首页 > 最新文献

Current pharmaceutical design最新文献

英文 中文
Immunopharmacological Insights into Cordyceps spp.: Harnessing Therapeutic Potential for Sepsis.
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-12-17 DOI: 10.2174/0113816128326301240920040036
Juhi Saxena, Gaurang Agarwal, Sarvjeet Das, Anshu Kumar, Krish Thakkar, Sanket Kaushik, Vijay Kumar Srivatsava, Arif Jamal Siddiqui, Anupam Jyoti

Cordyceps spp. (CS), a well-known medicinal mushroom that belongs to Tibetan medicine and is predominantly found in the high altitudes in the Himalayas. CS is a rich reservoir of various bioactive substances including nucleosides, sterols flavonoids, peptides, and phenolic compounds. The bioactive compounds and CS extract have antibacterial, antioxidant, immunomodulatory, and inflammatory properties in addition to organ protection properties across a range of disease states. The study aimed to review the potential of CS, a medicinal mushroom, as a treatment for sepsis. While current sepsis drugs have side effects, CS shows promise due to its anti-inflammatory, antioxidant, and antibacterial properties. We have performed an extensive literature search based on published original and review articles in Scopus and PubMed. The keywords used were Cordyceps, sepsis, and inflammation. Studies indicate that CS extract and bioactive compounds target free radicals including oxidative as well as nitrosative stress, lower inflammation, and modulate the immune system, all of which are critical components in sepsis. The brain, liver, kidneys, lungs, and heart are among the organs that CS extracts may be able to shield against harm during sepsis. Traditional remedies with anti-inflammatory and protective qualities, such as Cordyceps mushrooms, are promising in sepsis. However, more research including clinical trials is required to validate the usefulness of CS metabolites in terms of organ protection and fight infections in sepsis.

{"title":"Immunopharmacological Insights into Cordyceps spp.: Harnessing Therapeutic Potential for Sepsis.","authors":"Juhi Saxena, Gaurang Agarwal, Sarvjeet Das, Anshu Kumar, Krish Thakkar, Sanket Kaushik, Vijay Kumar Srivatsava, Arif Jamal Siddiqui, Anupam Jyoti","doi":"10.2174/0113816128326301240920040036","DOIUrl":"https://doi.org/10.2174/0113816128326301240920040036","url":null,"abstract":"<p><p>Cordyceps spp. (CS), a well-known medicinal mushroom that belongs to Tibetan medicine and is predominantly found in the high altitudes in the Himalayas. CS is a rich reservoir of various bioactive substances including nucleosides, sterols flavonoids, peptides, and phenolic compounds. The bioactive compounds and CS extract have antibacterial, antioxidant, immunomodulatory, and inflammatory properties in addition to organ protection properties across a range of disease states. The study aimed to review the potential of CS, a medicinal mushroom, as a treatment for sepsis. While current sepsis drugs have side effects, CS shows promise due to its anti-inflammatory, antioxidant, and antibacterial properties. We have performed an extensive literature search based on published original and review articles in Scopus and PubMed. The keywords used were Cordyceps, sepsis, and inflammation. Studies indicate that CS extract and bioactive compounds target free radicals including oxidative as well as nitrosative stress, lower inflammation, and modulate the immune system, all of which are critical components in sepsis. The brain, liver, kidneys, lungs, and heart are among the organs that CS extracts may be able to shield against harm during sepsis. Traditional remedies with anti-inflammatory and protective qualities, such as Cordyceps mushrooms, are promising in sepsis. However, more research including clinical trials is required to validate the usefulness of CS metabolites in terms of organ protection and fight infections in sepsis.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Immunotherapy for Type 1 Diabetes: Mechanistic Insights and Impact of Delivery Systems.
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-12-17 DOI: 10.2174/0113816128343081241030054303
Nishi Agrawal, Ganesh Kumar, Sree Prakash Pandey, Shweta Yadav, Manoj Kumar, M S Sudheesh, Ravi Shankar Pandey

Type 1 Diabetes is an autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells, leading to hyperglycemia and various complications. Despite insulin replacement therapy, there is a need for therapies targeting the underlying autoimmune response. This review aims to explore the mechanistic insights into T1D pathogenesis and the impact of delivery systems on immunotherapy. Genetic predisposition and environmental factors contribute to T1D development, triggering an immune-mediated attack on β-cells. T cells, particularly CD4+ and CD8+ T cells, play a central role in β-cell destruction. Antigen- specific immunotherapy is a unique way to modify the immune system by targeting specific antigens (substances that trigger the immune system) for immunotherapy. It aims to restore immune tolerance by targeting autoantigens associated with T1D. Nanoparticle-based delivery systems offer precise antigen delivery, promoting immune tolerance induction. Various studies have demonstrated the efficacy of nanoparticle-mediated delivery of autoantigens and immunomodulatory agents in preclinical models, and several patents have been made in T1D. Combining antigen-specific immunotherapy with β-cell regeneration strategies presents a promising approach for T1D treatment. However, challenges remain in optimizing delivery systems for targeted immune modulation while ensuring safety and efficacy.

{"title":"Immunotherapy for Type 1 Diabetes: Mechanistic Insights and Impact of Delivery Systems.","authors":"Nishi Agrawal, Ganesh Kumar, Sree Prakash Pandey, Shweta Yadav, Manoj Kumar, M S Sudheesh, Ravi Shankar Pandey","doi":"10.2174/0113816128343081241030054303","DOIUrl":"https://doi.org/10.2174/0113816128343081241030054303","url":null,"abstract":"<p><p>Type 1 Diabetes is an autoimmune disease characterized by the destruction of insulin-producing pancreatic β-cells, leading to hyperglycemia and various complications. Despite insulin replacement therapy, there is a need for therapies targeting the underlying autoimmune response. This review aims to explore the mechanistic insights into T1D pathogenesis and the impact of delivery systems on immunotherapy. Genetic predisposition and environmental factors contribute to T1D development, triggering an immune-mediated attack on β-cells. T cells, particularly CD4+ and CD8+ T cells, play a central role in β-cell destruction. Antigen- specific immunotherapy is a unique way to modify the immune system by targeting specific antigens (substances that trigger the immune system) for immunotherapy. It aims to restore immune tolerance by targeting autoantigens associated with T1D. Nanoparticle-based delivery systems offer precise antigen delivery, promoting immune tolerance induction. Various studies have demonstrated the efficacy of nanoparticle-mediated delivery of autoantigens and immunomodulatory agents in preclinical models, and several patents have been made in T1D. Combining antigen-specific immunotherapy with β-cell regeneration strategies presents a promising approach for T1D treatment. However, challenges remain in optimizing delivery systems for targeted immune modulation while ensuring safety and efficacy.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding and Using Animal Models of Hepatotoxicity.
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-12-17 DOI: 10.2174/0113816128338726241029175250
Verma, Preeti, Annu, Rahul Kumar Sharma, Shivani Chopra, Hitesh Chopra, Dong Kil Shin

Hepatotoxicity is a critical health hazard, primarily contributing to the increased incidence of deaths globally. The liver is one of the major and extremely vital organs of the human body. Autoimmune diseases, viruses, exposure to toxicants such as carcinogens, and changes in eating habits can all cause liver problems, among other things. Free radical generation, together with raised enzyme levels including SGOT, SGPT, and total bilirubin, are among the pathological changes set off by liver injury. Hepatotoxicity causes changes in cells, such as eosinophilic cytoplasm, nuclear pyknosis, fatty degeneration, too many liver lesions, and hepatic centrilobular necrosis due to lipid peroxidation. Researchers have used animal models to investigate liver diseases and toxicities. Drugs such as azathioprine, alcoholism, paracetamol intoxication, and anti-tuberculosis drugs are some of the most common causes of liver toxicity. These toxins cause calcium ions (Ca2+), reactive oxygen species (ROS), and inflammatory mediators to be released inside cells. This activates immune cells like NK cells, NKT cells, and Kupffer cells. These signaling pathways also play roles in hepatotoxicity. Due to its pathogenesis, no effective drug is currently available for hepatotoxicity due to a lack of understanding related to the signaling factors involved in it. The paper primarily examines different experimental models of hepatotoxicity, including non-invasive and invasive methods, as well as genetic models. As such, these models are crucial tools in advancing our understanding of hepatotoxicity, thus paving the way for new therapeutic interventions.

{"title":"Understanding and Using Animal Models of Hepatotoxicity.","authors":"Verma, Preeti, Annu, Rahul Kumar Sharma, Shivani Chopra, Hitesh Chopra, Dong Kil Shin","doi":"10.2174/0113816128338726241029175250","DOIUrl":"https://doi.org/10.2174/0113816128338726241029175250","url":null,"abstract":"<p><p>Hepatotoxicity is a critical health hazard, primarily contributing to the increased incidence of deaths globally. The liver is one of the major and extremely vital organs of the human body. Autoimmune diseases, viruses, exposure to toxicants such as carcinogens, and changes in eating habits can all cause liver problems, among other things. Free radical generation, together with raised enzyme levels including SGOT, SGPT, and total bilirubin, are among the pathological changes set off by liver injury. Hepatotoxicity causes changes in cells, such as eosinophilic cytoplasm, nuclear pyknosis, fatty degeneration, too many liver lesions, and hepatic centrilobular necrosis due to lipid peroxidation. Researchers have used animal models to investigate liver diseases and toxicities. Drugs such as azathioprine, alcoholism, paracetamol intoxication, and anti-tuberculosis drugs are some of the most common causes of liver toxicity. These toxins cause calcium ions (Ca2+), reactive oxygen species (ROS), and inflammatory mediators to be released inside cells. This activates immune cells like NK cells, NKT cells, and Kupffer cells. These signaling pathways also play roles in hepatotoxicity. Due to its pathogenesis, no effective drug is currently available for hepatotoxicity due to a lack of understanding related to the signaling factors involved in it. The paper primarily examines different experimental models of hepatotoxicity, including non-invasive and invasive methods, as well as genetic models. As such, these models are crucial tools in advancing our understanding of hepatotoxicity, thus paving the way for new therapeutic interventions.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142853210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Daidzein Inhibits Non-small Cell Lung Cancer Growth by Pyroptosis.
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-12-02 DOI: 10.2174/0113816128330530240918073721
Fanfan Zeng, Yu Zhang, Ting Luo, Chengman Wang, Denggang Fu, Xin Wang

Introduction: Non-Small-Cell Lung Cancer (NSCLC) represents the leading cause of cancer deaths in the world. We previously found that daidzein, one of the key bioactivators in soy isoflavone, can inhibit NSCLC cell proliferation and migration, while the molecular mechanisms of daidzein in NSCLC remain unclear.

Methods: We developed an NSCLC nude mouse model using H1299 cells and treated the mice with daidzein (30 mg/kg/day). Mass spectrometry analysis of tumor tissues from daidzein-treated mice identified 601 differentially expressed proteins (DEPs) compared to the vehicle-treated group. Gene enrichment analysis revealed that these DEPs were primarily associated with immune regulatory functions, including B cell receptor and chemokine pathways, as well as natural killer cell-mediated cytotoxicity. Notably, the NOD-like receptor signaling pathway, which is closely linked to pyroptosis, was significantly enriched.

Results: Further analysis of key pyroptosis-related molecules, such as ASC, CASP1, GSDMD, and IL-1β, revealed differential expression in NSCLC versus normal tissues. High levels of ASC and CASP1 were associated with a favorable prognosis in NSCLC, suggesting that they may be critical effectors of daidzein's action. In NSCLC-bearing mice treated with daidzein, RT-qPCR and Western blot analyses showed elevated mRNA and protein levels of ASC, CASP1, and IL-1β but not GSDMD, which was consistent with the proteomic data.

Conclusion: In summary, this study demonstrated that daidzein inhibits NSCLC growth by inducing pyroptosis. Key pathway modulators ASC, CASP1, and IL-1β were identified as primary targets of daidzein. These findings offer insights into the molecular mechanisms underlying the anti-NSCLC effects of daidzein and could offer dietary recommendations for managing NSCLC.

{"title":"Daidzein Inhibits Non-small Cell Lung Cancer Growth by Pyroptosis.","authors":"Fanfan Zeng, Yu Zhang, Ting Luo, Chengman Wang, Denggang Fu, Xin Wang","doi":"10.2174/0113816128330530240918073721","DOIUrl":"https://doi.org/10.2174/0113816128330530240918073721","url":null,"abstract":"<p><strong>Introduction: </strong>Non-Small-Cell Lung Cancer (NSCLC) represents the leading cause of cancer deaths in the world. We previously found that daidzein, one of the key bioactivators in soy isoflavone, can inhibit NSCLC cell proliferation and migration, while the molecular mechanisms of daidzein in NSCLC remain unclear.</p><p><strong>Methods: </strong>We developed an NSCLC nude mouse model using H1299 cells and treated the mice with daidzein (30 mg/kg/day). Mass spectrometry analysis of tumor tissues from daidzein-treated mice identified 601 differentially expressed proteins (DEPs) compared to the vehicle-treated group. Gene enrichment analysis revealed that these DEPs were primarily associated with immune regulatory functions, including B cell receptor and chemokine pathways, as well as natural killer cell-mediated cytotoxicity. Notably, the NOD-like receptor signaling pathway, which is closely linked to pyroptosis, was significantly enriched.</p><p><strong>Results: </strong>Further analysis of key pyroptosis-related molecules, such as ASC, CASP1, GSDMD, and IL-1β, revealed differential expression in NSCLC versus normal tissues. High levels of ASC and CASP1 were associated with a favorable prognosis in NSCLC, suggesting that they may be critical effectors of daidzein's action. In NSCLC-bearing mice treated with daidzein, RT-qPCR and Western blot analyses showed elevated mRNA and protein levels of ASC, CASP1, and IL-1β but not GSDMD, which was consistent with the proteomic data.</p><p><strong>Conclusion: </strong>In summary, this study demonstrated that daidzein inhibits NSCLC growth by inducing pyroptosis. Key pathway modulators ASC, CASP1, and IL-1β were identified as primary targets of daidzein. These findings offer insights into the molecular mechanisms underlying the anti-NSCLC effects of daidzein and could offer dietary recommendations for managing NSCLC.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142767042","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Screening of Natural Compounds as Inhibitor of Mpro SARS-CoV-2 Protein; A Molecular Dynamics Approach. 筛选天然化合物作为 Mpro SARS-CoV-2 蛋白的抑制剂;一种分子动力学方法。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-19 DOI: 10.2174/0113816128315762240828052002
Anum Javaid, Nousheen Bibi, Malik Siddique Mahmood, Hina Batool, Sana Batool, Arslan Hamid, Mahjabeen Saleem, Naeem Mahmood Ashraf, Tayyaba Afsar, Ali Almajwal, Suhail Razak

Background: New strains of SARS-CoV-2 are continually emerging worldwide. Recently, WHO warned of a severe new wave in Europe. Current vaccines cannot fully prevent reinfection in vaccinated individuals.

Aim: Given this issue, recent research focuses on new antiviral candidates with high efficacy and minimal side effects.

Objectives: Screen natural compounds as inhibitors of Mpro SARS-CoV-2 protein using molecular dynamics.

Methods: In this study, we have screened the potential of plant-based natural anti-viral compounds. A library of the 579 compounds was generated using currently available literature and online databases. All these compounds were screened based on their binding affinities as predicted by molecular docking analysis and compounds having binding affinity values ≤ -10 Kcal/mol were considered for analysis. Furthermore, from physicochemical assessment, drug-likeness initially nine compounds were identified as the antiviral targets for the selected viral proteins. After ADMET analysis and simulations, the compound 9064 with the lowest RMSD, Coul-SR interaction energy (-71.53 kJ/mol), and LJ-SR energy (-95.32 kJ/mol) was selected as the most stable drug candidate against COVID-19 main protease Mpro.

Results: The ΔG value, calculated using MMGBSA also revealed strong binding of the compound with Mpro. The selected antiviral compound 9064 is an antioxidant flavonoid (Catechin or Cianidanol), which was previously known to have significant immunomodulatory, anti-inflammatory, and antioxidant properties.

Conclusion: Considering the limitations of currently available vaccines, our study may provide new insight into potential drugs that may prevent SARS-CoV-2 infection in humans.

背景:世界各地不断出现新的 SARS-CoV-2 株系。最近,世卫组织警告说,欧洲将出现严重的新一轮感染。目的:鉴于这一问题,近期研究的重点是高效、副作用小的新型抗病毒候选药物:利用分子动力学筛选天然化合物作为 Mpro SARS-CoV-2 蛋白的抑制剂:在这项研究中,我们筛选了潜在的植物性天然抗病毒化合物。利用现有文献和在线数据库生成了一个包含 579 种化合物的化合物库。根据分子对接分析预测的结合亲和力对所有这些化合物进行了筛选,并考虑对结合亲和力值≤ -10 Kcal/mol 的化合物进行分析。此外,根据理化评估和药物相似性,初步确定了九种化合物作为所选病毒蛋白的抗病毒靶点。经过 ADMET 分析和模拟,RMSD、Coul-SR 作用能(-71.53 kJ/mol)和 LJ-SR 能(-95.32 kJ/mol)最低的化合物 9064 被选为对 COVID-19 主要蛋白酶 Mpro 最稳定的候选药物:使用 MMGBSA 计算的 ΔG 值也显示了化合物与 Mpro 的强结合力。被选中的抗病毒化合物 9064 是一种抗氧化类黄酮(儿茶素或鸦片烷醇),之前已知其具有显著的免疫调节、抗炎和抗氧化特性:结论:考虑到现有疫苗的局限性,我们的研究可能会为预防人类感染 SARS-CoV-2 的潜在药物提供新的见解。
{"title":"Screening of Natural Compounds as Inhibitor of Mpro SARS-CoV-2 Protein; A Molecular Dynamics Approach.","authors":"Anum Javaid, Nousheen Bibi, Malik Siddique Mahmood, Hina Batool, Sana Batool, Arslan Hamid, Mahjabeen Saleem, Naeem Mahmood Ashraf, Tayyaba Afsar, Ali Almajwal, Suhail Razak","doi":"10.2174/0113816128315762240828052002","DOIUrl":"https://doi.org/10.2174/0113816128315762240828052002","url":null,"abstract":"<p><strong>Background: </strong>New strains of SARS-CoV-2 are continually emerging worldwide. Recently, WHO warned of a severe new wave in Europe. Current vaccines cannot fully prevent reinfection in vaccinated individuals.</p><p><strong>Aim: </strong>Given this issue, recent research focuses on new antiviral candidates with high efficacy and minimal side effects.</p><p><strong>Objectives: </strong>Screen natural compounds as inhibitors of Mpro SARS-CoV-2 protein using molecular dynamics.</p><p><strong>Methods: </strong>In this study, we have screened the potential of plant-based natural anti-viral compounds. A library of the 579 compounds was generated using currently available literature and online databases. All these compounds were screened based on their binding affinities as predicted by molecular docking analysis and compounds having binding affinity values ≤ -10 Kcal/mol were considered for analysis. Furthermore, from physicochemical assessment, drug-likeness initially nine compounds were identified as the antiviral targets for the selected viral proteins. After ADMET analysis and simulations, the compound 9064 with the lowest RMSD, Coul-SR interaction energy (-71.53 kJ/mol), and LJ-SR energy (-95.32 kJ/mol) was selected as the most stable drug candidate against COVID-19 main protease Mpro.</p><p><strong>Results: </strong>The ΔG value, calculated using MMGBSA also revealed strong binding of the compound with Mpro. The selected antiviral compound 9064 is an antioxidant flavonoid (Catechin or Cianidanol), which was previously known to have significant immunomodulatory, anti-inflammatory, and antioxidant properties.</p><p><strong>Conclusion: </strong>Considering the limitations of currently available vaccines, our study may provide new insight into potential drugs that may prevent SARS-CoV-2 infection in humans.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142675283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Rise of FLiRT Variants in the COVID-19 Pandemic: What We Know So Far. COVID-19大流行中FLiRT变体的兴起:我们目前了解到的情况。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-14 DOI: 10.2174/0113816128355749241111045626
Md Sadique Hussain, Gaurav Gupta
{"title":"The Rise of FLiRT Variants in the COVID-19 Pandemic: What We Know So Far.","authors":"Md Sadique Hussain, Gaurav Gupta","doi":"10.2174/0113816128355749241111045626","DOIUrl":"10.2174/0113816128355749241111045626","url":null,"abstract":"","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Therapeutic Potential of Neutralizing Monoclonal Antibodies (nMAbs) against SARS-CoV-2 Omicron Variant. 针对 SARS-CoV-2 Omicron 变体的中和单克隆抗体 (nMAbs) 的治疗潜力。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-13 DOI: 10.2174/0113816128334441241108050528
Pijus Parua, Somnath Ghosh, Koushik Jana, Arnab Seth, Biplab Debnath, Saroj Kumar Rout, Manoj Kumar Sarangi, Rasmita Dash, Jitu Halder, Tushar Kanti Rajwar, Deepak Pradhan, Vineet Kumar Rai, Priyanka Dash, Chandan Das, Biswakanth Kar, Goutam Ghosh, Goutam Rath

Background: The COVID-19 pandemic has spurred significant endeavors to devise treatments to combat SARS-CoV-2. A limited array of small-molecule antiviral drugs, specifically monoclonal antibodies and interferon therapy, have been sanctioned to treat COVID-19. These treatments typically necessitate administration within ten days of symptom onset. There have been reported reductions in the effectiveness of these medications due to mutations in non-structural protein genes, particularly against Omicron subvariants. This underscores the pressing requirement for healthcare systems to continually monitor pathogen variability and its impact on the efficacy of prevention and treatments.

Aim: This review aimed to comprehend the therapeutic benefits and recent progress of nMAbs for preventing and treating the Omicron variant of SARS-CoV-2.

Results and discussion: Neutralizing monoclonal antibodies (nMAbs) provide a treatment avenue for severely affected individuals, especially those at high risk for whom vaccination is not viable. With their specific epitope affinity, they pose no significant risk of severe adverse effects. The degree of reduction in neutralization varies significantly across different monoclonal antibodies and variant combinations. For instance, Sotrovimab maintained its neutralization effectiveness against Omicron BA.1, but exhibited diminished efficacy against BA.2, BA.4, BA.5, and BA.2.12.1.

Conclusion: Bebtelovimab has been observed to preserve its efficacy against all subtypes of the Omicron variant. Subsequently, WKS13, mAb-39, 19n01, F61-d2 cocktail, etc., have become effective. This review has highlighted the therapeutic implications of nMAbs in SARS-CoV-2 Omicron treatment and the progress of COVID-19 drug discovery.

背景:COVID-19 的大流行促使人们大力开发抗击 SARS-CoV-2 的疗法。目前已批准使用有限的一系列小分子抗病毒药物,特别是单克隆抗体和干扰素疗法来治疗 COVID-19。这些疗法通常需要在症状出现后十天内用药。据报道,由于非结构蛋白基因突变,特别是针对 Omicron 亚变体的基因突变,这些药物的疗效有所下降。目的:本综述旨在了解 nMAbs 在预防和治疗 SARS-CoV-2 的 Omicron 变体方面的治疗效果和最新进展:中和单克隆抗体(nMAbs)为严重感染者,尤其是那些无法接种疫苗的高危人群提供了治疗途径。中和单克隆抗体具有特异性表位亲和力,不会产生严重不良反应。不同单克隆抗体和变体组合的中和降低程度差异很大。例如,索特罗维奇单抗对 Omicron BA.1 的中和效力保持不变,但对 BA.2、BA.4、BA.5 和 BA.2.12.1 的效力有所降低:据观察,Bebtelovimab对所有亚型的Omicron变异体均有疗效。随后,WKS13、mAb-39、19n01、F61-d2 鸡尾酒等也变得有效。本综述强调了 nMAbs 在 SARS-CoV-2 Omicron 治疗中的治疗意义以及 COVID-19 药物研发的进展。
{"title":"Therapeutic Potential of Neutralizing Monoclonal Antibodies (nMAbs) against SARS-CoV-2 Omicron Variant.","authors":"Pijus Parua, Somnath Ghosh, Koushik Jana, Arnab Seth, Biplab Debnath, Saroj Kumar Rout, Manoj Kumar Sarangi, Rasmita Dash, Jitu Halder, Tushar Kanti Rajwar, Deepak Pradhan, Vineet Kumar Rai, Priyanka Dash, Chandan Das, Biswakanth Kar, Goutam Ghosh, Goutam Rath","doi":"10.2174/0113816128334441241108050528","DOIUrl":"10.2174/0113816128334441241108050528","url":null,"abstract":"<p><strong>Background: </strong>The COVID-19 pandemic has spurred significant endeavors to devise treatments to combat SARS-CoV-2. A limited array of small-molecule antiviral drugs, specifically monoclonal antibodies and interferon therapy, have been sanctioned to treat COVID-19. These treatments typically necessitate administration within ten days of symptom onset. There have been reported reductions in the effectiveness of these medications due to mutations in non-structural protein genes, particularly against Omicron subvariants. This underscores the pressing requirement for healthcare systems to continually monitor pathogen variability and its impact on the efficacy of prevention and treatments.</p><p><strong>Aim: </strong>This review aimed to comprehend the therapeutic benefits and recent progress of nMAbs for preventing and treating the Omicron variant of SARS-CoV-2.</p><p><strong>Results and discussion: </strong>Neutralizing monoclonal antibodies (nMAbs) provide a treatment avenue for severely affected individuals, especially those at high risk for whom vaccination is not viable. With their specific epitope affinity, they pose no significant risk of severe adverse effects. The degree of reduction in neutralization varies significantly across different monoclonal antibodies and variant combinations. For instance, Sotrovimab maintained its neutralization effectiveness against Omicron BA.1, but exhibited diminished efficacy against BA.2, BA.4, BA.5, and BA.2.12.1.</p><p><strong>Conclusion: </strong>Bebtelovimab has been observed to preserve its efficacy against all subtypes of the Omicron variant. Subsequently, WKS13, mAb-39, 19n01, F61-d2 cocktail, etc., have become effective. This review has highlighted the therapeutic implications of nMAbs in SARS-CoV-2 Omicron treatment and the progress of COVID-19 drug discovery.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616323","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-loading Radio-photosensitizer Agents on Polymer and Lipid-based Nanocarriers for Radio-photodynamic Therapy Purposes: Review. 在聚合物和脂质纳米载体上共负载放射光敏剂,用于放射光动力治疗:综述。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-08 DOI: 10.2174/0113816128335001241020162217
Kave Moloudi, Heidi Abrahamse, Blassan P George

Polymer and lipid-based nanocarriers are a state-of-art in nanomedicine and in co-drug delivery of drugs that could merges various diagnostic and treatment modalities such radiotherapy (RT), photodynamic therapy (PDT) and chemotherapy (CT) in cancer therapy. Among various shapes and nanostructures, polymer and lipid-based nanocarriers have the potential to carry two drugs in same time to cells. However, hydrophobic and hydrophilic drug can be loaded in between layers as well as in the core of these nanocarriers, simultaneously. This advantage of NPs can be employed in combination therapy. Radiosensitizer and photosensitizer agents play a critical role in radio-photodynamic therapy (RT-PDT) of cancer. Co-delivery of these agents to cancerous cells is advantageous to cancer therapy but still remain as a challenge of RT-PDT. However, in this review, we have highlighted the challenges of RT-PDT and role of polymer and lipid-based nanocarriers to codelivery of hydrophobic and hydrophilic agents as radio-photosensitizers. Hence, the different kinds of Poly (lactic-co-glycolic acid) nanoparticles (NPs) have been categorized. Then, the biophysical mechanism of radio- photosensitizer agents with co-loading on polymer and lipid-based nanocarriers in RT-PDT treatment of cancer has been outlined. Finally, attention has been drawn to polymer and lipid-based nanocarriers in codrugs delivery. Taken together, this work presents the latest updates on this area and highlighted the pros and cons of co-delivery for RT-PDT purposes.

聚合物和脂质纳米载体是纳米医学和联合给药的最新技术,可将各种诊断和治疗方式(如癌症治疗中的放射治疗(RT)、光动力治疗(PDT)和化疗(CT))结合起来。在各种形状和纳米结构中,聚合物和脂质纳米载体具有同时向细胞输送两种药物的潜力。然而,疏水性和亲水性药物可以同时装载在这些纳米载体的层间和核心中。纳米载体的这一优势可用于联合治疗。放射增敏剂和光敏剂在癌症的放射光动力疗法(RT-PDT)中发挥着关键作用。将这些制剂联合投放到癌细胞中有利于癌症治疗,但仍是 RT-PDT 的一个挑战。不过,在这篇综述中,我们强调了 RT-PDT 所面临的挑战,以及聚合物和脂质纳米载体在作为放射光敏剂联合递送疏水性和亲水性制剂方面的作用。因此,对不同种类的聚(乳酸-共聚-乙醇酸)纳米粒子(NPs)进行了分类。然后,概述了共负载在聚合物和脂质纳米载体上的放射光敏剂在 RT-PDT 治疗癌症中的生物物理机制。最后,还介绍了聚合物和脂质纳米载体在联合给药中的应用。综上所述,本研究报告介绍了这一领域的最新进展,并强调了联合给药用于 RT-PDT 的利弊。
{"title":"Co-loading Radio-photosensitizer Agents on Polymer and Lipid-based Nanocarriers for Radio-photodynamic Therapy Purposes: Review.","authors":"Kave Moloudi, Heidi Abrahamse, Blassan P George","doi":"10.2174/0113816128335001241020162217","DOIUrl":"https://doi.org/10.2174/0113816128335001241020162217","url":null,"abstract":"<p><p>Polymer and lipid-based nanocarriers are a state-of-art in nanomedicine and in co-drug delivery of drugs that could merges various diagnostic and treatment modalities such radiotherapy (RT), photodynamic therapy (PDT) and chemotherapy (CT) in cancer therapy. Among various shapes and nanostructures, polymer and lipid-based nanocarriers have the potential to carry two drugs in same time to cells. However, hydrophobic and hydrophilic drug can be loaded in between layers as well as in the core of these nanocarriers, simultaneously. This advantage of NPs can be employed in combination therapy. Radiosensitizer and photosensitizer agents play a critical role in radio-photodynamic therapy (RT-PDT) of cancer. Co-delivery of these agents to cancerous cells is advantageous to cancer therapy but still remain as a challenge of RT-PDT. However, in this review, we have highlighted the challenges of RT-PDT and role of polymer and lipid-based nanocarriers to codelivery of hydrophobic and hydrophilic agents as radio-photosensitizers. Hence, the different kinds of Poly (lactic-co-glycolic acid) nanoparticles (NPs) have been categorized. Then, the biophysical mechanism of radio- photosensitizer agents with co-loading on polymer and lipid-based nanocarriers in RT-PDT treatment of cancer has been outlined. Finally, attention has been drawn to polymer and lipid-based nanocarriers in codrugs delivery. Taken together, this work presents the latest updates on this area and highlighted the pros and cons of co-delivery for RT-PDT purposes.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142616319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Screening of Optimal Phytoconstituents through in silico Docking, Toxicity, Pharmacokinetic, and Molecular Dynamics Approach for Fighting against Polycystic Ovarian Syndrome. 通过硅学对接、毒性、药代动力学和分子动力学方法筛选最佳植物成分,以防治多囊卵巢综合征。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-07 DOI: 10.2174/0113816128330398241015115043
Pavithra Lakshmi Narayanan, Chitra Vellapandian

Background: Polycystic ovarian syndrome (PCOS) is a hormonal disorder caused by excessive secretion of male sex hormones in females. Herbal remedies for PCOS are lightning up as they bypass the adverse effects and are profoundly safe on prolonged usage.

Objective: The present study included a selection of 34 herbs pursuing biological effects on the uterus, and their major chemical constituents were subjected to a series of in silico techniques using different software. The proteins contributing majorly to the hormonal functions like Human cytochrome P450 CYP17A1 (3RUK), Progesterone (1E3K), and estrogen receptor (1X7R) were selected for the study.

Methods: Molecular docking studies were performed using AutoDock 1.5.7. The pharmacokinetic properties were predicted using the SwissADME online tool, while toxicity parameters were assessed with OSIRIS toxicity explorer and pkCSM. Molecular dynamics simulations and free energy calculations were performed using the Schrödinger suite.

Results: Constituents with a basic steroidal nucleus demonstrated high binding energy values. An analysis of all the in silico techniques showed that Sarsasapogenin from Asparagus racemosus exhibited strong binding energies of -10.88 kcal/mol, -10.51 kcal/mol, and -9.79 kcal/mol with the selected specific proteins. In molecular dynamics simulations, Sarsasapogenin displayed ideal stability, with RMSD fluctuations below 3 Å and RMSF slightly higher than the corresponding peak of apoprotein. Additionally, it showed a favorable druglikeness profile and non-toxic effects across all screened parameters.

Conclusion: From the list of the selected constituents, sarsasapogenin was found to be ideal, and further research on it for targeting PCOS is expected to yield promising results.

背景:多囊卵巢综合征(PCOS)是一种因女性体内雄性激素分泌过多而导致的内分泌失调症。治疗多囊卵巢综合症的草药疗法因其可避免不良反应且长期服用非常安全而如雨后春笋般出现:本研究精选了 34 种对子宫有生物作用的草药,并使用不同的软件对其主要化学成分进行了一系列硅学技术研究。研究选择了对激素功能有主要贡献的蛋白质,如人细胞色素 P450 CYP17A1 (3RUK)、孕酮 (1E3K) 和雌激素受体 (1X7R):使用 AutoDock 1.5.7 进行了分子对接研究。药代动力学特性使用 SwissADME 在线工具进行预测,毒性参数则使用 OSIRIS toxicity explorer 和 pkCSM 进行评估。分子动力学模拟和自由能计算使用 Schrödinger 套件进行:结果:具有基本类固醇核的成分显示出较高的结合能值。通过对所有硅学技术的分析表明,天门冬皂苷与所选特定蛋白质的结合能分别为-10.88 kcal/mol、-10.51 kcal/mol和-9.79 kcal/mol。在分子动力学模拟中,菝葜皂苷元显示出理想的稳定性,其 RMSD 波动低于 3 Å,RMSF 略高于载脂蛋白的相应峰值。此外,在所有筛选参数中,它都显示出良好的亲药性和无毒作用:结论:从所选成分列表中发现,菝葜皂苷元是一种理想的成分,对其针对多囊卵巢综合征的进一步研究有望取得可喜成果。
{"title":"Screening of Optimal Phytoconstituents through in silico Docking, Toxicity, Pharmacokinetic, and Molecular Dynamics Approach for Fighting against Polycystic Ovarian Syndrome.","authors":"Pavithra Lakshmi Narayanan, Chitra Vellapandian","doi":"10.2174/0113816128330398241015115043","DOIUrl":"https://doi.org/10.2174/0113816128330398241015115043","url":null,"abstract":"<p><strong>Background: </strong>Polycystic ovarian syndrome (PCOS) is a hormonal disorder caused by excessive secretion of male sex hormones in females. Herbal remedies for PCOS are lightning up as they bypass the adverse effects and are profoundly safe on prolonged usage.</p><p><strong>Objective: </strong>The present study included a selection of 34 herbs pursuing biological effects on the uterus, and their major chemical constituents were subjected to a series of in silico techniques using different software. The proteins contributing majorly to the hormonal functions like Human cytochrome P450 CYP17A1 (3RUK), Progesterone (1E3K), and estrogen receptor (1X7R) were selected for the study.</p><p><strong>Methods: </strong>Molecular docking studies were performed using AutoDock 1.5.7. The pharmacokinetic properties were predicted using the SwissADME online tool, while toxicity parameters were assessed with OSIRIS toxicity explorer and pkCSM. Molecular dynamics simulations and free energy calculations were performed using the Schrödinger suite.</p><p><strong>Results: </strong>Constituents with a basic steroidal nucleus demonstrated high binding energy values. An analysis of all the in silico techniques showed that Sarsasapogenin from Asparagus racemosus exhibited strong binding energies of -10.88 kcal/mol, -10.51 kcal/mol, and -9.79 kcal/mol with the selected specific proteins. In molecular dynamics simulations, Sarsasapogenin displayed ideal stability, with RMSD fluctuations below 3 Å and RMSF slightly higher than the corresponding peak of apoprotein. Additionally, it showed a favorable druglikeness profile and non-toxic effects across all screened parameters.</p><p><strong>Conclusion: </strong>From the list of the selected constituents, sarsasapogenin was found to be ideal, and further research on it for targeting PCOS is expected to yield promising results.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142603580","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Cross-talk between Nanomedicines and Cardiac Complications: Comprehensive View. 纳米药物与心脏并发症之间的交叉对话:综合观点。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-11-05 DOI: 10.2174/0113816128347223241021111914
Shagufta Jawaid, Yogesh Joshi, Nauroz Neelofar, Khuzamah Khursheed, Samya Shams, Mansi Chaudhary, Mitali Arora, Karan Mahajan, Firoz Anwar

Background: Cardiovascular Diseases (CVDs) are the leading cause of global morbidity and mortality, necessitating innovative approaches for both therapeutics and diagnostics. Nanoscience has emerged as a promising frontier in addressing the complexities of CVDs.

Objective: This study aims to explorethe interaction of CVDs and Nanomedicine (NMs), focusing on applications in therapeutics and diagnostics.

Observations: In the realm of therapeutics, nanosized drug delivery systems exhibit unique advantages, such as enhanced drug bioavailability, targeted delivery, and controlled release. NMs platform, including liposomes, nanoparticles, and carriers, allows the precise drug targeting to the affected cardiovascular tissues with minimum adverse effects and maximum therapeutic efficacy. Moreover, nanomaterial (NM) enables the integration of multifunctional components, such as therapeutic agents and target ligands, into a single system for comprehensive CVD management. Diagnostic fronts of NMs offer innovative solutions for early detection and monitoring of CVDs. Nanoparticles and nanosensors enable highly sensitive and specific detection of Cardiac biomarkers, providing valuable insights into a disease state, its progression, therapeutic outputs, etc. Further, nano-based technology via imaging modalities offers high high-resolution imaging, aiding in the vascularization of cardiovascular structures and abnormalities. Nanotechnology-based imaging modalities offer high-resolution imaging and aid in the visualization of cardiovascular structures and abnormalities.

Conclusion: The cross-talk of CVDs and NMs holds tremendous potential for revolutionizing cardiovascular healthcare by providing targeted and efficient therapeutic interventions, as well as sensitive and early detection for the improvement of patient health if integrated with Artificial Intelligence (AI).

背景:心血管疾病(CVDs)是全球发病率和死亡率的主要原因,因此需要创新的治疗和诊断方法。纳米科学已成为解决心血管疾病复杂问题的一个前景广阔的前沿领域:本研究旨在探索心血管疾病与纳米医学(NMs)之间的相互作用,重点是治疗和诊断方面的应用:在治疗领域,纳米级给药系统具有独特的优势,如提高药物的生物利用度、靶向给药和控释。包括脂质体、纳米颗粒和载体在内的纳米材料平台可将药物精确地靶向作用于受影响的心血管组织,并将不良反应降到最低,达到最佳疗效。此外,纳米材料(NM)还能将治疗剂和靶配体等多功能成分整合到单一系统中,实现心血管疾病的综合管理。纳米材料的诊断前沿为心血管疾病的早期检测和监测提供了创新解决方案。纳米粒子和纳米传感器可实现对心脏生物标志物的高灵敏度和特异性检测,为了解疾病状态、病情发展和治疗效果等提供宝贵的信息。此外,基于纳米技术的成像模式可提供高分辨率成像,有助于心血管结构和异常的血管化。基于纳米技术的成像模式可提供高分辨率成像,有助于心血管结构和异常的可视化:结论:心血管疾病和纳米技术之间的交叉联系具有巨大的潜力,可提供有针对性的高效治疗干预,并与人工智能(AI)相结合,进行敏感的早期检测,从而改善患者的健康状况,从而彻底改变心血管医疗保健。
{"title":"A Cross-talk between Nanomedicines and Cardiac Complications: Comprehensive View.","authors":"Shagufta Jawaid, Yogesh Joshi, Nauroz Neelofar, Khuzamah Khursheed, Samya Shams, Mansi Chaudhary, Mitali Arora, Karan Mahajan, Firoz Anwar","doi":"10.2174/0113816128347223241021111914","DOIUrl":"10.2174/0113816128347223241021111914","url":null,"abstract":"<p><strong>Background: </strong>Cardiovascular Diseases (CVDs) are the leading cause of global morbidity and mortality, necessitating innovative approaches for both therapeutics and diagnostics. Nanoscience has emerged as a promising frontier in addressing the complexities of CVDs.</p><p><strong>Objective: </strong>This study aims to explorethe interaction of CVDs and Nanomedicine (NMs), focusing on applications in therapeutics and diagnostics.</p><p><strong>Observations: </strong>In the realm of therapeutics, nanosized drug delivery systems exhibit unique advantages, such as enhanced drug bioavailability, targeted delivery, and controlled release. NMs platform, including liposomes, nanoparticles, and carriers, allows the precise drug targeting to the affected cardiovascular tissues with minimum adverse effects and maximum therapeutic efficacy. Moreover, nanomaterial (NM) enables the integration of multifunctional components, such as therapeutic agents and target ligands, into a single system for comprehensive CVD management. Diagnostic fronts of NMs offer innovative solutions for early detection and monitoring of CVDs. Nanoparticles and nanosensors enable highly sensitive and specific detection of Cardiac biomarkers, providing valuable insights into a disease state, its progression, therapeutic outputs, etc. Further, nano-based technology via imaging modalities offers high high-resolution imaging, aiding in the vascularization of cardiovascular structures and abnormalities. Nanotechnology-based imaging modalities offer high-resolution imaging and aid in the visualization of cardiovascular structures and abnormalities.</p><p><strong>Conclusion: </strong>The cross-talk of CVDs and NMs holds tremendous potential for revolutionizing cardiovascular healthcare by providing targeted and efficient therapeutic interventions, as well as sensitive and early detection for the improvement of patient health if integrated with Artificial Intelligence (AI).</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142590442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current pharmaceutical design
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1