首页 > 最新文献

Current pharmaceutical design最新文献

英文 中文
Insights into the Novel Biomarkers Expressed in Diabetic Nephropathy: Potential Clinical Applications. 洞察糖尿病肾病中表达的新型生物标记物:潜在的临床应用。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-16 DOI: 10.2174/0113816128333694240928161703
Shalu Chauhan, Uma Bhandari, Anwar Habib

Diabetic nephropathy (DN) is increasing worldwide in parallel with type 2 diabetes mellitus. Identifying diagnostic biomarkers for DN at an early stage is crucial due to the considerable societal and economic burden associated with diabetes mellitus (DM) and its risk factors. In the past, early indicators of microvascular problems, such as microalbuminuria (MA), have been used to predict the possibility of developing advanced chronic kidney disease (CKD). However, because of the incapacity of MA to appropriately estimate DN, particularly, non-albuminuric DN, additional markers have been suggested for recognizing the early renal abnormalities and structural lesions, even before MA. This study aims to assess the existing and future biomarkers used to diagnose or predict early DN. This review provides comprehensive insight into diagnostic approaches for early detection of CKD, addressing the following areas: (i) markers of glomerular damage, (ii) markers of tubular damage, (iii) oxidative stress biomarkers, (iv) inflammatory biomarkers and (v) futuristic biomarkers such as micro-ribonucleic acids (miRNAs), proteomics, metabolomics and genomics and gut microbiota. Early detection of DN may lead to improvement in clinical management and quality of life, emphasizing the importance of identifying a specific and reliable predictive biomarker. Emerging serum and urinary biomarkers offer promise for early DN diagnosis, potentially reducing prevalence and preventing progression to end-stage renal disease (ESRD). Further advancements in miRNAs, proteomics, metabolomics genomics and gut microbiota offer prospects for even earlier and more precise DN diagnosis.

在全球范围内,糖尿病肾病(DN)与 2 型糖尿病的发病率同步上升。由于糖尿病(DM)及其风险因素造成了巨大的社会和经济负担,因此及早确定糖尿病肾病的诊断生物标志物至关重要。过去,微血管问题的早期指标,如微量白蛋白尿(MA),被用来预测发展为晚期慢性肾脏病(CKD)的可能性。然而,由于微量白蛋白尿不能适当地估测慢性肾脏病,尤其是非白蛋白尿慢性肾脏病,因此有人建议使用其他标记物来识别早期肾脏异常和结构性病变,甚至在微量白蛋白尿之前。本研究旨在评估现有和未来用于诊断或预测早期 DN 的生物标记物。本综述对早期检测 CKD 的诊断方法提供了全面的见解,涉及以下领域:(i) 肾小球损伤标志物;(ii) 肾小管损伤标志物;(iii) 氧化应激生物标志物;(iv) 炎症生物标志物;(v) 微核糖核酸 (miRNA)、蛋白质组学、代谢组学、基因组学和肠道微生物群等未来生物标志物。DN 的早期检测可改善临床管理和生活质量,这就强调了确定特异、可靠的预测性生物标志物的重要性。新出现的血清和尿液生物标志物为早期诊断 DN 带来了希望,有可能降低发病率并防止病情恶化至终末期肾病 (ESRD)。miRNAs、蛋白质组学、代谢组学基因组学和肠道微生物群的进一步发展为更早更精确地诊断 DN 提供了前景。
{"title":"Insights into the Novel Biomarkers Expressed in Diabetic Nephropathy: Potential Clinical Applications.","authors":"Shalu Chauhan, Uma Bhandari, Anwar Habib","doi":"10.2174/0113816128333694240928161703","DOIUrl":"https://doi.org/10.2174/0113816128333694240928161703","url":null,"abstract":"<p><p>Diabetic nephropathy (DN) is increasing worldwide in parallel with type 2 diabetes mellitus. Identifying diagnostic biomarkers for DN at an early stage is crucial due to the considerable societal and economic burden associated with diabetes mellitus (DM) and its risk factors. In the past, early indicators of microvascular problems, such as microalbuminuria (MA), have been used to predict the possibility of developing advanced chronic kidney disease (CKD). However, because of the incapacity of MA to appropriately estimate DN, particularly, non-albuminuric DN, additional markers have been suggested for recognizing the early renal abnormalities and structural lesions, even before MA. This study aims to assess the existing and future biomarkers used to diagnose or predict early DN. This review provides comprehensive insight into diagnostic approaches for early detection of CKD, addressing the following areas: (i) markers of glomerular damage, (ii) markers of tubular damage, (iii) oxidative stress biomarkers, (iv) inflammatory biomarkers and (v) futuristic biomarkers such as micro-ribonucleic acids (miRNAs), proteomics, metabolomics and genomics and gut microbiota. Early detection of DN may lead to improvement in clinical management and quality of life, emphasizing the importance of identifying a specific and reliable predictive biomarker. Emerging serum and urinary biomarkers offer promise for early DN diagnosis, potentially reducing prevalence and preventing progression to end-stage renal disease (ESRD). Further advancements in miRNAs, proteomics, metabolomics genomics and gut microbiota offer prospects for even earlier and more precise DN diagnosis.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Saffron's Therapeutic Potential: Insights on Phytochemistry, Bioactivity, and Clinical Implications. 探索藏红花的治疗潜力:关于植物化学、生物活性和临床意义的见解。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-16 DOI: 10.2174/0113816128337941240928181943
Debasis Sen, Sunny Rathee, Vishal Pandey, Sanjay K Jain

Saffron, derived from the Crocus sativus plant, has been revered for centuries for its culinary, medicinal, and cultural significance. This review provides a comprehensive overview of saffron's chemical constituents and phytochemistry, elucidating its rich profile of bioactive compounds. Emphasis is placed on exploring the bio-accessibility, bioavailability, and bioactivity of saffron's phytochemicals, laying the foundation for understanding its pharmaceutical significance. The pharmaceutical importance of saffron and its phytochemicals is thoroughly examined, focusing on their diverse therapeutic properties. These include anticancer, antidiabetic, antioxidant, antimicrobial, anti-inflammatory, antinociceptive, anticonvulsant, antidepressant, learning and memory enhancement, cardiovascular, and antihypertensive properties. Such multifaceted pharmacological activities underscore saffron's potential as a valuable medicinal resource. Clinical studies investigating the efficacy and safety of saffron in various health conditions are synthesized, providing insights into its clinical applications. Moreover, toxicity assessments in animal models, encompassing acute, subacute, subchronic, and developmental toxicity, are discussed to delineate the safety profile of saffron and its bioactive constituents. Finally, recent advances and future perspectives in saffron research are highlighted, underscoring emerging trends and potential avenues for further exploration. This review serves as a comprehensive resource for researchers, clinicians, and stakeholders interested in harnessing the therapeutic potential of saffron while ensuring its safe and effective utilization in healthcare settings.

藏红花提取自 Crocus sativus 植物,几个世纪以来一直因其烹饪、药用和文化意义而备受推崇。本综述全面概述了藏红花的化学成分和植物化学,阐明了其丰富的生物活性化合物。重点探讨了藏红花植物化学成分的生物可及性、生物利用率和生物活性,为了解其制药意义奠定了基础。该书深入研究了藏红花及其植物化学物质的重要药用价值,重点关注它们的各种治疗特性。这些特性包括抗癌、抗糖尿病、抗氧化、抗菌、抗炎、抗过敏、抗惊厥、抗抑郁、增强学习和记忆能力、心血管和降压特性。这些多方面的药理作用凸显了藏红花作为宝贵药用资源的潜力。本研究综述了藏红花对各种健康状况的疗效和安全性的临床研究,为藏红花的临床应用提供了深入的见解。此外,还讨论了动物模型的毒性评估,包括急性、亚急性、亚慢性和发育毒性,以描述藏红花及其生物活性成分的安全性。最后,重点介绍了藏红花研究的最新进展和未来前景,强调了新出现的趋势和进一步探索的潜在途径。这篇综述为研究人员、临床医生和有兴趣利用藏红花治疗潜力的利益相关者提供了全面的资源,同时确保了藏红花在医疗保健环境中的安全和有效利用。
{"title":"Exploring Saffron's Therapeutic Potential: Insights on Phytochemistry, Bioactivity, and Clinical Implications.","authors":"Debasis Sen, Sunny Rathee, Vishal Pandey, Sanjay K Jain","doi":"10.2174/0113816128337941240928181943","DOIUrl":"https://doi.org/10.2174/0113816128337941240928181943","url":null,"abstract":"<p><p>Saffron, derived from the Crocus sativus plant, has been revered for centuries for its culinary, medicinal, and cultural significance. This review provides a comprehensive overview of saffron's chemical constituents and phytochemistry, elucidating its rich profile of bioactive compounds. Emphasis is placed on exploring the bio-accessibility, bioavailability, and bioactivity of saffron's phytochemicals, laying the foundation for understanding its pharmaceutical significance. The pharmaceutical importance of saffron and its phytochemicals is thoroughly examined, focusing on their diverse therapeutic properties. These include anticancer, antidiabetic, antioxidant, antimicrobial, anti-inflammatory, antinociceptive, anticonvulsant, antidepressant, learning and memory enhancement, cardiovascular, and antihypertensive properties. Such multifaceted pharmacological activities underscore saffron's potential as a valuable medicinal resource. Clinical studies investigating the efficacy and safety of saffron in various health conditions are synthesized, providing insights into its clinical applications. Moreover, toxicity assessments in animal models, encompassing acute, subacute, subchronic, and developmental toxicity, are discussed to delineate the safety profile of saffron and its bioactive constituents. Finally, recent advances and future perspectives in saffron research are highlighted, underscoring emerging trends and potential avenues for further exploration. This review serves as a comprehensive resource for researchers, clinicians, and stakeholders interested in harnessing the therapeutic potential of saffron while ensuring its safe and effective utilization in healthcare settings.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459998","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uric Acid: A Biomarker and Pathogenic Factor of Affective Disorders and Neurodegenerative Diseases. 尿酸:情感障碍和神经退行性疾病的生物标志物和致病因素。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-16 DOI: 10.2174/0113816128333916241003180018
Teng Chu, Ge Liu, Jing Liu, Yue Wu, Weirong Fang

Uric acid (UA), the end-product of purine metabolism, has a complicated physiological role in the body, showing the combination of regulating inflammatory response, promoting oxidation/anti-oxidation, and modifying autophagy activity in vivo. Meanwhile, various research and theories support that inflammation, oxidative stress, and other risk factors promote the onset and progression of affective disorders and neurodegenerative diseases. Existing studies suggest that UA may be involved in the pathophysiological processes of affective disorders in various ways, and there has been a gradual advance in the understanding of the interplay between UA levels and affective disorders and neurodegenerative diseases. This review summarized the role of UA in the process of inflammation, oxidative stress, and autophagy. On this basis, we discussed the correlation between UA and affective disorders and several neurodegenerative diseases, and simultaneously analyzed the possible mechanism of its influence on affective disorders and neurodegenerative diseases, to provide a theoretical basis for UA as a biomarker or therapeutic target for the diagnosis of these diseases.

尿酸(UA)是嘌呤代谢的最终产物,在体内具有复杂的生理作用,表现出调节炎症反应、促进氧化/抗氧化、改变体内自噬活性等综合作用。同时,各种研究和理论都支持炎症、氧化应激和其他危险因素会促进情感障碍和神经退行性疾病的发生和发展。现有研究表明,UA 可能以各种方式参与情感障碍的病理生理过程,人们对 UA 水平与情感障碍和神经退行性疾病之间相互作用的认识也在逐步加深。本综述总结了 UA 在炎症、氧化应激和自噬过程中的作用。在此基础上,探讨了UA与情感障碍及多种神经退行性疾病的相关性,同时分析了UA对情感障碍和神经退行性疾病影响的可能机制,为UA作为诊断这些疾病的生物标志物或治疗靶点提供理论依据。
{"title":"Uric Acid: A Biomarker and Pathogenic Factor of Affective Disorders and Neurodegenerative Diseases.","authors":"Teng Chu, Ge Liu, Jing Liu, Yue Wu, Weirong Fang","doi":"10.2174/0113816128333916241003180018","DOIUrl":"https://doi.org/10.2174/0113816128333916241003180018","url":null,"abstract":"<p><p>Uric acid (UA), the end-product of purine metabolism, has a complicated physiological role in the body, showing the combination of regulating inflammatory response, promoting oxidation/anti-oxidation, and modifying autophagy activity in vivo. Meanwhile, various research and theories support that inflammation, oxidative stress, and other risk factors promote the onset and progression of affective disorders and neurodegenerative diseases. Existing studies suggest that UA may be involved in the pathophysiological processes of affective disorders in various ways, and there has been a gradual advance in the understanding of the interplay between UA levels and affective disorders and neurodegenerative diseases. This review summarized the role of UA in the process of inflammation, oxidative stress, and autophagy. On this basis, we discussed the correlation between UA and affective disorders and several neurodegenerative diseases, and simultaneously analyzed the possible mechanism of its influence on affective disorders and neurodegenerative diseases, to provide a theoretical basis for UA as a biomarker or therapeutic target for the diagnosis of these diseases.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142460002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Curcumin Modulates the Differential Effects of Fructose and High-Fat Diet on Renal Damage, Inflammation, Fibrosis, and Lipid Metabolism. 姜黄素调节果糖和高脂饮食对肾损伤、炎症、纤维化和脂质代谢的不同影响
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-14 DOI: 10.2174/0113816128312406241010081032
Cecilia Gabriela Meléndez-Salcido, Joel Ramírez-Emiliano, Juana Rosalba García-Ramírez, Anel Gómez-García, Victoriano Pérez-Vázquez

Background: Dyslipidemia and obesity hypercaloric diet-induced lead to kidney damage. We investigated the effect of curcumin on the expression of proteins related to inflammation, fibrosis, fatty acids metabolism, kidney damage, and morphological changes in the kidneys of mice hypercaloric diets-fed.

Methods: Groups of 5-week-old C57BL/6 mice (n=6) were formed: Control (C), High-fructose diet (F), Highfructose diet and curcumin (F+Cur), High-fat diet (HFD), High-fat diet and curcumin (HFD+Cur), High-fat diet and fructose (HFD+F), High-fat diet, fructose and curcumin (HFD+F+Cur), treated for 16 weeks with 30% (w/v) fructose, 60% (w/w) fat and 0.75% (w/w) curcumin. Kidneys were obtained for histomorphological and Western Blot analysis.

Results: Curcumin prevented TNF-α overexpression in the F and HFD+F groups. VLCAD expression was higher in the F, HFD, and HFD+F groups. PPARγ expression was lower in the F+Cur, HFD+Cur, and HFD+F+Cur groups. Curcumin prevented overexpression of CPT1 and KIM1 in the HFD+F and HFD groups. Curcumin prevented morphological lesions, fibrosis, and lipid deposition that were hypercaloric diet-induced.

Conclusion: Chronic consumption of hypercaloric diets causes inflammation, fibrosis, and lipid deposition in the kidney. It is suggested that curcumin prevents renal structural damage, limits tissue lipid deposition, and differentially modulates renal injury depending on diet composition in mice fed high-fat and/or high-fructose diets.

背景:高热量饮食引起的血脂异常和肥胖会导致肾脏损伤。我们研究了姜黄素对高热量饮食喂养小鼠肾脏炎症、纤维化、脂肪酸代谢、肾损伤和形态学变化相关蛋白表达的影响:5 周龄 C57BL/6 小鼠(n=6)为一组:对照组(C)、高果糖膳食组(F)、高果糖膳食和姜黄素组(F+Cur)、高脂膳食组(HFD)、高脂膳食和姜黄素组(HFD+Cur)、高脂膳食和果糖组(HFD+F)、高脂膳食、果糖和姜黄素组(HFD+F+Cur)。对肾脏进行组织形态学和 Western 印迹分析:结果:姜黄素能阻止 TNF-α 在 F 组和 HFD+F 组的过度表达。VLCAD在F组、HFD组和HFD+F组中表达较高。PPARγ的表达在F+Cur组、HFD+Cur组和HFD+F+Cur组较低。姜黄素能防止 CPT1 和 KIM1 在 HFD+F 组和 HFD 组的过表达。姜黄素能防止高热量饮食引起的形态学病变、纤维化和脂质沉积:结论:长期摄入高热量饮食会导致肾脏炎症、纤维化和脂质沉积。结论:长期摄入高热量饮食会导致肾脏炎症、纤维化和脂质沉积,姜黄素能防止肾脏结构损伤,限制组织脂质沉积,并能根据饮食成分对小鼠肾脏损伤进行不同程度的调节。
{"title":"Curcumin Modulates the Differential Effects of Fructose and High-Fat Diet on Renal Damage, Inflammation, Fibrosis, and Lipid Metabolism.","authors":"Cecilia Gabriela Meléndez-Salcido, Joel Ramírez-Emiliano, Juana Rosalba García-Ramírez, Anel Gómez-García, Victoriano Pérez-Vázquez","doi":"10.2174/0113816128312406241010081032","DOIUrl":"https://doi.org/10.2174/0113816128312406241010081032","url":null,"abstract":"<p><strong>Background: </strong>Dyslipidemia and obesity hypercaloric diet-induced lead to kidney damage. We investigated the effect of curcumin on the expression of proteins related to inflammation, fibrosis, fatty acids metabolism, kidney damage, and morphological changes in the kidneys of mice hypercaloric diets-fed.</p><p><strong>Methods: </strong>Groups of 5-week-old C57BL/6 mice (n=6) were formed: Control (C), High-fructose diet (F), Highfructose diet and curcumin (F+Cur), High-fat diet (HFD), High-fat diet and curcumin (HFD+Cur), High-fat diet and fructose (HFD+F), High-fat diet, fructose and curcumin (HFD+F+Cur), treated for 16 weeks with 30% (w/v) fructose, 60% (w/w) fat and 0.75% (w/w) curcumin. Kidneys were obtained for histomorphological and Western Blot analysis.</p><p><strong>Results: </strong>Curcumin prevented TNF-α overexpression in the F and HFD+F groups. VLCAD expression was higher in the F, HFD, and HFD+F groups. PPARγ expression was lower in the F+Cur, HFD+Cur, and HFD+F+Cur groups. Curcumin prevented overexpression of CPT1 and KIM1 in the HFD+F and HFD groups. Curcumin prevented morphological lesions, fibrosis, and lipid deposition that were hypercaloric diet-induced.</p><p><strong>Conclusion: </strong>Chronic consumption of hypercaloric diets causes inflammation, fibrosis, and lipid deposition in the kidney. It is suggested that curcumin prevents renal structural damage, limits tissue lipid deposition, and differentially modulates renal injury depending on diet composition in mice fed high-fat and/or high-fructose diets.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Emerging Promise of Green Synthesized Metallic Nanoparticles for the Management of Neurological Disorders. 绿色合成金属纳米粒子治疗神经系统疾病的新前景。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-11 DOI: 10.2174/0113816128337464240930042205
Zahra Esmaili Moghadam, Samin Hamidi, Maryam Azarfarin, Sara Salatin

The management of neurological disorders is very challenging due to the presence of the bloodbrain barrier (BBB) that prevents the entry of drugs into the central nervous system (CNS). The advancement of metallic nanoparticles (NPs) provides a novel direction for the treatment of neurological disorders. However, there is a significant concern regarding the toxic effects of metal NPs on biological tissues like the brain. The green synthesis strategy offers a superior alternative to the traditional methods for the development of metallic NPs. Notable metal and metal oxide NPs can be produced using various bio-reductants derived from natural sources such as plant tissues, fungi, bacteria, yeast, and alga. These biological agents play double roles as they expedite the reduction process and act as capping and stabilizing agents. In this paper, we discuss the major neurological disorders and the physical barriers limiting the transport of therapeutics to the CNS. Moreover, a special focus is given to the unique features of green synthesized metallic NPs for therapeutic purposes in various neurological disorders. The insights provided will guide future research toward better outcomes and facilitate the development of innovative treatments for neurological disorders.

由于血脑屏障(BBB)的存在阻碍了药物进入中枢神经系统(CNS),因此神经系统疾病的治疗非常具有挑战性。金属纳米粒子(NPs)的发展为治疗神经系统疾病提供了一个新的方向。然而,人们对金属 NPs 对大脑等生物组织的毒性效应非常担忧。绿色合成策略为开发金属 NPs 提供了一种优于传统方法的替代方案。利用从植物组织、真菌、细菌、酵母和藻类等天然来源提取的各种生物还原剂,可以生产出显著的金属和金属氧化物 NPs。这些生物制剂具有双重作用,既能加快还原过程,又能起到封盖和稳定剂的作用。在本文中,我们将讨论主要的神经系统疾病以及限制治疗药物向中枢神经系统运输的物理障碍。此外,我们还特别关注了绿色合成金属 NPs 在治疗各种神经系统疾病方面的独特功能。这些见解将指导未来的研究取得更好的成果,并促进神经系统疾病创新疗法的开发。
{"title":"Emerging Promise of Green Synthesized Metallic Nanoparticles for the Management of Neurological Disorders.","authors":"Zahra Esmaili Moghadam, Samin Hamidi, Maryam Azarfarin, Sara Salatin","doi":"10.2174/0113816128337464240930042205","DOIUrl":"https://doi.org/10.2174/0113816128337464240930042205","url":null,"abstract":"<p><p>The management of neurological disorders is very challenging due to the presence of the bloodbrain barrier (BBB) that prevents the entry of drugs into the central nervous system (CNS). The advancement of metallic nanoparticles (NPs) provides a novel direction for the treatment of neurological disorders. However, there is a significant concern regarding the toxic effects of metal NPs on biological tissues like the brain. The green synthesis strategy offers a superior alternative to the traditional methods for the development of metallic NPs. Notable metal and metal oxide NPs can be produced using various bio-reductants derived from natural sources such as plant tissues, fungi, bacteria, yeast, and alga. These biological agents play double roles as they expedite the reduction process and act as capping and stabilizing agents. In this paper, we discuss the major neurological disorders and the physical barriers limiting the transport of therapeutics to the CNS. Moreover, a special focus is given to the unique features of green synthesized metallic NPs for therapeutic purposes in various neurological disorders. The insights provided will guide future research toward better outcomes and facilitate the development of innovative treatments for neurological disorders.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459997","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Comprehensive Review of Challenges in Oral Drug Delivery Systems and Recent Advancements in Innovative Design Strategies. 全面回顾口服给药系统面临的挑战和创新设计策略的最新进展。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-10 DOI: 10.2174/0113816128338560240923073357
Ying Hui Loke, Achuth Jayakrishnan, Muhammad Redza Fahmi Mod Razif, Kar Ming Yee, Phei Er Kee, Bey Hing Goh, A B M Helal Uddin, Vijayakumar Lakshminarayanan, Kai Bin Liew

The oral route of drug administration is often preferred by patients and healthcare providers due to its convenience, ease of use, non-invasiveness, and patient acceptance. However, traditional oral dosage forms have several limitations, including low bioavailability, limited drug loading capacity, and stability and storage issues, particularly with solutions and suspensions. Over the years, researchers have dedicated considerable effort to developing novel oral drug delivery systems to overcome these limitations. This review discusses various challenges associated with oral drug delivery systems, including biological, pharmaceutical, and physicochemical barriers. It also explores common delivery approaches, such as gastroretentive drug delivery, small intestine drug delivery, and colon-targeting drug delivery systems. Additionally, numerous strategies aimed at improving oral drug delivery efficiency are reviewed, including solid dispersion, absorption enhancers, lipidbased formulations, nanoparticles, polymer-based nanocarriers, liposomal formulations, microencapsulation, and micellar formulations. Furthermore, innovative approaches like orally disintegrating tablets (ODT), orally disintegrating films (ODF), layered tablets, micro particulates, self-nano emulsifying formulations (SNEF), and controlled release dosage forms are explored for their potential in enhancing oral drug delivery efficiency and promoting patients' compliance. Overall, this review highlights significant progress in addressing challenges in the pharmaceutical industry and clinical settings, offering novel approaches for the development of effective oral drug delivery systems.

口服给药途径因其方便、易用、无创伤和患者接受度高,通常是患者和医疗服务提供者的首选。然而,传统的口服剂型存在一些局限性,包括生物利用度低、载药量有限以及稳定性和储存问题,尤其是溶液和混悬液。多年来,研究人员致力于开发新型口服给药系统,以克服这些局限性。本综述讨论了与口服给药系统相关的各种挑战,包括生物、制药和物理化学障碍。它还探讨了常见的给药方法,如胃保留给药、小肠给药和结肠靶向给药系统。此外,还综述了旨在提高口服给药效率的多种策略,包括固体分散剂、吸收促进剂、脂基制剂、纳米颗粒、聚合物基纳米载体、脂质体制剂、微囊化和胶束制剂。此外,还探讨了口腔崩解片(ODT)、口腔崩解膜(ODF)、分层片剂、微粒、自纳米乳化制剂(SNEF)和控释剂型等创新方法,以挖掘它们在提高口服给药效率和促进患者依从性方面的潜力。总之,本综述强调了在应对制药行业和临床环境挑战方面取得的重大进展,为开发有效的口服给药系统提供了新方法。
{"title":"A Comprehensive Review of Challenges in Oral Drug Delivery Systems and Recent Advancements in Innovative Design Strategies.","authors":"Ying Hui Loke, Achuth Jayakrishnan, Muhammad Redza Fahmi Mod Razif, Kar Ming Yee, Phei Er Kee, Bey Hing Goh, A B M Helal Uddin, Vijayakumar Lakshminarayanan, Kai Bin Liew","doi":"10.2174/0113816128338560240923073357","DOIUrl":"https://doi.org/10.2174/0113816128338560240923073357","url":null,"abstract":"<p><p>The oral route of drug administration is often preferred by patients and healthcare providers due to its convenience, ease of use, non-invasiveness, and patient acceptance. However, traditional oral dosage forms have several limitations, including low bioavailability, limited drug loading capacity, and stability and storage issues, particularly with solutions and suspensions. Over the years, researchers have dedicated considerable effort to developing novel oral drug delivery systems to overcome these limitations. This review discusses various challenges associated with oral drug delivery systems, including biological, pharmaceutical, and physicochemical barriers. It also explores common delivery approaches, such as gastroretentive drug delivery, small intestine drug delivery, and colon-targeting drug delivery systems. Additionally, numerous strategies aimed at improving oral drug delivery efficiency are reviewed, including solid dispersion, absorption enhancers, lipidbased formulations, nanoparticles, polymer-based nanocarriers, liposomal formulations, microencapsulation, and micellar formulations. Furthermore, innovative approaches like orally disintegrating tablets (ODT), orally disintegrating films (ODF), layered tablets, micro particulates, self-nano emulsifying formulations (SNEF), and controlled release dosage forms are explored for their potential in enhancing oral drug delivery efficiency and promoting patients' compliance. Overall, this review highlights significant progress in addressing challenges in the pharmaceutical industry and clinical settings, offering novel approaches for the development of effective oral drug delivery systems.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142399677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Click Reaction Inspired Enzyme Inhibitors in Diabetes Care: An Update in the Field of Chronic Metabolic Disorder. 糖尿病护理中的点击反应启发酶抑制剂:慢性代谢紊乱领域的最新进展。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-09 DOI: 10.2174/0113816128310031240923062555
Deeksha Mudgal, Nisha Yadav, Gaurav Kumar Srivastava, Manish Mishra, Vivek Mishra

Diabetes is a chronic metabolic disorder that impacts all age groups and affects a large population worldwide. Humans receive glucose from almost every food source, and after absorption from the gut, it reaches the liver, which functions as the distribution center for it. The insulin-responsive glucose transporter type 4 (GLUT-4) is a major carrier of glucose to the various cells (majorly expressed in myocytes, adipocytes, and cardiomyocytes) in a well-fed state. In fasting periods, the glucose supply is maintained by glycogenolysis and gluconeogenesis. In diabetes, the distribution of glucose is hampered due to several reasons. Furthermore, to treat this disorder, several drugs have been synthesized, and click chemistry plays an important role. A more recent concept for producing pharmaceuticals with a click chemistry approach makes any reaction more practical and stereospecific, along with a higher yield of products and a smaller number of by-products. This approach comprises a compiled study of the activity of numerous compelling antidiabetic drugs containing 1, 2, 3-triazole derivatives supported by click chemistry. In this review, we discuss the synthetic antidiabetic drugs made via click chemistry and their commendable role in improving diabetes care.

糖尿病是一种慢性代谢性疾病,影响着各个年龄段的人群,在全球范围内影响着大量人口。人类从几乎所有食物中获取葡萄糖,从肠道吸收后到达肝脏,肝脏是葡萄糖的集散中心。胰岛素反应型葡萄糖转运体 4 型(GLUT-4)是在饱食状态下向各种细胞(主要在肌细胞、脂肪细胞和心肌细胞中表达)输送葡萄糖的主要载体。在空腹状态下,葡萄糖供应由糖原分解和葡萄糖生成维持。在糖尿病患者中,由于多种原因,葡萄糖的分布受到阻碍。此外,为了治疗这种疾病,人们合成了多种药物,其中点击化学发挥了重要作用。最近,一种利用点击化学方法生产药物的概念使任何反应都更加实用和具有立体特异性,同时产品产量更高,副产品数量更少。这种方法包括通过点击化学方法对含有 1、2、3-三唑衍生物的多种引人注目的抗糖尿病药物的活性进行综合研究。在这篇综述中,我们将讨论通过点击化学合成的抗糖尿病药物及其在改善糖尿病治疗中的重要作用。
{"title":"Click Reaction Inspired Enzyme Inhibitors in Diabetes Care: An Update in the Field of Chronic Metabolic Disorder.","authors":"Deeksha Mudgal, Nisha Yadav, Gaurav Kumar Srivastava, Manish Mishra, Vivek Mishra","doi":"10.2174/0113816128310031240923062555","DOIUrl":"https://doi.org/10.2174/0113816128310031240923062555","url":null,"abstract":"<p><p>Diabetes is a chronic metabolic disorder that impacts all age groups and affects a large population worldwide. Humans receive glucose from almost every food source, and after absorption from the gut, it reaches the liver, which functions as the distribution center for it. The insulin-responsive glucose transporter type 4 (GLUT-4) is a major carrier of glucose to the various cells (majorly expressed in myocytes, adipocytes, and cardiomyocytes) in a well-fed state. In fasting periods, the glucose supply is maintained by glycogenolysis and gluconeogenesis. In diabetes, the distribution of glucose is hampered due to several reasons. Furthermore, to treat this disorder, several drugs have been synthesized, and click chemistry plays an important role. A more recent concept for producing pharmaceuticals with a click chemistry approach makes any reaction more practical and stereospecific, along with a higher yield of products and a smaller number of by-products. This approach comprises a compiled study of the activity of numerous compelling antidiabetic drugs containing 1, 2, 3-triazole derivatives supported by click chemistry. In this review, we discuss the synthetic antidiabetic drugs made via click chemistry and their commendable role in improving diabetes care.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Decoding the Therapeutic Potential of Cannabis and Cannabinoids in Neurological Disorders. 解码大麻和大麻素对神经系统疾病的治疗潜力。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-09 DOI: 10.2174/0113816128318194240918113954
Mayur B Kale, Mohit D Umare, Nitu L Wankhede, Rohitas Deshmukh, Vikrant Abbot, Md Khalid Anwer, Brijesh G Taksande, Aman B Upaganlawar, Milind J Umekar, Seema Ramniwas, Monica Gulati, Rashmi Arora, Tapan Behl

For millennia, Cannabis sativa has served diverse roles, from medicinal applications to recreational use. Despite its extensive historical use, only a fraction of its components have been explored until recent times. The therapeutic potential of Cannabis and its constituents has garnered attention, with suggestions for treating various conditions such as Parkinson's disease, epilepsy, Alzheimer's disease, and other Neurological disorders. Recent research, particularly on animal experimental models, has unveiled the neuroprotective properties of cannabis. This neuroprotective effect is orchestrated through numerous G protein-coupled receptors (GPCRs) and the two cannabinoid receptors, CB1 and CB2. While the capacity of cannabinoids to safeguard neurons is evident, a significant challenge lies in determining the optimal cannabinoid receptor agonist and its application in clinical trials. The intricate interplay of cannabinoids with the endocannabinoid system, involving CB1 and CB2 receptors, underscores the need for precise understanding and targeted approaches. Unravelling the molecular intricacies of this interaction is vital to harness the therapeutic potential of cannabinoids effectively. As the exploration of cannabis components accelerates, there is a growing awareness of the need for nuanced strategies in utilizing cannabinoid receptor agonists in clinical settings. The evolving landscape of cannabis research presents exciting possibilities for developing targeted interventions that capitalize on the neuroprotective benefits of cannabinoids while navigating the complexities of receptor specificity and clinical applicability.

千百年来,大麻的作用多种多样,从药用到娱乐都有。尽管大麻在历史上被广泛使用,但直到近代,人们才对它的一小部分成分进行了研究。大麻及其成分的治疗潜力已引起人们的关注,有人建议将其用于治疗各种疾病,如帕金森病、癫痫、老年痴呆症和其他神经系统疾病。最近的研究,特别是对动物实验模型的研究,揭示了大麻的神经保护特性。这种神经保护作用是通过许多 G 蛋白偶联受体(GPCR)和两种大麻素受体(CB1 和 CB2)协调产生的。虽然大麻素保护神经元的能力显而易见,但确定最佳大麻素受体激动剂及其在临床试验中的应用仍是一项重大挑战。大麻素与内源性大麻素系统(涉及 CB1 和 CB2 受体)之间错综复杂的相互作用凸显了精确理解和针对性方法的必要性。要想有效利用大麻素的治疗潜力,揭示这种相互作用的分子奥秘至关重要。随着对大麻成分探索的加速,人们越来越意识到在临床环境中利用大麻素受体激动剂需要采取细致入微的策略。大麻研究的不断发展为开发有针对性的干预措施提供了令人兴奋的可能性,这些干预措施既能利用大麻素的神经保护功效,又能驾驭受体特异性和临床适用性的复杂性。
{"title":"Decoding the Therapeutic Potential of Cannabis and Cannabinoids in Neurological Disorders.","authors":"Mayur B Kale, Mohit D Umare, Nitu L Wankhede, Rohitas Deshmukh, Vikrant Abbot, Md Khalid Anwer, Brijesh G Taksande, Aman B Upaganlawar, Milind J Umekar, Seema Ramniwas, Monica Gulati, Rashmi Arora, Tapan Behl","doi":"10.2174/0113816128318194240918113954","DOIUrl":"https://doi.org/10.2174/0113816128318194240918113954","url":null,"abstract":"<p><p>For millennia, Cannabis sativa has served diverse roles, from medicinal applications to recreational use. Despite its extensive historical use, only a fraction of its components have been explored until recent times. The therapeutic potential of Cannabis and its constituents has garnered attention, with suggestions for treating various conditions such as Parkinson's disease, epilepsy, Alzheimer's disease, and other Neurological disorders. Recent research, particularly on animal experimental models, has unveiled the neuroprotective properties of cannabis. This neuroprotective effect is orchestrated through numerous G protein-coupled receptors (GPCRs) and the two cannabinoid receptors, CB1 and CB2. While the capacity of cannabinoids to safeguard neurons is evident, a significant challenge lies in determining the optimal cannabinoid receptor agonist and its application in clinical trials. The intricate interplay of cannabinoids with the endocannabinoid system, involving CB1 and CB2 receptors, underscores the need for precise understanding and targeted approaches. Unravelling the molecular intricacies of this interaction is vital to harness the therapeutic potential of cannabinoids effectively. As the exploration of cannabis components accelerates, there is a growing awareness of the need for nuanced strategies in utilizing cannabinoid receptor agonists in clinical settings. The evolving landscape of cannabis research presents exciting possibilities for developing targeted interventions that capitalize on the neuroprotective benefits of cannabinoids while navigating the complexities of receptor specificity and clinical applicability.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142459996","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
125 Years of Aspirin: Status of Analytical Methods. 阿司匹林 125 年:分析方法的现状。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-08 DOI: 10.2174/0113816128333651240918064132
Natália Sabina Dos Santos Galvão, Aline Sinzervinch, Isadora Alves Lustosa, Ana Carolina Kogawa

Aspirin, an analgesic, antipyretic and non-steroidal anti-inflammatory drug, was a fascinating discovery that became the precursor to one of the oldest pharmaceutical success stories. It was discovered in 1899 by Felix Hoffman and patented in 1900. In 2024, Aspirin turns 125 years old and is still one of the bestselling medicines today. This review aims to celebrate 125 years of Aspirin and show the status of analytical methods available in the literature to evaluate pharmaceutical products based on Acetylsalicylic Acid (ASA). In addition, it contextualizes them with the current needs of green and clean analytical chemistry. ASA, despite being consolidated in the consumer market, embraces continuous improvement as it is a fundamental part of studies for other new purposes and studies with associations with other active ingredients. In the manuscripts available in the literature, ASA is predominantly evaluated by HPLC (41%) and UV-Vis (41%) methods, which use methanol (21.82%) and acetonitrile (18.18%), followed by buffer (16.36%). The most evaluated pharmaceutical matrix is ASA tablets (40%), followed by ASA tablets in combination with other drugs (26%). While ASA continues to innovate in the market through new forms of delivery and combinations, as well as intended purposes, the analytical methods for evaluating its pharmaceutical products do not. They continue with non-eco-efficient analytical options, which can significantly improve and meet the current demand for green and sustainable analytical chemistry.

阿司匹林是一种镇痛、解热和非甾体抗炎药物,它是一个引人入胜的发现,也是最古老的成功制药案例之一的前身。阿司匹林于 1899 年由费利克斯-霍夫曼发现,并于 1900 年获得专利。2024 年,阿司匹林将迎来 125 周岁生日,如今它仍是最畅销的药品之一。本综述旨在庆祝阿司匹林诞生 125 周年,并展示文献中可用来评估基于乙酰水杨酸 (ASA) 的药品的分析方法的现状。此外,它还将这些方法与当前绿色和清洁分析化学的需求相结合。尽管乙酰水杨酸在消费市场中的地位已得到巩固,但由于它是其他新用途研究和与其他活性成分相关研究的基本组成部分,因此仍需不断改进。在现有的文献手稿中,主要采用 HPLC(41%)和 UV-Vis(41%)方法对 ASA 进行评估,其中使用甲醇(21.82%)和乙腈(18.18%),其次是缓冲液(16.36%)。评估最多的药物基质是 ASA 片剂(40%),其次是 ASA 片剂与其他药物的复方制剂(26%)。虽然 ASA 通过新的给药形式和组合以及预期目的在市场上不断创新,但评估其药品的分析方法却没有创新。它们继续采用非生态高效的分析方法,而这些方法可以大大改善和满足当前对绿色和可持续分析化学的需求。
{"title":"125 Years of Aspirin: Status of Analytical Methods.","authors":"Natália Sabina Dos Santos Galvão, Aline Sinzervinch, Isadora Alves Lustosa, Ana Carolina Kogawa","doi":"10.2174/0113816128333651240918064132","DOIUrl":"https://doi.org/10.2174/0113816128333651240918064132","url":null,"abstract":"<p><p>Aspirin, an analgesic, antipyretic and non-steroidal anti-inflammatory drug, was a fascinating discovery that became the precursor to one of the oldest pharmaceutical success stories. It was discovered in 1899 by Felix Hoffman and patented in 1900. In 2024, Aspirin turns 125 years old and is still one of the bestselling medicines today. This review aims to celebrate 125 years of Aspirin and show the status of analytical methods available in the literature to evaluate pharmaceutical products based on Acetylsalicylic Acid (ASA). In addition, it contextualizes them with the current needs of green and clean analytical chemistry. ASA, despite being consolidated in the consumer market, embraces continuous improvement as it is a fundamental part of studies for other new purposes and studies with associations with other active ingredients. In the manuscripts available in the literature, ASA is predominantly evaluated by HPLC (41%) and UV-Vis (41%) methods, which use methanol (21.82%) and acetonitrile (18.18%), followed by buffer (16.36%). The most evaluated pharmaceutical matrix is ASA tablets (40%), followed by ASA tablets in combination with other drugs (26%). While ASA continues to innovate in the market through new forms of delivery and combinations, as well as intended purposes, the analytical methods for evaluating its pharmaceutical products do not. They continue with non-eco-efficient analytical options, which can significantly improve and meet the current demand for green and sustainable analytical chemistry.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biocompatible Natural Polymers and Cutting-Edge Fabrication Techniques in the Development of Next-Generation Oral Thin Films for Enhanced Drug Delivery Systems. 生物相容性天然聚合物和尖端制造技术在开发新一代强化给药系统口腔薄膜中的应用。
IF 2.6 4区 医学 Q2 PHARMACOLOGY & PHARMACY Pub Date : 2024-10-08 DOI: 10.2174/0113816128329293241001090601
Siddhi Wargantiwar, Sankha Bhattacharya

Oral thin films are changing the way drugs are delivered, making drug administration more convenient and patient-friendly. This review delves into the fascinating possibilities of natural polymers in thin film design. We consider the benefits of biocompatible polymers produced from chitosan, gelatin, and pullulan. Their intrinsic biodegradability and safety make them excellent for use with a wide range of patients. Additionally, the research investigates novel strategies for creating these distinctive drug delivery systems. We look beyond standard solvent casting techniques, hot melt extrusion methods, rolling methods, etc. These technologies provide exact control over film qualities, allowing for tailored medication delivery and increased patient compliance. This review seeks to bridge the gap between natural polymers and cutting-edge fabrication processes. By investigating this combination, we pave the road for the development of next-generation oral thin films that are more efficacious, patient-acceptable, and environmentally-friendly.

口服薄膜正在改变给药方式,使给药更方便、更贴近患者。本综述深入探讨了天然聚合物在薄膜设计中的迷人可能性。我们将探讨壳聚糖、明胶和拉普兰生产的生物相容性聚合物的优势。它们固有的生物可降解性和安全性使其非常适合广泛的患者使用。此外,这项研究还探讨了制造这些独特给药系统的新策略。除了标准的溶剂浇注技术、热熔挤出方法和滚压方法等,我们还研究了其他方法。这些技术可精确控制薄膜的质量,实现量身定制的给药方式,提高患者的依从性。本综述试图在天然聚合物和尖端制造工艺之间架起一座桥梁。通过研究这两者的结合,我们将为开发更有效、更易于患者接受、更环保的下一代口服薄膜铺平道路。
{"title":"Biocompatible Natural Polymers and Cutting-Edge Fabrication Techniques in the Development of Next-Generation Oral Thin Films for Enhanced Drug Delivery Systems.","authors":"Siddhi Wargantiwar, Sankha Bhattacharya","doi":"10.2174/0113816128329293241001090601","DOIUrl":"https://doi.org/10.2174/0113816128329293241001090601","url":null,"abstract":"<p><p>Oral thin films are changing the way drugs are delivered, making drug administration more convenient and patient-friendly. This review delves into the fascinating possibilities of natural polymers in thin film design. We consider the benefits of biocompatible polymers produced from chitosan, gelatin, and pullulan. Their intrinsic biodegradability and safety make them excellent for use with a wide range of patients. Additionally, the research investigates novel strategies for creating these distinctive drug delivery systems. We look beyond standard solvent casting techniques, hot melt extrusion methods, rolling methods, etc. These technologies provide exact control over film qualities, allowing for tailored medication delivery and increased patient compliance. This review seeks to bridge the gap between natural polymers and cutting-edge fabrication processes. By investigating this combination, we pave the road for the development of next-generation oral thin films that are more efficacious, patient-acceptable, and environmentally-friendly.</p>","PeriodicalId":10845,"journal":{"name":"Current pharmaceutical design","volume":" ","pages":""},"PeriodicalIF":2.6,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142388751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Current pharmaceutical design
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1