纺织、农业、汽车、电子和生物医学等行业具有潜在的传统和新型应用,但其商业化却受到当前市场竞争力的限制。本综述首次对目前纯培养中试规模的 PHA 文献进行了批判性评估,这对于将前景广阔的实验室规模开发转化为工业规模的商业 PHA 生产至关重要。它还将对目前在中试规模 PHA 文献中占主导地位的混合微生物培养的综述进行补充。纯培养发酵可提供一些优势,如易于表征微生物生产者的行为、更高的 PHA 生产率以及与现有 PHA 商业化和工业生物技术方法更好地结合。本文深入讨论了生产生物、发酵量和方案、控制方案、优化和所生产聚合物的特性等关键方面,以阐明重要趋势、成就和知识差距。此外,还确定了未来试点规模研究的具体方法,以帮助解决当前 PHA 商业化面临的挑战。所提供的见解和建议将对未来 PHA 生产在中试和商业规模上的发展大有裨益,同时也有利于其他微生物聚合物的生产和整个工业生物技术的发展。
{"title":"Pilot scale polyhydroxyalkanoates biopolymer production using pure cultures: current status and future opportunities.","authors":"Phavit Wongsirichot","doi":"10.1080/07388551.2024.2409112","DOIUrl":"https://doi.org/10.1080/07388551.2024.2409112","url":null,"abstract":"<p><p>The development and commercialization of bio-based and biodegradable polyhydroxyalkanoates (PHAs) biopolymers could be crucial for the transition toward a sustainable circular economy. However, despite potential traditional and novel applications in the packaging, textiles, agriculture, automotive, electronics, and biomedical industries, the commercialization of PHAs is limited by their current market competitiveness. This review provides the first critical assessment of the current pure culture pilot-scale PHA literature, which could be crucial in translating promising laboratory-scale developments into industrial-scale commercial PHA production. It will also complement reviews of mixed microbial cultures currently dominating pilot-scale PHA literature. Pure culture fermentations could provide advantages, such as ease of characterizing microbial producers' behavior, higher PHA productivities, and better alignment with existing PHA commercialization and industrial biotechnology approaches. Key aspects, including producer organisms, fermentation volumes and schemes, control schemes, optimization, and properties of the polymers produced, are discussed in-depth, to elucidate important trends, achievements, and knowledge gaps. Furthermore, specific ways for future pilot-scale studies to help address current PHA commercialization challenges are also identified. The insights, and recommendations provided will be extremely beneficial for the future development of PHA production, at both pilot and commercial scales, whilst also being beneficial to the production of other microbial polymers and industrial biotechnology as a whole.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-17"},"PeriodicalIF":8.1,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459844","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Astaxanthin biosynthesis for functional food development and space missions. 用于功能性食品开发和太空任务的虾青素生物合成。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-10-20 DOI: 10.1080/07388551.2024.2410364
Xiulan Xie, Moyu Zhong, Xinxin Huang, Xinrui Yuan, Nasser Mahna, Cassamo Ussemane Mussagy, Maozhi Ren

Astaxanthin (AXT), a natural carotenoid, has strong antioxidant and anti-ageing effects and can reduce ultraviolet light-induced damage to cells and DNA, stimulate the immune system, and improve cardiovascular disease prognosis. Despite its wide applications in the: nutraceutical, cosmetic, aquaculture, and pharmaceutical industries, AXT industrial production and application are hindered by natural source scarcity, low production efficiency, and high requirements. This review compares the qualitative differences of AXT derived from different natural sources, evaluates the upstream procedures for AXT expression in different chassis organisms, and investigates synthetic biology- and cell factory-based strategies for the industrial production of natural AXT. Synthetic biology is a promising novel strategy for reprogramming plants or microorganisms to produce AXT. Additionally, genetic engineering using cell factories extends beyond terrestrial applications, as it may contribute to the long-term sustainability of human health during space exploration and migration endeavors. This review provides a theoretical basis for the efficient and accurate genetic engineering of AXT from the microalga Haematococcuspluvialis, providing a valuable reference for future research on the biomanufacturing of AXT and other biological metabolites.

虾青素(AXT)是一种天然类胡萝卜素,具有很强的抗氧化和抗衰老作用,可以减少紫外线对细胞和 DNA 的损伤,刺激免疫系统,改善心血管疾病的预后。尽管 AXT 在营养保健品、化妆品、水产养殖和制药行业有着广泛的应用,但由于天然来源稀缺、生产效率低和要求高,AXT 的工业生产和应用受到了阻碍。本综述比较了不同天然来源的 AXT 的质量差异,评估了在不同底盘生物中表达 AXT 的上游程序,并研究了基于合成生物学和细胞工厂的天然 AXT 工业生产策略。合成生物学是重新编程植物或微生物以生产 AXT 的一种前景广阔的新策略。此外,利用细胞工厂进行的基因工程还超出了陆地应用的范围,因为它可能有助于在太空探索和移民过程中实现人类健康的长期可持续性。本综述为从微藻 Haematococcuspluvialis 中高效、准确地进行 AXT 基因工程提供了理论依据,为今后 AXT 及其他生物代谢物的生物制造研究提供了宝贵的参考。
{"title":"Astaxanthin biosynthesis for functional food development and space missions.","authors":"Xiulan Xie, Moyu Zhong, Xinxin Huang, Xinrui Yuan, Nasser Mahna, Cassamo Ussemane Mussagy, Maozhi Ren","doi":"10.1080/07388551.2024.2410364","DOIUrl":"https://doi.org/10.1080/07388551.2024.2410364","url":null,"abstract":"<p><p>Astaxanthin (AXT), a natural carotenoid, has strong antioxidant and anti-ageing effects and can reduce ultraviolet light-induced damage to cells and DNA, stimulate the immune system, and improve cardiovascular disease prognosis. Despite its wide applications in the: nutraceutical, cosmetic, aquaculture, and pharmaceutical industries, AXT industrial production and application are hindered by natural source scarcity, low production efficiency, and high requirements. This review compares the qualitative differences of AXT derived from different natural sources, evaluates the upstream procedures for AXT expression in different chassis organisms, and investigates synthetic biology- and cell factory-based strategies for the industrial production of natural AXT. Synthetic biology is a promising novel strategy for reprogramming plants or microorganisms to produce AXT. Additionally, genetic engineering using cell factories extends beyond terrestrial applications, as it may contribute to the long-term sustainability of human health during space exploration and migration endeavors. This review provides a theoretical basis for the efficient and accurate genetic engineering of AXT from the microalga <i>Haematococcuspluvialis</i>, providing a valuable reference for future research on the biomanufacturing of AXT and other biological metabolites.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-15"},"PeriodicalIF":8.1,"publicationDate":"2024-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Amplification-free nucleic acids detection with next-generation CRISPR/dx systems. 利用新一代 CRISPR/dx 系统进行无扩增核酸检测。
IF 8.1 2区 工程技术 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Pub Date : 2024-09-22 DOI: 10.1080/07388551.2024.2399560
Cia-Hin Lau, Siping Huang, Haibao Zhu

CRISPR-based diagnostics (CRISPR/Dx) have revolutionized the field of molecular diagnostics. It enables home self-test, field-deployable, and point-of-care testing (POCT). Despite the great potential of CRISPR/Dx in diagnoses of biologically complex diseases, preamplification of the template often is required for the sensitive detection of low-abundance nucleic acids. Various amplification-free CRISPR/Dx systems were recently developed to enhance signal detection at sufficient sensitivity. Broadly, these amplification-free CRISPR/Dx systems are classified into five groups depending on the signal enhancement strategies employed: CRISPR/Cas12a and/or CRISPR/Cas13a are integrated with: (1) other catalytic enzymes (Cas14a, Csm6, Argonaute, duplex-specific nuclease, nanozyme, or T7 exonuclease), (2) rational-designed oligonucleotides (multivalent aptamer, tetrahedral DNA framework, RNA G-quadruplexes, DNA roller machine, switchable-caged guide RNA, hybrid locked RNA/DNA probe, hybridized cascade probe, or "U" rich stem-loop RNA), (3) nanomaterials (nanophotonic structure, gold nanoparticle, micromotor, or microbeads), (4) electrochemical and piezoelectric plate biosensors (SERS nanoprobes, graphene field-effect transistor, redox probe, or primer exchange reaction), or (5) cutting-edge detection technology platforms (digital bioanalysis, droplet microfluidic, smartphone camera, or single nanoparticle counting). Herein, we critically discuss the advances, pitfalls and future perspectives for these amplification-free CRISPR/Dx systems in nucleic acids detection. The continued refinement of these CRISPR/Dx systems will pave the road for rapid, cost-effective, ultrasensitive, and ultraspecific on-site detection without resorting to target amplification, with the ultimate goal of establishing CRISPR/Dx as the paragon of diagnostics.

基于 CRISPR 的诊断(CRISPR/Dx)彻底改变了分子诊断领域。它实现了家庭自测、现场部署和护理点检测(POCT)。尽管 CRISPR/Dx 在诊断生物复杂疾病方面具有巨大潜力,但要灵敏地检测低丰度核酸,往往需要对模板进行预扩增。最近开发了多种无扩增 CRISPR/Dx 系统,以提高信号检测的灵敏度。根据所采用的信号增强策略,这些无扩增 CRISPR/Dx 系统大致可分为五类:CRISPR/Cas12a和/或CRISPR/Cas13a与以下方面结合在一起:(1) 其他催化酶(Cas14a、Csm6、Argonaute、双链特异性核酸酶、纳米酶或 T7 外切酶),(2) 合理设计的寡核苷酸(多价aptamer、四面体 DNA 框架、RNA G-四重链、DNA 滚轮机、可切换笼状引导 RNA、杂交锁定 RNA/DNA 探针、杂交级联探针或富含 "U "的茎环 RNA)、(3) 纳米材料(纳米光子结构、金纳米粒子、微马达或微珠),(4) 电化学和压电板生物传感器(SERS 纳米探针、石墨烯场效应晶体管、氧化还原探针或引物交换反应),或 (5) 尖端检测技术平台(数字生物分析、液滴微流控、智能手机摄像头或单纳米粒子计数)。在此,我们将认真讨论这些无扩增 CRISPR/Dx 系统在核酸检测方面的进展、缺陷和未来前景。这些CRISPR/Dx系统的不断完善将为实现快速、经济、超灵敏和超特异的现场检测铺平道路,而无需借助目标扩增,最终目标是将CRISPR/Dx打造成诊断领域的典范。
{"title":"Amplification-free nucleic acids detection with next-generation CRISPR/dx systems.","authors":"Cia-Hin Lau, Siping Huang, Haibao Zhu","doi":"10.1080/07388551.2024.2399560","DOIUrl":"https://doi.org/10.1080/07388551.2024.2399560","url":null,"abstract":"<p><p>CRISPR-based diagnostics (CRISPR/Dx) have revolutionized the field of molecular diagnostics. It enables home self-test, field-deployable, and point-of-care testing (POCT). Despite the great potential of CRISPR/Dx in diagnoses of biologically complex diseases, preamplification of the template often is required for the sensitive detection of low-abundance nucleic acids. Various amplification-free CRISPR/Dx systems were recently developed to enhance signal detection at sufficient sensitivity. Broadly, these amplification-free CRISPR/Dx systems are classified into five groups depending on the signal enhancement strategies employed: CRISPR/Cas12a and/or CRISPR/Cas13a are integrated with: (1) other catalytic enzymes (Cas14a, Csm6, Argonaute, duplex-specific nuclease, nanozyme, or T7 exonuclease), (2) rational-designed oligonucleotides (multivalent aptamer, tetrahedral DNA framework, RNA G-quadruplexes, DNA roller machine, switchable-caged guide RNA, hybrid locked RNA/DNA probe, hybridized cascade probe, or \"U\" rich stem-loop RNA), (3) nanomaterials (nanophotonic structure, gold nanoparticle, micromotor, or microbeads), (4) electrochemical and piezoelectric plate biosensors (SERS nanoprobes, graphene field-effect transistor, redox probe, or primer exchange reaction), or (5) cutting-edge detection technology platforms (digital bioanalysis, droplet microfluidic, smartphone camera, or single nanoparticle counting). Herein, we critically discuss the advances, pitfalls and future perspectives for these amplification-free CRISPR/Dx systems in nucleic acids detection. The continued refinement of these CRISPR/Dx systems will pave the road for rapid, cost-effective, ultrasensitive, and ultraspecific on-site detection without resorting to target amplification, with the ultimate goal of establishing CRISPR/Dx as the paragon of diagnostics.</p>","PeriodicalId":10752,"journal":{"name":"Critical Reviews in Biotechnology","volume":" ","pages":"1-28"},"PeriodicalIF":8.1,"publicationDate":"2024-09-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142281514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Critical Reviews in Biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1