首页 > 最新文献

Current pharmaceutical design最新文献

英文 中文
Lipid-based Non-viral Vector: Promising Approach for Gene Delivery. 脂质非病毒载体:有望实现基因传递的方法
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-24 DOI: 10.2174/0113816128324084240828084904
Anupama Panday, Bhupendra Dixena, Nishant Jain, Akhlesh Kumar Jain

Objectives: The present review aims to discuss various strategies to overcome intracellular and extracellular barriers involved in gene delivery as well as the advantages, challenges, and mechanisms of gene delivery using non-viral vectors. Additionally, patents, clinical studies, and various formulation approaches related to lipid-based carrier systems are discussed.

Methods: Data were searched and collected from Google Scholar, ScienceDirect, Pubmed, and Springer.

Results: In this review, we have investigated the advantages of non-viral vectors over viral vectors. The advantage of using non-viral vectors are that they seek more attention in different fields. They play an important role in delivering the genetic materials. However, few nonviral vector-based carrier systems have been found in clinical settings. Challenges are developing more stable, site-specific gene delivery and conducting thorough safety assessments to minimize the undesired effects.

Conclusion: In comparison to viral vectors, nonviral vector-based lipid nanocarriers have more advantages for gene delivery. Gene therapy research shows promise in addressing health concerns. Lipid-based nanocarriers can overcome intracellular and extracellular barriers, allowing efficient delivery of genetic materials. Non-viral vectors are more attractive due to their biocompatibility, ease of synthesis, and cost-effectiveness. They can deliver various nucleic acids and have improved gene delivery efficacy by avoiding degradation steps. Despite limited clinical use, many patents have been filed for mRNA vaccine delivery using non-viral vectors.

目的:本综述旨在讨论克服基因递送过程中涉及的细胞内和细胞外障碍的各种策略,以及使用非病毒载体递送基因的优势、挑战和机制。此外,还讨论了与脂质载体系统相关的专利、临床研究和各种制剂方法:方法:从 Google Scholar、ScienceDirect、Pubmed 和 Springer 搜索和收集数据:在这篇综述中,我们研究了非病毒载体相对于病毒载体的优势。使用非病毒载体的优势在于它们在不同领域受到更多关注。它们在传递遗传物质方面发挥着重要作用。然而,在临床环境中发现的基于非病毒载体的载体系统还很少。目前面临的挑战是开发更稳定、针对特定部位的基因递送,并进行全面的安全评估,以尽量减少不良影响:结论:与病毒载体相比,基于非病毒载体的脂质纳米载体在基因递送方面更具优势。基因治疗研究在解决健康问题方面大有可为。脂质纳米载体可以克服细胞内和细胞外的障碍,从而实现基因材料的高效传递。非病毒载体因其生物相容性、易于合成和成本效益高而更具吸引力。它们可以递送各种核酸,并通过避免降解步骤提高基因递送效率。尽管临床应用有限,但使用非病毒载体递送 mRNA 疫苗已申请了许多专利。
{"title":"Lipid-based Non-viral Vector: Promising Approach for Gene Delivery.","authors":"Anupama Panday, Bhupendra Dixena, Nishant Jain, Akhlesh Kumar Jain","doi":"10.2174/0113816128324084240828084904","DOIUrl":"https://doi.org/10.2174/0113816128324084240828084904","url":null,"abstract":"<p><strong>Objectives: </strong>The present review aims to discuss various strategies to overcome intracellular and extracellular barriers involved in gene delivery as well as the advantages, challenges, and mechanisms of gene delivery using non-viral vectors. Additionally, patents, clinical studies, and various formulation approaches related to lipid-based carrier systems are discussed.</p><p><strong>Methods: </strong>Data were searched and collected from Google Scholar, ScienceDirect, Pubmed, and Springer.</p><p><strong>Results: </strong>In this review, we have investigated the advantages of non-viral vectors over viral vectors. The advantage of using non-viral vectors are that they seek more attention in different fields. They play an important role in delivering the genetic materials. However, few nonviral vector-based carrier systems have been found in clinical settings. Challenges are developing more stable, site-specific gene delivery and conducting thorough safety assessments to minimize the undesired effects.</p><p><strong>Conclusion: </strong>In comparison to viral vectors, nonviral vector-based lipid nanocarriers have more advantages for gene delivery. Gene therapy research shows promise in addressing health concerns. Lipid-based nanocarriers can overcome intracellular and extracellular barriers, allowing efficient delivery of genetic materials. Non-viral vectors are more attractive due to their biocompatibility, ease of synthesis, and cost-effectiveness. They can deliver various nucleic acids and have improved gene delivery efficacy by avoiding degradation steps. Despite limited clinical use, many patents have been filed for mRNA vaccine delivery using non-viral vectors.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Unravelling Peptic Ulcers: Comprehensive Insights into Etiology, Diagnosis, Screening Techniques, and Treatment. 解读消化性溃疡:病因、诊断、筛查技术和治疗的全面见解。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-24 DOI: 10.2174/0113816128310979240828102727
Rashmi Pathak, Phool Chandra, Neetu Sachan

The risk of illnesses is increasing in the modern era due to unhealthy and modern lifestyles. Research has shown that the most frequent acid-induced abrasion, which often occurs in the stomach and proximal duodenum, is gastric and Peptic Ulcer Disease (PUD), which is a primary worldwide health concern. The deformity is characterized by denuded mucosa and spreads into the submucosa. Non-steroidal antiinflammatory drugs (NSAIDs) and H. pylori infections are two common offenders. In the past, it has been thought that dietary variables, stress, and an acidic hypersecretory state encourage mucosal disruption in peptic acid disease patients. Peptic ulcers continue to be a significant health issue because of their potential for substantial consequences, including bleeding, blockage, and perforation, even with advancements in detection and treatment. This review discusses current screening methods for peptic ulcers and the challenges in diagnosis and treatment, emphasizing the need for precise diagnosis and more effective therapies.

由于不健康的现代生活方式,现代人患病的风险越来越高。研究表明,最常见的胃酸引起的磨蚀通常发生在胃和十二指肠近端,即胃病和消化性溃疡病(PUD),这是全世界首要的健康问题。这种畸形的特点是粘膜变性并向粘膜下层蔓延。非甾体抗炎药(NSAIDs)和幽门螺杆菌感染是两种常见的致病因素。过去,人们认为饮食变量、压力和酸性高分泌状态会导致消化性胃酸病患者的粘膜破坏。即使在检测和治疗方面取得了进步,消化性溃疡仍然是一个重大的健康问题,因为它可能造成出血、堵塞和穿孔等严重后果。这篇综述讨论了当前消化性溃疡的筛查方法以及诊断和治疗方面的挑战,强调了精确诊断和更有效疗法的必要性。
{"title":"Unravelling Peptic Ulcers: Comprehensive Insights into Etiology, Diagnosis, Screening Techniques, and Treatment.","authors":"Rashmi Pathak, Phool Chandra, Neetu Sachan","doi":"10.2174/0113816128310979240828102727","DOIUrl":"https://doi.org/10.2174/0113816128310979240828102727","url":null,"abstract":"<p><p>The risk of illnesses is increasing in the modern era due to unhealthy and modern lifestyles. Research has shown that the most frequent acid-induced abrasion, which often occurs in the stomach and proximal duodenum, is gastric and Peptic Ulcer Disease (PUD), which is a primary worldwide health concern. The deformity is characterized by denuded mucosa and spreads into the submucosa. Non-steroidal antiinflammatory drugs (NSAIDs) and H. pylori infections are two common offenders. In the past, it has been thought that dietary variables, stress, and an acidic hypersecretory state encourage mucosal disruption in peptic acid disease patients. Peptic ulcers continue to be a significant health issue because of their potential for substantial consequences, including bleeding, blockage, and perforation, even with advancements in detection and treatment. This review discusses current screening methods for peptic ulcers and the challenges in diagnosis and treatment, emphasizing the need for precise diagnosis and more effective therapies.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nanoparticles in CNS Therapeutics: Pioneering Drug Delivery Advancements. 中枢神经系统治疗中的纳米颗粒:中枢神经系统治疗中的纳米颗粒:药物输送的开创性进展。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-24 DOI: 10.2174/0113816128328722240828184410
Usha Nayak, Praveen Halagali, Khushi Panchal, Vamsi Krishna Tippavajhala, Jayesh Mudgal, Raghu Radhakrishnan, Jyothsna Manikkath

Introduction: The incidence of Central Nervous System (CNS) disorders, including Parkinson's disease, Alzheimer's disease, stroke, and malignancies, has risen significantly in recent decades, contributing to millions of deaths annually. Efficacious treatment of these disorders requires medicines targeting the brain. The Blood-Brain Barrier (BBB) poses a formidable challenge to effective drug delivery to the brain, hindering progress in CNS therapeutics. This review explores the latest developments in nanoparticulate carriers, highlighting their potential to overcome BBB limitations.

Objective: This study aimed to evaluate and summarise the critical factors and pathways in the nanoparticle- based central nervous system's targeted drug delivery.

Methods: An extensive literature search was conducted, comprising the initial development of nanoparticle- based central nervous system-targeted drug delivery approaches to the latest advancements using various online search tools.

Results: The properties of nanoparticles, such as type of nanoparticles, size, shape, surface charge, hydrophobicity, and surface functionalisation, along with properties of the blood-brain barrier during normal and pathological conditions and their impact on the delivery of nanoparticles across the BBB, are identified and discussed here.

Conclusion: Important properties and pathways that determine the penetration of nanoparticles across the central nervous system are reviewed in this article, along with recent advances in the field.

导言:近几十年来,帕金森病、阿尔茨海默病、中风和恶性肿瘤等中枢神经系统(CNS)疾病的发病率大幅上升,每年导致数百万人死亡。这些疾病的有效治疗需要针对大脑的药物。血脑屏障(BBB)对有效地向大脑输送药物构成了巨大挑战,阻碍了中枢神经系统疗法的进展。本综述探讨了纳米颗粒载体的最新发展,强调了它们克服血脑屏障限制的潜力:本研究旨在评估和总结基于纳米颗粒的中枢神经系统靶向给药的关键因素和途径:方法:利用各种在线搜索工具进行了广泛的文献检索,包括基于纳米粒子的中枢神经系统靶向给药方法的最初发展和最新进展:结果:本文确定并讨论了纳米颗粒的特性,如纳米颗粒的类型、大小、形状、表面电荷、疏水性和表面功能化,以及正常和病理情况下血脑屏障的特性及其对纳米颗粒通过 BBB 给药的影响:本文综述了决定纳米粒子穿透中枢神经系统的重要特性和途径,以及该领域的最新进展。
{"title":"Nanoparticles in CNS Therapeutics: Pioneering Drug Delivery Advancements.","authors":"Usha Nayak, Praveen Halagali, Khushi Panchal, Vamsi Krishna Tippavajhala, Jayesh Mudgal, Raghu Radhakrishnan, Jyothsna Manikkath","doi":"10.2174/0113816128328722240828184410","DOIUrl":"https://doi.org/10.2174/0113816128328722240828184410","url":null,"abstract":"<p><strong>Introduction: </strong>The incidence of Central Nervous System (CNS) disorders, including Parkinson's disease, Alzheimer's disease, stroke, and malignancies, has risen significantly in recent decades, contributing to millions of deaths annually. Efficacious treatment of these disorders requires medicines targeting the brain. The Blood-Brain Barrier (BBB) poses a formidable challenge to effective drug delivery to the brain, hindering progress in CNS therapeutics. This review explores the latest developments in nanoparticulate carriers, highlighting their potential to overcome BBB limitations.</p><p><strong>Objective: </strong>This study aimed to evaluate and summarise the critical factors and pathways in the nanoparticle- based central nervous system's targeted drug delivery.</p><p><strong>Methods: </strong>An extensive literature search was conducted, comprising the initial development of nanoparticle- based central nervous system-targeted drug delivery approaches to the latest advancements using various online search tools.</p><p><strong>Results: </strong>The properties of nanoparticles, such as type of nanoparticles, size, shape, surface charge, hydrophobicity, and surface functionalisation, along with properties of the blood-brain barrier during normal and pathological conditions and their impact on the delivery of nanoparticles across the BBB, are identified and discussed here.</p><p><strong>Conclusion: </strong>Important properties and pathways that determine the penetration of nanoparticles across the central nervous system are reviewed in this article, along with recent advances in the field.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343271","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Overview of Microfluidic Phenotype Separation of Bacteria. 细菌微流体表型分离概述
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-24 DOI: 10.2174/0113816128315140240828110618
Vimala Juliet, Sanchanna Ganesan, Likith Kumar C, Muthumareeswaran Muthuramamoorthy, Khalid E Alzahrani, Abdullah N Alodhayb

With the development of microfluidics technology, it is now possible in medical biotechnology to examine clinical and rapid diagnostic operations involving pathogens, like bacteria and viruses. The method of separating bacteria from complicated homogeneous and heterogeneous samples is one of the most important steps in the diagnostic process. The microfluidic technology for bacterial separation offers a better and more promising platform by combining several physical properties and characteristics of bacteria. In contrast, the conventional method is time-consuming, limited to a few cell properties, and necessitates the completion of several challenging steps and processes involving skilled manpower. The microfluidics platform also has a number of advantages, including small-scale size, low cost, high efficiency, and simultaneous detection and execution of further steps. This enables cell separation, analysis, and experimental processing on a single chip. In this paper, we have analysed the mechanism of the bacterial separation process depending on phenocharacteristics along with their benefits, constraints, and applications. In addition, the performance metrics needed for the separation of the devices along with the challenges and future possibilities of developed devices, which are described in the literature, are discussed in detail. Thus, this review offers a holistic analysis of the separation of bacteria using microfluidic technology.

随着微流控技术的发展,医学生物技术领域现在可以对涉及病原体(如细菌和病毒)的临床快速诊断操作进行检查。从复杂的同质和异质样本中分离细菌的方法是诊断过程中最重要的步骤之一。微流控技术结合了细菌的多种物理特性和特征,为细菌分离提供了一个更好、更有前景的平台。相比之下,传统方法耗时长,仅限于几种细胞特性,而且必须完成几个具有挑战性的步骤和过程,涉及熟练的人力。微流控平台也有许多优点,包括规模小、成本低、效率高,以及可同时检测和执行进一步的步骤。这使得细胞分离、分析和实验处理可以在单个芯片上完成。在本文中,我们分析了细菌分离过程的机制取决于表型特征及其优势、限制和应用。此外,我们还详细讨论了分离设备所需的性能指标,以及文献中描述的所开发设备面临的挑战和未来的可能性。因此,本综述对利用微流体技术分离细菌进行了全面分析。
{"title":"An Overview of Microfluidic Phenotype Separation of Bacteria.","authors":"Vimala Juliet, Sanchanna Ganesan, Likith Kumar C, Muthumareeswaran Muthuramamoorthy, Khalid E Alzahrani, Abdullah N Alodhayb","doi":"10.2174/0113816128315140240828110618","DOIUrl":"https://doi.org/10.2174/0113816128315140240828110618","url":null,"abstract":"<p><p>With the development of microfluidics technology, it is now possible in medical biotechnology to examine clinical and rapid diagnostic operations involving pathogens, like bacteria and viruses. The method of separating bacteria from complicated homogeneous and heterogeneous samples is one of the most important steps in the diagnostic process. The microfluidic technology for bacterial separation offers a better and more promising platform by combining several physical properties and characteristics of bacteria. In contrast, the conventional method is time-consuming, limited to a few cell properties, and necessitates the completion of several challenging steps and processes involving skilled manpower. The microfluidics platform also has a number of advantages, including small-scale size, low cost, high efficiency, and simultaneous detection and execution of further steps. This enables cell separation, analysis, and experimental processing on a single chip. In this paper, we have analysed the mechanism of the bacterial separation process depending on phenocharacteristics along with their benefits, constraints, and applications. In addition, the performance metrics needed for the separation of the devices along with the challenges and future possibilities of developed devices, which are described in the literature, are discussed in detail. Thus, this review offers a holistic analysis of the separation of bacteria using microfluidic technology.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioactive Macromolecule-mediated Biogenic FeONPs Attenuate Inflammation in Atherosclerotic Rat by Activating PI3K/Akt/eNOS Pathway. 生物活性大分子介导的生物铁ONP通过激活PI3K/Akt/eNOS通路减轻动脉粥样硬化大鼠的炎症。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-23 DOI: 10.2174/0113816128298009240828062231
Qing Du, Bo Chen, Xiaohan Yang, Hecheng Zhu, Syed Shams Ul Hassan, Qiang Liu

Introduction: Atherosclerosis refers to the thickening and hardening of artery walls. In our latest experiment, we utilized environmentally friendly techniques to produce multifunctional iron oxide nanoparticles (FeONPs) aimed at reducing inflammation in rats with atherosclerosis.

Method: The formulation was synthesized using curcumin (as the potent bioactive molecule) and was characterized. We assessed the in vitro antioxidant capability of the formulation against DPPH free radicals. Additionally, we quantified the mRNA levels of eNOS, PI3K, and AKT using Real Time-Polymerase Chain Reaction (RT-PCR). We tested the therapeutic impact of the bioactive formulation on a Triton X-100-induced atherosclerosis mouse model.

Results: The crystallinity and magnetic behavior confirmed the magnetic properties of the FeONPs. The DPPH assay exhibited the dose-dependent radical scavenging characteristics of FeONPs. In the animal experiments, significant upregulation of the studied genes was noticed in treated groups 2 and 3 compared to treated group 1. Moreover, the expression of PI3K/eNOS/Akt was greater in treated group 3 than in treated group 2. These results indicate a dose-dependent elevation in target gene expression.

Conclusion: Nevertheless, the variation in gene expression between the negative control and the untreated control was not statistically significant (p > 0.05) across all genes.

导言动脉粥样硬化是指动脉壁的增厚和硬化。在最新的实验中,我们利用环保技术生产了多功能氧化铁纳米粒子(FeONPs),旨在减轻动脉粥样硬化大鼠的炎症反应:方法:使用姜黄素(作为强效生物活性分子)合成了配方,并对其进行了表征。我们评估了配方对 DPPH 自由基的体外抗氧化能力。此外,我们还使用实时聚合酶链式反应(RT-PCR)对 eNOS、PI3K 和 AKT 的 mRNA 水平进行了量化。我们测试了生物活性配方对 Triton X-100 诱导的动脉粥样硬化小鼠模型的治疗效果:结果:结晶度和磁性行为证实了 FeONPs 的磁性。DPPH 试验表明,FeONPs 具有剂量依赖性自由基清除特性。在动物实验中,与处理组 1 相比,处理组 2 和处理组 3 的研究基因明显上调,而且处理组 3 的 PI3K/eNOS/Akt 表达量高于处理组 2:尽管如此,在所有基因中,阴性对照组和未处理对照组之间的基因表达差异均无统计学意义(P > 0.05)。
{"title":"Bioactive Macromolecule-mediated Biogenic FeONPs Attenuate Inflammation in Atherosclerotic Rat by Activating PI3K/Akt/eNOS Pathway.","authors":"Qing Du, Bo Chen, Xiaohan Yang, Hecheng Zhu, Syed Shams Ul Hassan, Qiang Liu","doi":"10.2174/0113816128298009240828062231","DOIUrl":"https://doi.org/10.2174/0113816128298009240828062231","url":null,"abstract":"<p><strong>Introduction: </strong>Atherosclerosis refers to the thickening and hardening of artery walls. In our latest experiment, we utilized environmentally friendly techniques to produce multifunctional iron oxide nanoparticles (FeONPs) aimed at reducing inflammation in rats with atherosclerosis.</p><p><strong>Method: </strong>The formulation was synthesized using curcumin (as the potent bioactive molecule) and was characterized. We assessed the in vitro antioxidant capability of the formulation against DPPH free radicals. Additionally, we quantified the mRNA levels of eNOS, PI3K, and AKT using Real Time-Polymerase Chain Reaction (RT-PCR). We tested the therapeutic impact of the bioactive formulation on a Triton X-100-induced atherosclerosis mouse model.</p><p><strong>Results: </strong>The crystallinity and magnetic behavior confirmed the magnetic properties of the FeONPs. The DPPH assay exhibited the dose-dependent radical scavenging characteristics of FeONPs. In the animal experiments, significant upregulation of the studied genes was noticed in treated groups 2 and 3 compared to treated group 1. Moreover, the expression of PI3K/eNOS/Akt was greater in treated group 3 than in treated group 2. These results indicate a dose-dependent elevation in target gene expression.</p><p><strong>Conclusion: </strong>Nevertheless, the variation in gene expression between the negative control and the untreated control was not statistically significant (p > 0.05) across all genes.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142343267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optimization of Glyburide-Loaded Nanosuspensions via Ball Milling and Homogenization Techniques: A Central Composite Design Approach for Enhanced Solubility. 通过球磨和均质化技术优化糖肽载体纳米悬浮剂:提高溶解度的中心复合设计方法
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-20 DOI: 10.2174/0113816128321501240828054050
Damla Gungor, Eren Aytekin, Yagmur Akdag, Selma Sahin, Tugba Gulsun

Introduction: Glyburide is a drug for the treatment of diabetes mellitus and has a potential effect on Alzheimer's disease. It is also a BCS Class 2 drug with low solubility and low permeability. Developing a nanosuspension formulation and increasing the solubility and dissolution rate of glyburide is required to overcome this challenge.

Methods: Thus, the goal of this work was to create glyburide nanosuspensions by ball milling and homogenizing glyburide to increase its solubility and rate of dissolution. To achieve this, the nanosuspension formulation was optimized using a central composite design. Zeta potential, particle size distribution and solubility were selected by way of dependent variables, and ball milling time, homogenization cycles, and Pluronic F-127/glyburide ratio were chosen as independent variables. Glyburide nanosuspensions were obtained with a particle size of 244.6 ± 2.685 nm. In vitro release and solubility studies were conducted following optimization.

Results: The saturation solubility of glyburide was nearly doubled as a result of the nanocrystal formation. Xray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FT-IR) were used to assess the nanosuspension. SEM images confirmed that the nanocrystal formation process was successful. Glyburide and the excipients have no incompatibilities, their physical states have not changed, and the preparation method has not affected the stability of glyburide, according to DCS, XRD, and FT-IR analyses.

Conclusion: These studies indicated that a combination of ball milling and homogenization techniques significantly enhanced the solubility of glyburide and its release from the formulation. Consequently, this approach can be applied to formulations characterized by low absorption and limited bioavailability.

简介格列本脲是一种治疗糖尿病的药物,对老年痴呆症有潜在疗效。它也是一种 BCS 2 级药物,具有低溶解度和低渗透性。要克服这一难题,就必须开发出一种纳米悬浮制剂,并提高甘布肽的溶解度和溶解速率:因此,这项工作的目标是通过球磨和均质化甘布肽来制造甘布肽纳米悬浮液,以提高其溶解度和溶解速率。为此,采用中心复合设计法对纳米悬浮剂配方进行了优化。Zeta电位、粒度分布和溶解度被选为因变量,球磨时间、均质周期和Pluronic F-127/格列本脲的比例被选为自变量。格列本脲纳米悬浮剂的粒径为 244.6 ± 2.685 nm。优化后进行了体外释放和溶解度研究:结果:由于纳米晶体的形成,格列本脲的饱和溶解度几乎增加了一倍。X 射线衍射(XRD)、扫描电子显微镜(SEM)、差示扫描量热法(DSC)和傅立叶变换红外光谱(FT-IR)用于评估纳米悬浮液。扫描电镜图像证实纳米晶体的形成过程是成功的。根据 DCS、XRD 和 FT-IR 分析,格列本脲与辅料不存在不相容性,它们的物理状态没有发生变化,制备方法也没有影响格列本脲的稳定性:这些研究表明,球磨和均质化技术相结合能显著提高甘布肽的溶解度,并增加其从制剂中的释放。因此,这种方法可用于吸收率低和生物利用度有限的制剂。
{"title":"Optimization of Glyburide-Loaded Nanosuspensions via Ball Milling and Homogenization Techniques: A Central Composite Design Approach for Enhanced Solubility.","authors":"Damla Gungor, Eren Aytekin, Yagmur Akdag, Selma Sahin, Tugba Gulsun","doi":"10.2174/0113816128321501240828054050","DOIUrl":"https://doi.org/10.2174/0113816128321501240828054050","url":null,"abstract":"<p><strong>Introduction: </strong>Glyburide is a drug for the treatment of diabetes mellitus and has a potential effect on Alzheimer's disease. It is also a BCS Class 2 drug with low solubility and low permeability. Developing a nanosuspension formulation and increasing the solubility and dissolution rate of glyburide is required to overcome this challenge.</p><p><strong>Methods: </strong>Thus, the goal of this work was to create glyburide nanosuspensions by ball milling and homogenizing glyburide to increase its solubility and rate of dissolution. To achieve this, the nanosuspension formulation was optimized using a central composite design. Zeta potential, particle size distribution and solubility were selected by way of dependent variables, and ball milling time, homogenization cycles, and Pluronic F-127/glyburide ratio were chosen as independent variables. Glyburide nanosuspensions were obtained with a particle size of 244.6 ± 2.685 nm. In vitro release and solubility studies were conducted following optimization.</p><p><strong>Results: </strong>The saturation solubility of glyburide was nearly doubled as a result of the nanocrystal formation. Xray diffraction (XRD), scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and Fourier-transform infrared spectroscopy (FT-IR) were used to assess the nanosuspension. SEM images confirmed that the nanocrystal formation process was successful. Glyburide and the excipients have no incompatibilities, their physical states have not changed, and the preparation method has not affected the stability of glyburide, according to DCS, XRD, and FT-IR analyses.</p><p><strong>Conclusion: </strong>These studies indicated that a combination of ball milling and homogenization techniques significantly enhanced the solubility of glyburide and its release from the formulation. Consequently, this approach can be applied to formulations characterized by low absorption and limited bioavailability.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioelectronic Medicines-A Novel Approach of Therapeutics in Current Epoch. 生物电子药物--当代治疗的新方法。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-20 DOI: 10.2174/0113816128326489240827100537
Ajay Kumar, Mahendra Singh Ashawat, Vinay Pandit, Pravin Kumar

Background: Bioelectronic medicines aim to diagnose and treat a wide range of illnesses and ailments, including cancer, rheumatoid arthritis, inflammatory bowel disease, obesity, diabetes, asthma, paralysis, blindness, bleeding, ischemia, organ transplantation, cardiovascular disease, and neurodegenerative diseases. The focus of bioelectronic medicine is on electrical signaling of the nervous system. Understanding the nervous system's regulatory roles and developing technologies that record, activate, or inhibit neural signaling to influence particular biological pathways.

Objective: Bioelectronic medicine is an emerging therapeutic option with the interconnection between molecular medicine, neuroscience, and bioengineering. The creation of nerve stimulating devices that communicate with both the central and peripheral nervous systems has the potential to completely transform how we treat disorders. Although early clinical applications have been largely effective across entire nerves, the ultimate goal is to create implantable, miniature closed-loop systems that can precisely identify and modulate individual nerve fibers to treat a wide range of disorders.

Methodology: The data bases such as PubMed, and Clinicaltrial.gov.in were searched for scientific research, review and clinical trials on bioelectronic medicine.

Conclusion: The field of bioelectronic medicine is trending at present. In recent years, researchers have extended the field's applications, undertaken promising clinical trials, and begun delivering therapies to patients, thus creating the groundwork for significant future advancements. Countries and organizations must collaborate across industries and regions to establish an atmosphere and guidelines that foster the advancement of the field and the fulfillment of its prospective advantages.

背景:生物电子药物旨在诊断和治疗多种疾病,包括癌症、类风湿性关节炎、炎症性肠病、肥胖症、糖尿病、哮喘、瘫痪、失明、出血、缺血、器官移植、心血管疾病和神经退行性疾病。生物电子医学的重点是神经系统的电信号。了解神经系统的调节作用,开发记录、激活或抑制神经信号的技术,从而影响特定的生物通路:生物电子医学是分子医学、神经科学和生物工程相互联系的一种新兴治疗方法。能够与中枢神经系统和外周神经系统进行沟通的神经刺激装置的问世,有可能彻底改变我们治疗疾病的方式。虽然早期的临床应用在很大程度上对整个神经有效,但我们的最终目标是建立可植入的微型闭环系统,精确识别和调节单个神经纤维,治疗各种疾病:方法:在 PubMed 和 Clinicaltrial.gov.in 等数据库中搜索有关生物电子医学的科学研究、综述和临床试验:结论:生物电子医学领域是当前的发展趋势。近年来,研究人员扩大了该领域的应用范围,开展了前景广阔的临床试验,并开始向患者提供疗法,从而为未来的重大进展奠定了基础。各国和各组织必须开展跨行业、跨地区的合作,营造促进该领域发展的氛围,制定相关准则,发挥该领域的预期优势。
{"title":"Bioelectronic Medicines-A Novel Approach of Therapeutics in Current Epoch.","authors":"Ajay Kumar, Mahendra Singh Ashawat, Vinay Pandit, Pravin Kumar","doi":"10.2174/0113816128326489240827100537","DOIUrl":"https://doi.org/10.2174/0113816128326489240827100537","url":null,"abstract":"<p><strong>Background: </strong>Bioelectronic medicines aim to diagnose and treat a wide range of illnesses and ailments, including cancer, rheumatoid arthritis, inflammatory bowel disease, obesity, diabetes, asthma, paralysis, blindness, bleeding, ischemia, organ transplantation, cardiovascular disease, and neurodegenerative diseases. The focus of bioelectronic medicine is on electrical signaling of the nervous system. Understanding the nervous system's regulatory roles and developing technologies that record, activate, or inhibit neural signaling to influence particular biological pathways.</p><p><strong>Objective: </strong>Bioelectronic medicine is an emerging therapeutic option with the interconnection between molecular medicine, neuroscience, and bioengineering. The creation of nerve stimulating devices that communicate with both the central and peripheral nervous systems has the potential to completely transform how we treat disorders. Although early clinical applications have been largely effective across entire nerves, the ultimate goal is to create implantable, miniature closed-loop systems that can precisely identify and modulate individual nerve fibers to treat a wide range of disorders.</p><p><strong>Methodology: </strong>The data bases such as PubMed, and Clinicaltrial.gov.in were searched for scientific research, review and clinical trials on bioelectronic medicine.</p><p><strong>Conclusion: </strong>The field of bioelectronic medicine is trending at present. In recent years, researchers have extended the field's applications, undertaken promising clinical trials, and begun delivering therapies to patients, thus creating the groundwork for significant future advancements. Countries and organizations must collaborate across industries and regions to establish an atmosphere and guidelines that foster the advancement of the field and the fulfillment of its prospective advantages.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Captivating Potential of Schiff Bases Derivatives for Antidiabetic Activity. 希夫碱衍生物抗糖尿病的迷人潜力
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-20 DOI: 10.2174/0113816128339161240913055034
Rakesh Sahu, Kamal Shah

A double bond between the nitrogen and carbon atoms characterizes a wide class of compounds known as Schiff bases. The flexibility of Schiff bases is formed from several methods and may be combined with alkyl or aryl substituents. The group is a part of organic compounds, either synthetic or natural, and it serves as a precursor and an intermediate in drugs that have therapeutic action. The review focuses on molecular docking and structure-activity relationship (SAR) analysisfor antidiabetic effects of the different non-metal Schiff bases. Many studies have found that Schiff bases are used as linkers in an extensive range of synthesized compounds and other activities. Thus, this current study aims to give the scientific community a thoughtful look at the principal ideas put forward by investigators regarding antidiabetic actions exhibited by certain Schiff-based derivatives, as this review covered many aspects, including docking and SAR analysis. For individuals who intend to create novel antidiabetic compounds with Schiff bases as pharmacophores or physiologically active moieties, it will be an invaluable informational resource.

氮原子和碳原子之间的双键是希夫碱一类化合物的特征。希夫碱的柔韧性由多种方法形成,可与烷基或芳基取代基结合。该基团是合成或天然有机化合物的一部分,也是具有治疗作用的药物的前体和中间体。这篇综述重点分析了不同非金属席夫碱的分子对接和结构-活性关系(SAR)分析,以了解它们的抗糖尿病作用。许多研究发现,希夫碱在大量合成化合物和其他活动中被用作连接剂。因此,本研究旨在让科学界深入了解研究人员就某些席夫碱衍生物的抗糖尿病作用提出的主要观点,因为本综述涵盖了许多方面,包括对接和 SAR 分析。对于打算用希夫碱作为药源或生理活性分子来开发新型抗糖尿病化合物的人来说,这将是一个宝贵的信息资源。
{"title":"A Captivating Potential of Schiff Bases Derivatives for Antidiabetic Activity.","authors":"Rakesh Sahu, Kamal Shah","doi":"10.2174/0113816128339161240913055034","DOIUrl":"https://doi.org/10.2174/0113816128339161240913055034","url":null,"abstract":"<p><p>A double bond between the nitrogen and carbon atoms characterizes a wide class of compounds known as Schiff bases. The flexibility of Schiff bases is formed from several methods and may be combined with alkyl or aryl substituents. The group is a part of organic compounds, either synthetic or natural, and it serves as a precursor and an intermediate in drugs that have therapeutic action. The review focuses on molecular docking and structure-activity relationship (SAR) analysisfor antidiabetic effects of the different non-metal Schiff bases. Many studies have found that Schiff bases are used as linkers in an extensive range of synthesized compounds and other activities. Thus, this current study aims to give the scientific community a thoughtful look at the principal ideas put forward by investigators regarding antidiabetic actions exhibited by certain Schiff-based derivatives, as this review covered many aspects, including docking and SAR analysis. For individuals who intend to create novel antidiabetic compounds with Schiff bases as pharmacophores or physiologically active moieties, it will be an invaluable informational resource.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142307329","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An Integrated Approach of Network Pharmacology, Bioinformatics, Molecular Docking, and Experimental Verification Uncovers Prunellae Spica as the potential Medicine of Prognosis Improvement for Oral Squamous Cell Carcinoma 网络药理学、生物信息学、分子对接和实验验证的综合方法揭示了刺五加是改善口腔鳞状细胞癌预后的潜在药物
IF 3.1 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-18 DOI: 10.2174/0113816128328547240827045955
Jiahui Chen, Xinyan Zhang
Background: Prunellae Spica (PS), the spike from Prunella vulgaris L., is a traditional Chinese medicine that can treat Oral Squamous Cell Carcinoma (OSCC), whereas its molecular mechanisms and effects on the prognosis of patients remain unclear. Methods: Our study aimed to identify potential anti-OSCC targets of PS and explore its mechanisms and effects on prognosis through network pharmacology, bioinformatics analysis, molecular docking, and in vitro cell assays. Results: Sixty-two potential targets of 11 active anti-OSCC ingredients of PS were identified, with Quercetin, the core ingredient of PS, exhibiting the most significant number of OSCC-related targets. GO analysis indicated that the primary biological processes involved in OSCC treatment by PS were the cellular response to nitrogen compound, response to xenobiotic stimulus, and cellular response to organonitrogen compound. KEGG analysis revealed that Pathways in cancer were the top highly enriched signaling pathway in the treatment of OSCC by PS. DisGeNET analysis is mainly about Lip and Oral Cavity Carcinoma. More importantly, 6 of the 62 targets were markedly related to prognosis. Molecular docking revealed high affinities between the key component and the prognosis-related target proteins. Treatment of OSCC cell line SCC-25 with Quercetin could inhibit malignant biological behaviors, such as cell proliferation, colony formation, invasion, and migration, as well as affect the targets related to prognosis and promote autophagy. Conclusion: Overall, these results suggest that PS plays a significant role in treating and improving the prognosis of OSCC by directly influencing various processes in OSCC.
背景:刺五加(Prunellae Spica,PS)是一种传统中药,可治疗口腔鳞状细胞癌(OSCC),但其分子机制及其对患者预后的影响仍不清楚。研究方法我们的研究旨在通过网络药理学、生物信息学分析、分子对接和体外细胞实验,确定 PS 的潜在抗 OSCC 靶点,并探讨其机制及其对预后的影响。研究结果发现了 PS 中 11 种抗 OSCC 活性成分的 62 个潜在靶点,其中 PS 的核心成分槲皮素与 OSCC 相关的靶点数量最多。GO分析表明,PS治疗OSCC的主要生物学过程是细胞对氮化合物的反应、对异生物刺激的反应和细胞对有机氮化合物的反应。KEGG分析表明,在PS治疗OSCC的过程中,癌症中的通路是首要的高富集信号通路。DisGeNET 分析主要涉及唇癌和口腔癌。更重要的是,62个靶点中有6个与预后明显相关。分子对接显示,关键成分与预后相关的靶蛋白之间具有很高的亲和力。用槲皮素治疗OSCC细胞株SCC-25可抑制细胞增殖、集落形成、侵袭和迁移等恶性生物学行为,并影响与预后相关的靶标和促进自噬。结论总之,这些结果表明,PS通过直接影响OSCC的各种过程,在治疗和改善OSCC预后方面发挥着重要作用。
{"title":"An Integrated Approach of Network Pharmacology, Bioinformatics, Molecular Docking, and Experimental Verification Uncovers Prunellae Spica as the potential Medicine of Prognosis Improvement for Oral Squamous Cell Carcinoma","authors":"Jiahui Chen, Xinyan Zhang","doi":"10.2174/0113816128328547240827045955","DOIUrl":"https://doi.org/10.2174/0113816128328547240827045955","url":null,"abstract":"Background: Prunellae Spica (PS), the spike from Prunella vulgaris L., is a traditional Chinese medicine that can treat Oral Squamous Cell Carcinoma (OSCC), whereas its molecular mechanisms and effects on the prognosis of patients remain unclear. Methods: Our study aimed to identify potential anti-OSCC targets of PS and explore its mechanisms and effects on prognosis through network pharmacology, bioinformatics analysis, molecular docking, and in vitro cell assays. Results: Sixty-two potential targets of 11 active anti-OSCC ingredients of PS were identified, with Quercetin, the core ingredient of PS, exhibiting the most significant number of OSCC-related targets. GO analysis indicated that the primary biological processes involved in OSCC treatment by PS were the cellular response to nitrogen compound, response to xenobiotic stimulus, and cellular response to organonitrogen compound. KEGG analysis revealed that Pathways in cancer were the top highly enriched signaling pathway in the treatment of OSCC by PS. DisGeNET analysis is mainly about Lip and Oral Cavity Carcinoma. More importantly, 6 of the 62 targets were markedly related to prognosis. Molecular docking revealed high affinities between the key component and the prognosis-related target proteins. Treatment of OSCC cell line SCC-25 with Quercetin could inhibit malignant biological behaviors, such as cell proliferation, colony formation, invasion, and migration, as well as affect the targets related to prognosis and promote autophagy. Conclusion: Overall, these results suggest that PS plays a significant role in treating and improving the prognosis of OSCC by directly influencing various processes in OSCC.","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":"35 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Recent Developments and Applications of 3D-Printing Technology in Pharmaceutical Drug Delivery Systems: A New Research Direction and Future Trends 三维打印技术在药物输送系统中的最新发展和应用:新的研究方向和未来趋势
IF 3.1 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-09-18 DOI: 10.2174/0113816128309717240826101647
Suryakanta Swain, Bikash Ranjan Jena, Rabinarayan Parhi
The advent of 3D printing technology has emerged as a key technical revolution in recent years, enabling the development and production of innovative medication delivery methods in the pharmaceutical sector. The designs, concepts, techniques, key challenges, and potential benefits during 3D-printing technology are the key points discussed in this review. This technology primarily enables rapid, safe, and low-cost development of pharmaceutical formulations during the conventional and additive manufacturing processes. This phenomenon has wide-ranging implications in current as well as future medicinal developments. Advanced technologies such as Ink-Jet printing, drop-on-demand printing, Zip dose, Electrohydrodynamic Printing (Ejet) etc., are the current focus of the drug delivery systems for enhancing patient convenience and improving medication compliance. The current and future applications of various software, such as CAD software, and regulatory aspects in 3D and 4D printing technology are discussed briefly in this article. With respect to the prospective trajectory of 3D and 4D printing, it is probable that the newly developed methods will be predominantly utilized in pharmacies and hospitals to accommodate the unique requirements of individuals or niche groups. As a result, it is imperative that these technologies continue to advance and be improved in comparison to 2D printing in order to surmount the aforementioned regulatory and technical obstacles, render them applicable to a vast array of drug delivery systems, and increase their acceptability among patients of every generation.
近年来,3D 打印技术的出现已成为一场关键的技术革命,使制药行业能够开发和生产创新的给药方法。本综述将重点讨论 3D 打印技术的设计、概念、技术、主要挑战和潜在优势。这项技术主要是在传统和增材制造过程中实现快速、安全和低成本的药物制剂开发。这一现象对当前和未来的医药发展有着广泛的影响。喷墨打印、按需滴注打印、Zip dose、电流体动力打印(Ejet)等先进技术是当前给药系统的重点,可为患者提供更多便利,提高用药依从性。本文简要讨论了 CAD 软件等各种软件的当前和未来应用,以及 3D 和 4D 打印技术的监管问题。关于三维和四维打印技术的发展前景,新开发的方法很可能主要用于药房和医院,以满足个人或特殊群体的独特需求。因此,与二维打印相比,当务之急是继续推进和改进这些技术,以克服上述监管和技术障碍,使其适用于各种给药系统,并提高每一代患者的接受程度。
{"title":"Recent Developments and Applications of 3D-Printing Technology in Pharmaceutical Drug Delivery Systems: A New Research Direction and Future Trends","authors":"Suryakanta Swain, Bikash Ranjan Jena, Rabinarayan Parhi","doi":"10.2174/0113816128309717240826101647","DOIUrl":"https://doi.org/10.2174/0113816128309717240826101647","url":null,"abstract":"The advent of 3D printing technology has emerged as a key technical revolution in recent years, enabling the development and production of innovative medication delivery methods in the pharmaceutical sector. The designs, concepts, techniques, key challenges, and potential benefits during 3D-printing technology are the key points discussed in this review. This technology primarily enables rapid, safe, and low-cost development of pharmaceutical formulations during the conventional and additive manufacturing processes. This phenomenon has wide-ranging implications in current as well as future medicinal developments. Advanced technologies such as Ink-Jet printing, drop-on-demand printing, Zip dose, Electrohydrodynamic Printing (Ejet) etc., are the current focus of the drug delivery systems for enhancing patient convenience and improving medication compliance. The current and future applications of various software, such as CAD software, and regulatory aspects in 3D and 4D printing technology are discussed briefly in this article. With respect to the prospective trajectory of 3D and 4D printing, it is probable that the newly developed methods will be predominantly utilized in pharmacies and hospitals to accommodate the unique requirements of individuals or niche groups. As a result, it is imperative that these technologies continue to advance and be improved in comparison to 2D printing in order to surmount the aforementioned regulatory and technical obstacles, render them applicable to a vast array of drug delivery systems, and increase their acceptability among patients of every generation.","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":"39 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142267711","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current pharmaceutical design
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1