Pub Date : 2025-01-02DOI: 10.2174/0115680266336578241114072129
Rambabu Guguloth, Shiva Kumar Gubbiyappa
Background: Piperidines are among the essential synthetic fragments for designing drugs and play a significant role in the pharmaceutical industry. The synthesis of newer derivatives by incorporating different amines paves the way for the introduction of novel drug combinations for current cancer treatments.
Method: The new combinations of 1-(4-bromo-2-(pyrrolidine-1-yl) benzyl) piperidine derivatives were synthesized by adding various amino groups. All the synthesized derivatives were characterized using NMR and LC-MS. The anti-cancer activity of all the synthesized derivatives was studied on three different cell lines, A549 (lung cancer), HCT-116 (colon cancer), and MCF-7(breast cancer), using an MTT assay. The most potent compounds, 7h and 7k were further evaluated for cell cycle and tubulin polymerization inhibitory activity. Further, in-silico analysis for the same properties was performed using molecular docking using MM/GBSA and validated by RMSD.
Results: All the synthesized derivatives showed selective cytotoxic potential against different cancer cell lines. Most of the derivatives displayed comparable anticancer potential in comparison to 5-FU. The most potent derivative, 7h, further arrests the cancer cells in the G2/M phase and prevents tubulin polymerization. The same was further confirmed using molecular docking on the colchicine binding site.
Conclusion: The derivative that arrests the cancer cells in the G2/M phase of the cell cycle and induces depolymerization can be developed as a good lead for further development.
{"title":"Design and Synthesis of 1-(4-Bromo-2-(Pyrrolidine-1-Yl) Benzyl) Piperidine-Based Derivatives as Anti-Tubulin Agents.","authors":"Rambabu Guguloth, Shiva Kumar Gubbiyappa","doi":"10.2174/0115680266336578241114072129","DOIUrl":"https://doi.org/10.2174/0115680266336578241114072129","url":null,"abstract":"<p><strong>Background: </strong>Piperidines are among the essential synthetic fragments for designing drugs and play a significant role in the pharmaceutical industry. The synthesis of newer derivatives by incorporating different amines paves the way for the introduction of novel drug combinations for current cancer treatments.</p><p><strong>Method: </strong>The new combinations of 1-(4-bromo-2-(pyrrolidine-1-yl) benzyl) piperidine derivatives were synthesized by adding various amino groups. All the synthesized derivatives were characterized using NMR and LC-MS. The anti-cancer activity of all the synthesized derivatives was studied on three different cell lines, A549 (lung cancer), HCT-116 (colon cancer), and MCF-7(breast cancer), using an MTT assay. The most potent compounds, 7h and 7k were further evaluated for cell cycle and tubulin polymerization inhibitory activity. Further, in-silico analysis for the same properties was performed using molecular docking using MM/GBSA and validated by RMSD.</p><p><strong>Results: </strong>All the synthesized derivatives showed selective cytotoxic potential against different cancer cell lines. Most of the derivatives displayed comparable anticancer potential in comparison to 5-FU. The most potent derivative, 7h, further arrests the cancer cells in the G2/M phase and prevents tubulin polymerization. The same was further confirmed using molecular docking on the colchicine binding site.</p><p><strong>Conclusion: </strong>The derivative that arrests the cancer cells in the G2/M phase of the cell cycle and induces depolymerization can be developed as a good lead for further development.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142930780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0115680266327984241018111547
Thaís Pereira de Mello, Bianca A Silva, Viviane Lione, Michael Devereux, Malachy McCann, Marta Helena Branquinha, André Luis Souza Dos Santos
Background: Scedosporium apiospermum is a multidrug-resistant filamentous fungus that causes localized and disseminated diseases. Our group has previously described that metalbased complexes containing copper(II) or silver(I) ions complexed with 1,10-phenanthroline-5,6- dione (phendione) inhibited the viability of S. apiospermum conidial cells.
Objective: The effects of these promising complexes, [Cu(phendione)3](ClO4)2.4H2O (Cuphendione) and [Ag(phendione)2]ClO4 (Ag-phendione), on vital biological processes, production of key virulence attributes and interaction events of S. apiospermum were investigated using a comprehensive multimodal approach.
Results: The results demonstrated that both Cu-phendione and Ag-phendione effectively inhibited the viability of S. apiospermum mycelial cells in a dose-dependent manner. Furthermore, these test complexes, at varying concentrations, inhibited the transition of S. apiospermum conidia into hyphae. Scanning electron microscopy revealed significant structural alterations in the fungal cells, including changes to surface sculpturing and overall morphological architecture, following treatment with the complexes. A marked reduction in the expression of key surface molecules, such as mannose/glucose-rich glycoconjugates, fibronectin-binding proteins, and the well-known adhesin peptidorhamnomannan further supported these ultrastructural changes. The treatment also impaired adhesive interactions, reducing the fungus's ability to form biofilms on polystyrene surfaces and diminishing its interaction with macrophages, lung epithelial cells, and fibroblasts. Notably, treatment of infected macrophages with the complexes led to a significant reduction in the number of intracellular fungal cells.
Conclusion: The results provide information about the effects of silver- and copper-phendione complexes on cellular and virulence aspects of the emerging fungus S. apiospermum.
{"title":"Impact of Copper(II) and Silver(I) Complexes Containing 1,10-Phenanthroline-5,6-dione on Cellular and Virulence Aspects of Scedosporium apiospermum.","authors":"Thaís Pereira de Mello, Bianca A Silva, Viviane Lione, Michael Devereux, Malachy McCann, Marta Helena Branquinha, André Luis Souza Dos Santos","doi":"10.2174/0115680266327984241018111547","DOIUrl":"https://doi.org/10.2174/0115680266327984241018111547","url":null,"abstract":"<p><strong>Background: </strong>Scedosporium apiospermum is a multidrug-resistant filamentous fungus that causes localized and disseminated diseases. Our group has previously described that metalbased complexes containing copper(II) or silver(I) ions complexed with 1,10-phenanthroline-5,6- dione (phendione) inhibited the viability of S. apiospermum conidial cells.</p><p><strong>Objective: </strong>The effects of these promising complexes, [Cu(phendione)3](ClO4)2.4H2O (Cuphendione) and [Ag(phendione)2]ClO4 (Ag-phendione), on vital biological processes, production of key virulence attributes and interaction events of S. apiospermum were investigated using a comprehensive multimodal approach.</p><p><strong>Results: </strong>The results demonstrated that both Cu-phendione and Ag-phendione effectively inhibited the viability of S. apiospermum mycelial cells in a dose-dependent manner. Furthermore, these test complexes, at varying concentrations, inhibited the transition of S. apiospermum conidia into hyphae. Scanning electron microscopy revealed significant structural alterations in the fungal cells, including changes to surface sculpturing and overall morphological architecture, following treatment with the complexes. A marked reduction in the expression of key surface molecules, such as mannose/glucose-rich glycoconjugates, fibronectin-binding proteins, and the well-known adhesin peptidorhamnomannan further supported these ultrastructural changes. The treatment also impaired adhesive interactions, reducing the fungus's ability to form biofilms on polystyrene surfaces and diminishing its interaction with macrophages, lung epithelial cells, and fibroblasts. Notably, treatment of infected macrophages with the complexes led to a significant reduction in the number of intracellular fungal cells.</p><p><strong>Conclusion: </strong>The results provide information about the effects of silver- and copper-phendione complexes on cellular and virulence aspects of the emerging fungus S. apiospermum.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0115680266323908241114064318
Chiriki Devi Sri, Narasimha Murthy Beeraka, Hemanth Vikram P R, Durgesh Paresh Bidye, B R Prashantha Kumar, Vladimir N Nikolenko, Gurupadayya Bannimath
<p><strong>Background: </strong>Several chemical studies described the physiological efficacy of 1,4- dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina. Among the vascular-selective DHPs, nifedipine, felodipine, and isradipine are key representatives, with nifedipine often considered the archetype due to its widespread use and efficacy in promoting vascular relaxation. Significant efforts have been made to modify the structure of nifedipine, the prototype of DHPs to better understand structure-activity relationships (SARs) and amplify calcium-modulating effects.</p><p><strong>Objective: </strong>The objective of this study is to explore the SARs of various DHPs and the implications of 1,4- dihydropyrimidines (DHPMs) to block L- (CaV1.2)/T-type (CaV3.1 and CaV3.2) calcium channels subtypes in medicinal chemistry and physiology as calcium channel blockers (CCBs).</p><p><strong>Methods: </strong>We have searched public databases such as National Library of Medicine (NLM), PubMed, and Google Scholar. Collected information pertinent to these chemical entities from reviews, and original articles. We have used keywords to search in these databases such as 'calcium channel physiology', 'calcium channel blockers', 'medicinal chemistry', '1,4-dihydropyridines', and '1,4-dihydropyrimidines', 'structure-activity relationship'. We included the original articles, short communications, meta-analysis, and review articles published from the years 1975 to 2024.</p><p><strong>Results: </strong>Previous efforts by medicinal chemists have made significant strides in the synthesis of DHPs and DHPMs. These researchers have focused on creating CCBs that could effectively replicate the pharmacological properties of those currently in clinical use. While the standard one-pot synthesis of DHPMs typically involves three key components under various reaction conditions, more intricate synthetic routes have also been explored. These include enzyme-catalyzed processes, solvent-free reactions, ultrasonic methods, conventional reactions, acid-catalyzed pathways, and microwave-assisted synthesis, each of which offers distinct advantages and potential for the efficient production of DHPMs. DHPs have been the focus of significant research efforts to improve their potency and selectivity. However, a major limitation identified for this class of compounds is their short plasma half-life, potentially caused by metabolic oxidation to pyridine derivatives. To address these limitations, developing DHPMs through efficient modifications of the DHP scaffold has been explored. This research has also investigated
背景:一些化学研究描述了1,4-二氢吡啶(DHPs)的生理功效。DHPs与l型钙通道α1亚基上的特定位点结合,与心肌组织相比,它们在血管平滑肌中表现出更明显的Ca2+内流抑制作用。这种选择性抑制是其对外周动脉和冠状动脉优先血管扩张作用的基础,这是其治疗高血压和心绞痛的基础。在血管选择性dhp中,硝苯地平、非洛地平和伊地平是主要代表,其中硝苯地平因其广泛使用和促进血管舒张的功效而常被认为是原型。为了更好地理解结构-活性关系(SARs)和增强钙调节作用,人们已经对硝苯地平(DHPs的原型)的结构进行了大量的修饰。目的:本研究的目的是探讨不同DHPs的sar以及1,4-二氢嘧啶(dhpm)作为钙通道阻滞剂(CCBs)阻断L- (CaV1.2)/ t型(CaV3.1和CaV3.2)钙通道亚型在药物化学和生理上的意义。方法:检索美国国家医学图书馆(National Library of Medicine, NLM)、PubMed、谷歌Scholar等公共数据库。从评论和原创文章中收集与这些化学实体相关的信息。我们使用关键字在这些数据库中进行搜索,如“钙通道生理学”、“钙通道阻滞剂”、“药物化学”、“1,4-二氢吡啶”和“1,4-二氢嘧啶”、“构效关系”。我们纳入了1975年至2024年间发表的原创文章、短通讯、元分析和综述文章。结果:药物化学家在dhp和dhpm的合成方面取得了重大进展。这些研究人员专注于创造能够有效复制目前临床使用的药物药理特性的ccb。虽然标准的一锅法合成dhpm通常涉及三个关键组分在不同的反应条件下,但更复杂的合成路线也被探索。这些方法包括酶催化过程、无溶剂反应、超声波方法、常规反应、酸催化途径和微波辅助合成,每一种方法都有其独特的优势和潜力,可以有效地生产dhpm。dhp一直是重要的研究工作的重点,以提高其效力和选择性。然而,这类化合物的一个主要限制是它们的血浆半衰期短,可能是由代谢氧化引起的吡啶衍生物。为了解决这些限制,已经探索了通过对DHP支架进行有效修饰来开发dhpm。本研究还研究了c2取代dhpm、融合1,4-二氢嘧啶、n3取代dhpm的定量构效关系(qsar)、融合嘧啶的生物活性作用、与第四代CCBs的比较、药物组合对钙通道生理的影响。随后,我们讨论了各种CCBs的疗效,这些CCBs正在临床试验中,改变生活方式,以及其他新兴技术来改善心血管疾病。结论:对DHPs和dhpm的持续研究极大地提高了我们对它们的SARs和作为CCBs潜力的认识。多种合成方法,包括酶催化、无溶剂和微波辅助技术,已经被开发出来,提高了dhpm的生产和药理学性质。未来的研究应着眼于优化DHP和DHPM支架,以提高效价、选择性和代谢稳定性。重点关注重要的修饰,如C2和N3取代,可能会产生更具选择性和更有效的ccb。此外,整合QSAR模型和高通量筛选将有助于确定有希望的临床候选药物,潜在地将dhpm的治疗用途扩展到心血管疾病之外。总之,继续探索新的dhpm和创新的合成方法将是开发具有更高疗效和安全性的下一代钙通道阻滞剂的关键。
{"title":"Updates on Intrinsic Medicinal Chemistry of 1,4-dihydropyridines, Perspectives on Synthesis and Pharmacokinetics of Novel 1,4-dihydropyrimidines as Calcium Channel Blockers: Clinical Pharmacology.","authors":"Chiriki Devi Sri, Narasimha Murthy Beeraka, Hemanth Vikram P R, Durgesh Paresh Bidye, B R Prashantha Kumar, Vladimir N Nikolenko, Gurupadayya Bannimath","doi":"10.2174/0115680266323908241114064318","DOIUrl":"https://doi.org/10.2174/0115680266323908241114064318","url":null,"abstract":"<p><strong>Background: </strong>Several chemical studies described the physiological efficacy of 1,4- dihydropyridines (DHPs). DHPs bind to specific sites on the α1 subunit of L-type calcium channels, where they demonstrate a more pronounced inhibition of Ca2+ influx in vascular smooth muscle compared to myocardial tissue. This selective inhibition is the basis for their preferential vasodilatory action on peripheral and coronary arteries, a characteristic that underlies their therapeutic utility in managing hypertension and angina. Among the vascular-selective DHPs, nifedipine, felodipine, and isradipine are key representatives, with nifedipine often considered the archetype due to its widespread use and efficacy in promoting vascular relaxation. Significant efforts have been made to modify the structure of nifedipine, the prototype of DHPs to better understand structure-activity relationships (SARs) and amplify calcium-modulating effects.</p><p><strong>Objective: </strong>The objective of this study is to explore the SARs of various DHPs and the implications of 1,4- dihydropyrimidines (DHPMs) to block L- (CaV1.2)/T-type (CaV3.1 and CaV3.2) calcium channels subtypes in medicinal chemistry and physiology as calcium channel blockers (CCBs).</p><p><strong>Methods: </strong>We have searched public databases such as National Library of Medicine (NLM), PubMed, and Google Scholar. Collected information pertinent to these chemical entities from reviews, and original articles. We have used keywords to search in these databases such as 'calcium channel physiology', 'calcium channel blockers', 'medicinal chemistry', '1,4-dihydropyridines', and '1,4-dihydropyrimidines', 'structure-activity relationship'. We included the original articles, short communications, meta-analysis, and review articles published from the years 1975 to 2024.</p><p><strong>Results: </strong>Previous efforts by medicinal chemists have made significant strides in the synthesis of DHPs and DHPMs. These researchers have focused on creating CCBs that could effectively replicate the pharmacological properties of those currently in clinical use. While the standard one-pot synthesis of DHPMs typically involves three key components under various reaction conditions, more intricate synthetic routes have also been explored. These include enzyme-catalyzed processes, solvent-free reactions, ultrasonic methods, conventional reactions, acid-catalyzed pathways, and microwave-assisted synthesis, each of which offers distinct advantages and potential for the efficient production of DHPMs. DHPs have been the focus of significant research efforts to improve their potency and selectivity. However, a major limitation identified for this class of compounds is their short plasma half-life, potentially caused by metabolic oxidation to pyridine derivatives. To address these limitations, developing DHPMs through efficient modifications of the DHP scaffold has been explored. This research has also investigated ","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":""},"PeriodicalIF":2.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142926908","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0115680266303704240524080333
Saba Farooq, Zainab Ngaini
Flavonoids belong to the polyphenol group that naturally exists in fruits, vegetables, tea, and grains. Flavonoids, as secondary metabolites, show indispensable contributions to biological processes and the responses of plants to numerous environmental factors. The bioactivity of flavonoids depends on C6-C3-C6 ring substitution patterns that exhibit bioactive antioxidant, antimicrobial, antifungal, antitumor, and anti-inflammatory properties. The synthesis of flavonoids has been reported by various methodologies. Therefore, the present review systematically summarizes the synthesis of recent heterocyclic flavonoid derivatives via facile synthetic approaches since the research in flavonoids is useful for therapeutic and biotechnology fields.
{"title":"Facile Synthesis and Applications of Flavonoid-Heterocyclic Derivatives.","authors":"Saba Farooq, Zainab Ngaini","doi":"10.2174/0115680266303704240524080333","DOIUrl":"10.2174/0115680266303704240524080333","url":null,"abstract":"<p><p>Flavonoids belong to the polyphenol group that naturally exists in fruits, vegetables, tea, and grains. Flavonoids, as secondary metabolites, show indispensable contributions to biological processes and the responses of plants to numerous environmental factors. The bioactivity of flavonoids depends on C6-C3-C6 ring substitution patterns that exhibit bioactive antioxidant, antimicrobial, antifungal, antitumor, and anti-inflammatory properties. The synthesis of flavonoids has been reported by various methodologies. Therefore, the present review systematically summarizes the synthesis of recent heterocyclic flavonoid derivatives via facile synthetic approaches since the research in flavonoids is useful for therapeutic and biotechnology fields.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":"47-62"},"PeriodicalIF":2.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141283245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0115680266313243240624071549
Tubai Ghosh, Sougata Santra, Grigory V Zyryanov, Brindaban C Ranu
Visible-light-mediated reactions have recently emerged as a powerful strategy for the synthesis of diverse organic molecules under mild reaction conditions. Usually, the reactions are performed at room temperature and thus sensitive functional groups remain unaffected. Thus, this protocol has received intense interest from academia as well as industries. The heterocycles, in general, are of much interest because of their biological activities and application in therapeutics. The Oxygen- and Sulfur-containing heterocyclic compounds have recently attracted attention as these compounds showed promising activities as anti-cancer drugs, antibiotics, antifungal and anti-inflammatory agents among other applications. The synthesis of this class of compounds by efficient and greener routes has become an important target. This review highlights the various procedures for the synthesis of these compounds and their derivatives under visible light-induced reactions. The green aspects and mechanism of each procedure have been discussed.
{"title":"Recent Developments on the Synthesis of Oxygen- and Sulfur-containing Heterocycles and their Derivatives under Visible Light Induced Reactions.","authors":"Tubai Ghosh, Sougata Santra, Grigory V Zyryanov, Brindaban C Ranu","doi":"10.2174/0115680266313243240624071549","DOIUrl":"10.2174/0115680266313243240624071549","url":null,"abstract":"<p><p>Visible-light-mediated reactions have recently emerged as a powerful strategy for the synthesis of diverse organic molecules under mild reaction conditions. Usually, the reactions are performed at room temperature and thus sensitive functional groups remain unaffected. Thus, this protocol has received intense interest from academia as well as industries. The heterocycles, in general, are of much interest because of their biological activities and application in therapeutics. The Oxygen- and Sulfur-containing heterocyclic compounds have recently attracted attention as these compounds showed promising activities as anti-cancer drugs, antibiotics, antifungal and anti-inflammatory agents among other applications. The synthesis of this class of compounds by efficient and greener routes has become an important target. This review highlights the various procedures for the synthesis of these compounds and their derivatives under visible light-induced reactions. The green aspects and mechanism of each procedure have been discussed.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":"124-140"},"PeriodicalIF":2.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141497382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0115680266311332240722065652
Bubun Banerjee, Aditi Sharma, Arvind Singh, Manmeet Kaur, Anu Priya
Isatin or 1H-indole-2,3-dione skeleton has been playing a significant role in drug design and development. Isatin itself and many of its derivatives are widely distributed in naturally occurring bioactive compounds. Various synthetic isatin derivatives were found to possess a broad range of significant pharmacological efficacies especially anti-cancer activity against a wide variety of cancer cell lines. Interestingly, on a few occasions, some isatin-derived scaffolds were reported as more potent than the tested reputed drug molecules. As a result, isatin-derived compounds have been gaining significant attention in cancer-based drug developments. In this review, we have summarized literature reported during the last two decades related to the synthesis of structurally diverse isatin-derived scaffolds with promising anti-cancer activities.
{"title":"Synthesis of Isatin-derived Heterocycles with Promising Anticancer Activities.","authors":"Bubun Banerjee, Aditi Sharma, Arvind Singh, Manmeet Kaur, Anu Priya","doi":"10.2174/0115680266311332240722065652","DOIUrl":"10.2174/0115680266311332240722065652","url":null,"abstract":"<p><p>Isatin or 1H-indole-2,3-dione skeleton has been playing a significant role in drug design and development. Isatin itself and many of its derivatives are widely distributed in naturally occurring bioactive compounds. Various synthetic isatin derivatives were found to possess a broad range of significant pharmacological efficacies especially anti-cancer activity against a wide variety of cancer cell lines. Interestingly, on a few occasions, some isatin-derived scaffolds were reported as more potent than the tested reputed drug molecules. As a result, isatin-derived compounds have been gaining significant attention in cancer-based drug developments. In this review, we have summarized literature reported during the last two decades related to the synthesis of structurally diverse isatin-derived scaffolds with promising anti-cancer activities.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":"96-123"},"PeriodicalIF":2.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141916346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0115680266297662240527105450
Malgorzata Geszke-Moritz, Gerard Nowak, Michał Moritz, Barbara Feist, Jacek E Nycz
Osteoarthritis (OA) is a common chronic articular degenerative disease characterized by articular cartilage degradation, synovial inflammation/immunity, and subchondral bone lesions. Recently, increasing interest has been devoted to treating or preventing OA with herbal medicines. The mechanism of action of plant raw materials used in osteoarthrosis treatment is well documented. They are sought after because of the high frequency of inflammation of the knee joint among both elderly and young people engaged in sports in which their knee joints are often exposed to high-stress conditions. The purpose of this work was to present some most effective and safe plant medicines with proven mechanisms of action that can help to alleviate the growing social problem of osteoarthrosis caused in recent years. A review of the available literature based primarily on the latest editions of ESCOP and EMA monographs and the latest scientific papers has made it possible to select and propose medical management of osteoarthrosis by ranking plant medicines according to their effectiveness. Clinical studies of raw plant materials, such as Harpagophyti radix, Olibanum indicum, and Urticae foliumet herba have indicated that these drugs should be considered the first choice in osteoarthrosis treatment. The efficacy of Rosae pseudo-fructus, Salicis cortex, Filipendulae ulmariae flos et herba, Ribis nigri folium, and externally applied Capsici fructus and Symphyti radix, has also been proven by pharmacological studies. All the plant medicines mentioned in the paper have been studied in detail in terms of their phytochemistry, which can help doctors in their decisionmaking in the treatment of osteoarthrosis.
{"title":"Role of Plant Materials with Anti-inflammatory Effects in Phytotherapy of Osteoarthritis.","authors":"Malgorzata Geszke-Moritz, Gerard Nowak, Michał Moritz, Barbara Feist, Jacek E Nycz","doi":"10.2174/0115680266297662240527105450","DOIUrl":"10.2174/0115680266297662240527105450","url":null,"abstract":"<p><p>Osteoarthritis (OA) is a common chronic articular degenerative disease characterized by articular cartilage degradation, synovial inflammation/immunity, and subchondral bone lesions. Recently, increasing interest has been devoted to treating or preventing OA with herbal medicines. The mechanism of action of plant raw materials used in osteoarthrosis treatment is well documented. They are sought after because of the high frequency of inflammation of the knee joint among both elderly and young people engaged in sports in which their knee joints are often exposed to high-stress conditions. The purpose of this work was to present some most effective and safe plant medicines with proven mechanisms of action that can help to alleviate the growing social problem of osteoarthrosis caused in recent years. A review of the available literature based primarily on the latest editions of ESCOP and EMA monographs and the latest scientific papers has made it possible to select and propose medical management of osteoarthrosis by ranking plant medicines according to their effectiveness. Clinical studies of raw plant materials, such as <i>Harpagophyti radix, Olibanum indicum</i>, and <i>Urticae foliumet herba</i> have indicated that these drugs should be considered the first choice in osteoarthrosis treatment. The efficacy of <i>Rosae pseudo-fructus, Salicis cortex, Filipendulae ulmariae flos et herba, Ribis nigri folium</i>, and externally applied <i>Capsici fructus</i> and <i>Symphyti radix</i>, has also been proven by pharmacological studies. All the plant medicines mentioned in the paper have been studied in detail in terms of their phytochemistry, which can help doctors in their decisionmaking in the treatment of osteoarthrosis.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":"35-46"},"PeriodicalIF":2.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141310312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0115680266311149240822111827
Sasadhar Majhi
N-heterocycles represent a predominant and unique class of organic chemistry. They have received a lot of attention due to their important chemical, biomedical, and industrial uses. Food and Drug Administration (FDA) approved about 75% of drugs containing N-based heterocycles, which are currently available in the market. N-Heterocyclic compounds exist as the backbone of numerous natural products and act as crucial intermediates for the construction of pharmaceuticals, veterinary items, and agrochemicals frequently. Among N-based heterocyclic compounds, bioactive N,N-heterocycles constitute a broad spectrum of applications in modern drug discovery and development processes. Cefozopran (antibiotic), omeprazole (antiulcer), enviradine (antiviral), liarozole (anticancer), etc., are important drugs containing N,N-heterocycles. The synthesis of N,N-heterocyclic compounds under sustainable conditions is one of the most active fields because of their significant physiological and biological properties as well as synthetic utility. Current research is demanding the development of greener, cheaper, and milder protocols for the synthesis of N,N-heterocyclic compounds to save mother nature by avoiding toxic metal catalysts, extensive application of energy, and the excessive use of hazardous materials. Nanocatalysts play a profound role in sustainable synthesis because of their larger surface area, tiny size, and minimum energy; they are eco-friendly and safe, and they provide higher yields with selectivity in comparison to conventional catalysts. It is increasingly demanding research to design and synthesize novel bioactive compounds that may help to combat cancer since the major causes of death worldwide are due to cancer. Hence, the important uses of nanocatalysts for the one-pot synthesis of biologically potent N,N-heterocycles with anticancer activities have been presented in this review.
N-heterocycles 是有机化学中最主要、最独特的一类化合物。由于其重要的化学、生物医学和工业用途,它们受到了广泛关注。美国食品和药物管理局(FDA)批准了约 75% 含有 N 型杂环的药物,这些药物目前已在市场上销售。N 型杂环化合物是众多天然产物的骨架,也是制造药品、兽药和农用化学品的重要中间体。在 N 基杂环化合物中,具有生物活性的 N,N-杂环化合物在现代药物发现和开发过程中有着广泛的应用。头孢唑喃(抗生素)、奥美拉唑(抗溃疡)、恩维拉定(抗病毒)、利阿罗唑(抗癌)等都是含有 N,N-杂环的重要药物。在可持续条件下合成 N,N-三环化合物是最活跃的领域之一,因为它们具有重要的生理和生物特性以及合成用途。目前的研究要求开发更环保、更便宜、更温和的 N,N-杂环化合物合成方案,以避免使用有毒金属催化剂、大量使用能源和过量使用有害物质,从而拯救大自然。纳米催化剂在可持续合成中发挥着深远的作用,因为它们具有更大的表面积、极小的尺寸和最低的能耗;与传统催化剂相比,它们既环保又安全,还能提供更高的产率和选择性。由于癌症是导致全球死亡的主要原因,因此设计和合成有助于抗癌的新型生物活性化合物的研究要求越来越高。因此,本综述介绍了纳米催化剂在一锅合成具有抗癌活性的生物强效 N,N-杂环方面的重要用途。
{"title":"Recent Advances in Nanocatalyzed One-Pot Sustainable Synthesis of Bioactive <i>N</i>, <i>N</i>-Heterocycles with Anticancer Activities: An Outlook of Medicinal Chemistry.","authors":"Sasadhar Majhi","doi":"10.2174/0115680266311149240822111827","DOIUrl":"10.2174/0115680266311149240822111827","url":null,"abstract":"<p><p><i>N</i>-heterocycles represent a predominant and unique class of organic chemistry. They have received a lot of attention due to their important chemical, biomedical, and industrial uses. Food and Drug Administration (FDA) approved about 75% of drugs containing <i>N</i>-based heterocycles, which are currently available in the market. <i>N</i>-Heterocyclic compounds exist as the backbone of numerous natural products and act as crucial intermediates for the construction of pharmaceuticals, veterinary items, and agrochemicals frequently. Among <i>N</i>-based heterocyclic compounds, bioactive <i>N</i>,<i>N</i>-heterocycles constitute a broad spectrum of applications in modern drug discovery and development processes. Cefozopran (antibiotic), omeprazole (antiulcer), enviradine (antiviral), liarozole (anticancer), etc., are important drugs containing <i>N</i>,<i>N</i>-heterocycles. The synthesis of <i>N</i>,<i>N</i>-heterocyclic compounds under sustainable conditions is one of the most active fields because of their significant physiological and biological properties as well as synthetic utility. Current research is demanding the development of greener, cheaper, and milder protocols for the synthesis of <i>N</i>,<i>N</i>-heterocyclic compounds to save mother nature by avoiding toxic metal catalysts, extensive application of energy, and the excessive use of hazardous materials. Nanocatalysts play a profound role in sustainable synthesis because of their larger surface area, tiny size, and minimum energy; they are eco-friendly and safe, and they provide higher yields with selectivity in comparison to conventional catalysts. It is increasingly demanding research to design and synthesize novel bioactive compounds that may help to combat cancer since the major causes of death worldwide are due to cancer. Hence, the important uses of nanocatalysts for the one-pot synthesis of biologically potent <i>N</i>,<i>N</i>-heterocycles with anticancer activities have been presented in this review.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":"63-95"},"PeriodicalIF":2.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142119216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-01-01DOI: 10.2174/0115680266322401241021073138
Luciana P S Viana, Luan R Pinheiro, Lorenzo W Petrillo, Isabela G Medeiros, Taina G Rizo, Luzia V Modolo, Cleiton M da Silva, Ângelo de Fatima
Hydroxamic acids (HAs) are chemical compounds characterized by the general structure RCONR'OH, where R and R' can denote hydrogen, aryl, or alkyl groups. Recognized for their exceptional chelating capabilities, HAs can form mono or bidentate complexes through oxygen and nitrogen atoms, rendering them remarkably versatile. These distinctive structural attributes have paved the way for a broad spectrum of medicinal applications for HAs, among which their pivotal role as inhibitors of essential Ni(II) and Zn(II)-containing metalloenzymes. In 1962, a significant breakthrough occurred when Kobashi and colleagues identified hydroxamic acids (HAs) as potent urease inhibitors. Subsequent research has increasingly underscored their capability in combatting infections induced by ureolytic microorganisms, including Helicobacter pylori and Proteus mirabilis. However, comprehensive reviews exploring their potential applications in treating infections caused by ureolytic microorganisms remain scarce in the scientific literature. Thus, this minireview aims to bridge this gap by offering a systematic exploration of the subject. Furthermore, it seeks to explore the significant advancements in obtaining hydroxamic acid derivatives through environmentally sustainable methodologies.
羟肟酸(HAs)是一种化合物,其一般结构为 RCONR'OH,其中 R 和 R'可表示氢、芳基或烷基。羟肟酸具有出色的螯合能力,可以通过氧原子和氮原子形成单齿或双齿络合物,因此用途非常广泛。这些与众不同的结构特性为 HAs 的广泛医药应用铺平了道路,其中 HAs 作为含 Ni(II)和 Zn(II)金属酶的重要抑制剂发挥了关键作用。1962 年,小桥及其同事发现羟肟酸 (HAs) 是一种有效的尿素酶抑制剂,这是一项重大突破。随后的研究越来越多地强调了羟肟酸在对抗幽门螺旋杆菌和奇异变形杆菌等尿素分解微生物诱导的感染方面的能力。然而,在科学文献中,探讨它们在治疗尿解微生物引起的感染中的潜在应用的全面综述仍然很少。因此,本微型综述旨在通过对这一主题的系统探讨来弥补这一空白。此外,它还试图探讨通过环境可持续方法获得羟肟酸衍生物的重大进展。
{"title":"Hydroxamic Acids Derivatives: Greener Synthesis, Antiureolytic Properties and Potential Medicinal Chemistry Applications - A Concise Review.","authors":"Luciana P S Viana, Luan R Pinheiro, Lorenzo W Petrillo, Isabela G Medeiros, Taina G Rizo, Luzia V Modolo, Cleiton M da Silva, Ângelo de Fatima","doi":"10.2174/0115680266322401241021073138","DOIUrl":"10.2174/0115680266322401241021073138","url":null,"abstract":"<p><p>Hydroxamic acids (HAs) are chemical compounds characterized by the general structure RCONR'OH, where R and R' can denote hydrogen, aryl, or alkyl groups. Recognized for their exceptional chelating capabilities, HAs can form mono or bidentate complexes through oxygen and nitrogen atoms, rendering them remarkably versatile. These distinctive structural attributes have paved the way for a broad spectrum of medicinal applications for HAs, among which their pivotal role as inhibitors of essential Ni(II) and Zn(II)-containing metalloenzymes. In 1962, a significant breakthrough occurred when Kobashi and colleagues identified hydroxamic acids (HAs) as potent urease inhibitors. Subsequent research has increasingly underscored their capability in combatting infections induced by ureolytic microorganisms, including <i>Helicobacter pylori</i> and <i>Proteus mirabilis</i>. However, comprehensive reviews exploring their potential applications in treating infections caused by ureolytic microorganisms remain scarce in the scientific literature. Thus, this minireview aims to bridge this gap by offering a systematic exploration of the subject. Furthermore, it seeks to explore the significant advancements in obtaining hydroxamic acid derivatives through environmentally sustainable methodologies.</p>","PeriodicalId":11076,"journal":{"name":"Current topics in medicinal chemistry","volume":" ","pages":"141-161"},"PeriodicalIF":2.9,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142557376","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}