首页 > 最新文献

Current opinion in virology最新文献

英文 中文
Editorial overview: Virus structure and expression 编辑概述:病毒结构和表达
IF 5.9 2区 医学 Q1 Immunology and Microbiology Pub Date : 2022-12-01 DOI: 10.1016/j.coviro.2022.101277
José R Castón, Adam Zlotnick
{"title":"Editorial overview: Virus structure and expression","authors":"José R Castón, Adam Zlotnick","doi":"10.1016/j.coviro.2022.101277","DOIUrl":"10.1016/j.coviro.2022.101277","url":null,"abstract":"","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10351129","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Retasking of canonical antiviral factors into proviral effectors 将经典抗病毒因子重新分配为原病毒效应器
IF 5.9 2区 医学 Q1 Immunology and Microbiology Pub Date : 2022-10-01 DOI: 10.1016/j.coviro.2022.101271
Cason R King , Andrew Mehle

Under constant barrage by viruses, hosts have evolved a plethora of antiviral effectors and defense mechanisms. To survive, viruses must adapt to evade or subvert these defenses while still capturing cellular resources to fuel their replication cycles. Large-scale studies of the antiviral activities of cellular proteins and processes have shown that different viruses are controlled by distinct subsets of antiviral genes. The remaining antiviral genes are either ineffective in controlling infection, or in some cases, actually promote infection. In these cases, classically defined antiviral factors are retasked by viruses to enhance viral replication. This creates a more nuanced picture revealing the contextual nature of antiviral activity. The same protein can exert different effects on replication, depending on multiple factors, including the host, the target cells, and the specific virus infecting it. Here, we review numerous examples of viruses hijacking canonically antiviral proteins and retasking them for proviral purposes.

在病毒的持续攻击下,宿主进化出了大量的抗病毒效应物和防御机制。为了生存,病毒必须适应以逃避或破坏这些防御,同时仍然捕获细胞资源以促进其复制周期。对细胞蛋白和过程的抗病毒活性的大规模研究表明,不同的病毒受不同的抗病毒基因亚群控制。其余的抗病毒基因要么对控制感染无效,要么在某些情况下实际上促进了感染。在这些情况下,经典定义的抗病毒因子被病毒重新分配以增强病毒复制。这创造了一个更微妙的画面,揭示了抗病毒活性的背景性质。相同的蛋白质可以对复制产生不同的影响,这取决于多种因素,包括宿主、靶细胞和感染它的特定病毒。在这里,我们回顾了许多病毒劫持常规抗病毒蛋白并重新分配它们用于原病毒目的的例子。
{"title":"Retasking of canonical antiviral factors into proviral effectors","authors":"Cason R King ,&nbsp;Andrew Mehle","doi":"10.1016/j.coviro.2022.101271","DOIUrl":"10.1016/j.coviro.2022.101271","url":null,"abstract":"<div><p>Under constant barrage by viruses<span><span>, hosts have evolved a plethora of antiviral effectors and defense mechanisms. To survive, viruses must adapt to evade or subvert these defenses while still capturing cellular resources to fuel their replication cycles. Large-scale studies of the antiviral activities of cellular proteins and processes have shown that different viruses are controlled by distinct subsets of antiviral genes. The remaining antiviral genes are either ineffective in controlling infection, or in some cases, actually promote infection. In these cases, classically defined antiviral factors are retasked by viruses to enhance viral replication. This creates a more nuanced picture revealing the contextual nature of antiviral activity. The same protein can exert different effects on replication, depending on multiple factors, including the host, the target cells, and the specific virus infecting it. Here, we review numerous examples of viruses hijacking canonically </span>antiviral proteins<span> and retasking them for proviral purposes.</span></span></p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9279884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Ribosomes in poxvirus infection 痘病毒感染中的核糖体
IF 5.9 2区 医学 Q1 Immunology and Microbiology Pub Date : 2022-10-01 DOI: 10.1016/j.coviro.2022.101256
Chorong Park, Derek Walsh

Poxviruses are large double-stranded DNA viruses that encode their own DNA replication, transcription, and mRNA biogenesis machinery, which underlies their ability to replicate entirely in the cytoplasm. However, like all other viruses, poxviruses remain dependent on host ribosomes to translate their mRNAs into the viral proteins needed to complete their replication cycle. While earlier studies established a fundamental understanding of how poxviruses wrestle with their hosts for control of translation initiation and elongation factors that guide ribosome recruitment and mRNA decoding, recent work has begun to reveal the extent to which poxviruses directly target the ribosome itself. This review summarizes our current understanding of the regulation of ribosomes and translation in poxvirus infection.

痘病毒是一种大型的双链DNA病毒,它们编码自己的DNA复制、转录和mRNA生物发生机制,这是它们完全在细胞质中复制的能力的基础。然而,像所有其他病毒一样,痘病毒仍然依赖宿主核糖体将其mrna翻译成完成其复制周期所需的病毒蛋白。虽然早期的研究建立了对痘病毒如何与宿主争夺引导核糖体募集和mRNA解码的翻译起始因子和延伸因子控制的基本理解,但最近的工作已经开始揭示痘病毒直接靶向核糖体本身的程度。本文综述了我们目前对核糖体和翻译在痘病毒感染中的调控的认识。
{"title":"Ribosomes in poxvirus infection","authors":"Chorong Park,&nbsp;Derek Walsh","doi":"10.1016/j.coviro.2022.101256","DOIUrl":"10.1016/j.coviro.2022.101256","url":null,"abstract":"<div><p><span><span><span>Poxviruses are large double-stranded DNA </span>viruses that encode their own </span>DNA replication, transcription, and mRNA biogenesis machinery, which underlies their ability to replicate entirely in the cytoplasm. However, like all other viruses, poxviruses remain dependent on host ribosomes to translate their mRNAs into the </span>viral proteins<span> needed to complete their replication cycle. While earlier studies established a fundamental understanding of how poxviruses wrestle with their hosts for control of translation initiation and elongation factors that guide ribosome recruitment and mRNA decoding, recent work has begun to reveal the extent to which poxviruses directly target the ribosome itself. This review summarizes our current understanding of the regulation of ribosomes and translation in poxvirus infection.</span></p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9311702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
RNA polymerase II subunit modulation during viral infection and cellular stress RNA聚合酶II亚基在病毒感染和细胞应激中的调节
IF 5.9 2区 医学 Q1 Immunology and Microbiology Pub Date : 2022-10-01 DOI: 10.1016/j.coviro.2022.101259
Leah Gulyas , Britt A Glaunsinger

Control of gene expression, including transcription, is central in dictating the outcome of viral infection. One of the profound alterations induced by viruses is modification to the integrity and function of eukaryotic RNA polymerase II (Pol II). Here, we discuss how infection perturbs the Pol II complex by altering subunit phosphorylation and turnover, as well as how cellular genotoxic stress (e.g. DNA damage) elicits similar outcomes. By highlighting emerging parallels and differences in Pol II control during viral infection and abiotic stress, we hope to bolster identification of pathways that target Pol II and regulate the transcriptome.

基因表达的控制,包括转录,是决定病毒感染结果的核心。病毒引起的深刻改变之一是真核RNA聚合酶II (Pol II)的完整性和功能的修饰。在这里,我们讨论了感染如何通过改变亚基磷酸化和翻转来扰乱Pol II复合体,以及细胞基因毒性应激(例如DNA损伤)如何引起类似的结果。通过强调病毒感染和非生物胁迫期间Pol II控制的相似之处和差异,我们希望加强对靶向Pol II和调节转录组的途径的识别。
{"title":"RNA polymerase II subunit modulation during viral infection and cellular stress","authors":"Leah Gulyas ,&nbsp;Britt A Glaunsinger","doi":"10.1016/j.coviro.2022.101259","DOIUrl":"10.1016/j.coviro.2022.101259","url":null,"abstract":"<div><p>Control of gene expression, including transcription, is central in dictating the outcome of viral infection. One of the profound alterations induced by viruses is modification to the integrity and function of eukaryotic RNA polymerase II (Pol II). Here, we discuss how infection perturbs the Pol II complex by altering subunit phosphorylation and turnover, as well as how cellular genotoxic stress (e.g. DNA damage) elicits similar outcomes. By highlighting emerging parallels and differences in Pol II control during viral infection and abiotic stress, we hope to bolster identification of pathways that target Pol II and regulate the transcriptome.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10150648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9381047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
MicroRNA-mediated control of Epstein–Barr virus infection and potential diagnostic and therapeutic implications microrna介导的eb病毒感染控制及其潜在的诊断和治疗意义
IF 5.9 2区 医学 Q1 Immunology and Microbiology Pub Date : 2022-10-01 DOI: 10.1016/j.coviro.2022.101272
Rebecca L Skalsky

Herpesviruses, such as Epstein–Barr virus (EBV), encode multiple viral microRNAs that are expressed throughout various infection stages. While much progress has been made in evaluating both the viral and host microRNAs (miRNAs) that are detected during infection as well as elucidating their molecular targets in vitro, our understanding of their contributions to pathogenesis in vivo, viral oncogenesis, and clinical implications for these small molecules remains limited. miRNAs are widely recognized as key regulators of global cellular processes, including apoptosis, cell differentiation, and development of immune responses. This review discusses the roles of miRNAs in EBV infection and current advances in miRNA-based diagnostic and therapeutic strategies potentially applicable toward EBV-associated diseases.

疱疹病毒,如eb病毒(Epstein-Barr virus, EBV),编码多个病毒microrna,这些microrna在不同的感染阶段表达。虽然在评估感染过程中检测到的病毒和宿主microrna (mirna)以及阐明其体外分子靶点方面取得了很大进展,但我们对这些小分子在体内发病机制、病毒肿瘤发生和临床意义方面的贡献的理解仍然有限。mirna被广泛认为是全球细胞过程的关键调节剂,包括凋亡、细胞分化和免疫反应的发展。本文综述了mirna在EBV感染中的作用,以及基于mirna的诊断和治疗策略的最新进展,这些策略可能适用于EBV相关疾病。
{"title":"MicroRNA-mediated control of Epstein–Barr virus infection and potential diagnostic and therapeutic implications","authors":"Rebecca L Skalsky","doi":"10.1016/j.coviro.2022.101272","DOIUrl":"10.1016/j.coviro.2022.101272","url":null,"abstract":"<div><p><span>Herpesviruses<span>, such as Epstein–Barr virus (EBV), encode multiple viral microRNAs that are expressed throughout various infection stages. While much progress has been made in evaluating both the viral and host microRNAs (miRNAs) that are detected during infection as well as elucidating their molecular targets </span></span><em>in vitro</em>, our understanding of their contributions to pathogenesis <em>in vivo</em><span>, viral oncogenesis, and clinical implications for these small molecules remains limited. miRNAs are widely recognized as key regulators of global cellular processes, including apoptosis, cell differentiation, and development of immune responses. This review discusses the roles of miRNAs in EBV infection and current advances in miRNA-based diagnostic and therapeutic strategies potentially applicable toward EBV-associated diseases.</span></p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33512431","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Hepatitis E virus species barriers: seeking viral and host determinants 戊型肝炎病毒物种屏障:寻找病毒和宿主决定因素
IF 5.9 2区 医学 Q1 Immunology and Microbiology Pub Date : 2022-10-01 DOI: 10.1016/j.coviro.2022.101274
Volker Kinast , Mara Klöhn , Maximilian K Nocke , Daniel Todt , Eike Steinmann

The intimate relationship between virus and host cell can result in highly adapted viruses that are restricted to a single host. However, some viruses have the ability to infect multiple host species. Remarkably, hepatitis E viruses (HEV) comprise genotypes that are either ‘single-host’ or ‘multi-host’ genotypes, a trait that raises fundamental questions: Why do different genotypes differ in their host range, despite a high degree of genomic similarity? What are the underlying molecular determinants that shape species barriers? Here, we review the current knowledge of viral and host determinants that may affect the evolutionary trajectories of HEV. We also provide a perspective on techniques and methods that address open questions of HEV host range and adaptation.

病毒与宿主细胞之间的密切关系可能导致高度适应的病毒被限制在单个宿主中。然而,有些病毒有能力感染多种宿主物种。值得注意的是,戊型肝炎病毒(HEV)包括“单宿主”或“多宿主”基因型,这一特征提出了一些基本问题:尽管基因组高度相似,为什么不同的基因型在其宿主范围内存在差异?形成物种屏障的潜在分子决定因素是什么?在这里,我们回顾了目前对可能影响HEV进化轨迹的病毒和宿主决定因素的了解。我们还提供了解决HEV宿主范围和适应性开放性问题的技术和方法的观点。
{"title":"Hepatitis E virus species barriers: seeking viral and host determinants","authors":"Volker Kinast ,&nbsp;Mara Klöhn ,&nbsp;Maximilian K Nocke ,&nbsp;Daniel Todt ,&nbsp;Eike Steinmann","doi":"10.1016/j.coviro.2022.101274","DOIUrl":"10.1016/j.coviro.2022.101274","url":null,"abstract":"<div><p>The intimate relationship between virus and host cell can result in highly adapted viruses that are restricted to a single host. However, some viruses have the ability to infect multiple host species. Remarkably, hepatitis E viruses (HEV) comprise genotypes that are either ‘single-host’ or ‘multi-host’ genotypes, a trait that raises fundamental questions: Why do different genotypes differ in their host range, despite a high degree of genomic similarity? What are the underlying molecular determinants that shape species barriers? Here, we review the current knowledge of viral and host determinants that may affect the evolutionary trajectories of HEV. We also provide a perspective on techniques and methods that address open questions of HEV host range and adaptation.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1879625722000852/pdfft?md5=c6595d1b70c91638f0ef10d0877e457d&pid=1-s2.0-S1879625722000852-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40657583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Co-opted membranes, lipids, and host proteins: what have we learned from tombusviruses? 增选膜、脂质和宿主蛋白:我们从瘤状病毒中学到了什么?
IF 5.9 2区 医学 Q1 Immunology and Microbiology Pub Date : 2022-10-01 DOI: 10.1016/j.coviro.2022.101258
Peter D Nagy

Positive-strand RNA viruses replicate in intracellular membranous structures formed after virus-driven intensive manipulation of subcellular organelles and membranes. These unique structures are called viral-replication organelles (VROs). To build VROs, the replication proteins coded by (+)RNA viruses co-opt host proteins, including membrane-shaping, lipid synthesis, and lipid-modification enzymes to create an optimal microenvironment that (i) concentrates the viral replicase and associated host proteins and the viral RNAs; (ii) regulates enzymatic activities and spatiotemporally the replication process; and (iii) protects the viral RNAs from recognition and degradation by the host innate immune defense. Tomato bushy stunt virus (TBSV), a plant (+)RNA virus, serves as an advanced model to study the interplay among viral components, co-opted host proteins, lipids, and membranes. This review presents our current understanding of the complex interaction between TBSV and host with panviral implications.

正链RNA病毒在病毒驱动的亚细胞细胞器和膜的密集操作后形成的细胞内膜结构中复制。这些独特的结构被称为病毒复制细胞器(VROs)。为了构建VROs, (+)RNA病毒编码的复制蛋白会选择宿主蛋白,包括膜形成酶、脂质合成酶和脂质修饰酶,以创造一个最佳的微环境,(i)集中病毒复制酶和相关宿主蛋白以及病毒RNA;(ii)调节酶活性和时空复制过程;(iii)保护病毒rna不被宿主先天免疫防御系统识别和降解。番茄丛矮病毒(TBSV)是一种植物(+)RNA病毒,可作为研究病毒组分、增选宿主蛋白、脂质和膜之间相互作用的先进模型。这篇综述介绍了我们目前对TBSV与宿主之间复杂相互作用的理解。
{"title":"Co-opted membranes, lipids, and host proteins: what have we learned from tombusviruses?","authors":"Peter D Nagy","doi":"10.1016/j.coviro.2022.101258","DOIUrl":"10.1016/j.coviro.2022.101258","url":null,"abstract":"<div><p><span>Positive-strand RNA viruses replicate in intracellular membranous structures formed after virus-driven intensive manipulation of subcellular organelles and membranes. These unique structures are called viral-replication organelles (VROs). To build VROs, the </span>replication proteins<span><span> coded by (+)RNA viruses co-opt host proteins, including membrane-shaping, lipid synthesis<span>, and lipid-modification enzymes to create an optimal microenvironment that (i) concentrates the viral replicase and associated host proteins and the viral RNAs; (ii) regulates enzymatic activities and spatiotemporally the replication process; and (iii) protects the viral RNAs from recognition and degradation by the host innate immune defense. </span></span>Tomato bushy stunt virus<span> (TBSV), a plant (+)RNA virus, serves as an advanced model to study the interplay among viral components, co-opted host proteins, lipids, and membranes. This review presents our current understanding of the complex interaction between TBSV and host with panviral implications.</span></span></p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40377763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Barriers to hepatitis C virus infection in mice 小鼠对丙型肝炎病毒感染的屏障
IF 5.9 2区 医学 Q1 Immunology and Microbiology Pub Date : 2022-10-01 DOI: 10.1016/j.coviro.2022.101273
Michael P Schwoerer, Alexander Ploss

Hepatitis C virus (HCV) is unable to infect mice, a fact that has severely limited their use as small-animal models for HCV pathogenesis and as tools for HCV vaccine development. HCV is blocked at various stages of its life cycle in mouse cells, due to incompatibility with host factors, the presence of dominant restriction factors, and effective immune responses. Molecular mechanisms for several such blocks have been characterized. The stepwise understanding of these limitations in mice will enable the development of an immunocompetent mouse that can fully support HCV infection and exhibit disease similar to that of infected humans.

丙型肝炎病毒(HCV)不能感染小鼠,这一事实严重限制了它们作为HCV发病机制的小动物模型和HCV疫苗开发工具的使用。HCV在小鼠细胞生命周期的各个阶段都被阻断,原因是与宿主因子不相容,存在显性限制因子,以及有效的免疫应答。几个这样的块的分子机制已经被表征。逐步了解小鼠的这些局限性将有助于开发具有免疫能力的小鼠,使其能够完全支持HCV感染并表现出与受感染的人相似的疾病。
{"title":"Barriers to hepatitis C virus infection in mice","authors":"Michael P Schwoerer,&nbsp;Alexander Ploss","doi":"10.1016/j.coviro.2022.101273","DOIUrl":"10.1016/j.coviro.2022.101273","url":null,"abstract":"<div><p>Hepatitis C virus (HCV) is unable to infect mice, a fact that has severely limited their use as small-animal models for HCV pathogenesis and as tools for HCV vaccine development. HCV is blocked at various stages of its life cycle in mouse cells, due to incompatibility with host factors, the presence of dominant restriction factors, and effective immune responses. Molecular mechanisms for several such blocks have been characterized. The stepwise understanding of these limitations in mice will enable the development of an immunocompetent mouse that can fully support HCV infection and exhibit disease similar to that of infected humans.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33512507","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Therapeutic approaches to Epstein–Barr virus cancers eb病毒癌的治疗方法
IF 5.9 2区 医学 Q1 Immunology and Microbiology Pub Date : 2022-10-01 DOI: 10.1016/j.coviro.2022.101260
Samantha S Soldan, Troy E Messick, Paul M Lieberman

Epstein–Barr virus (EBV) establishes a lifelong latent infection that can be a causal agent for a diverse spectrum of cancers and autoimmune disease. A complex and dynamic viral lifecycle evades eradication by the host immune system and confounds antiviral therapeutic strategies. To date, there are no clinically approved vaccines or therapies that selectively target EBV as the underlying cause of EBV-associated disease. Here, we review the challenges and recent advances in the development of EBV-specific therapeutics for treatment of EBV-associated cancers.

eb病毒(EBV)是一种终身潜伏感染,可能是多种癌症和自身免疫性疾病的致病因子。复杂而动态的病毒生命周期逃避了宿主免疫系统的根除,并混淆了抗病毒治疗策略。迄今为止,还没有临床批准的疫苗或疗法选择性地靶向EBV作为EBV相关疾病的潜在原因。在这里,我们回顾了ebv特异性治疗治疗ebv相关癌症的挑战和最新进展。
{"title":"Therapeutic approaches to Epstein–Barr virus cancers","authors":"Samantha S Soldan,&nbsp;Troy E Messick,&nbsp;Paul M Lieberman","doi":"10.1016/j.coviro.2022.101260","DOIUrl":"10.1016/j.coviro.2022.101260","url":null,"abstract":"<div><p>Epstein–Barr virus (EBV) establishes a lifelong latent infection that can be a causal agent for a diverse spectrum of cancers and autoimmune disease. A complex and dynamic viral lifecycle evades eradication by the host immune system and confounds antiviral therapeutic<span> strategies. To date, there are no clinically approved vaccines or therapies that selectively target EBV as the underlying cause of EBV-associated disease. Here, we review the challenges and recent advances in the development of EBV-specific therapeutics for treatment of EBV-associated cancers.</span></p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40381992","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Druggable host gene dependencies in primary effusion lymphoma 原发性积液性淋巴瘤的可用药宿主基因依赖性
IF 5.9 2区 医学 Q1 Immunology and Microbiology Pub Date : 2022-10-01 DOI: 10.1016/j.coviro.2022.101270
Neil Kuehnle, Eva Gottwein

Kaposi’s sarcoma-associated herpesvirus (KSHV) causes primary effusion lymphoma (PEL). Here, we review what is known about human gene essentiality in PEL-derived cell lines. We provide an updated list of PEL-specific human gene dependencies, based on the improved definition of core essential genes across human cancer types. The requirements of PEL cell lines for interferon regulatory factor 4 (IRF4), basic leukine zipper ATF-like transcription factor (BATF), G1/S cyclin D2 (CCND2), CASP8 and FADD like apoptosis regulator (CFLAR), MCL1 apoptosis regulator (MCL1), and murine double minute 2 (MDM2) have been confirmed experimentally. KSHV co-opts IRF4 and BATF to drive superenhancer (SE)-mediated expression of IRF4 itself, MYC, and CCND2. IRF4 dependency of SE-mediated gene expression is shared with Epstein–Barr virus-transformed lymphoblastoid cell lines (LCLs) and human T-cell leukemia virus type 1-transformed adult T-cell leukemia/lymphoma (ATLL) cell lines, as well as several B-cell lymphomas of nonviral etiology. LCLs and ATLL cell lines similarly share dependencies on CCND2 and CFLAR with PEL, but also have distinct gene dependencies. Genetic dependencies could be exploited for therapeutic intervention in PEL and other cancers.

卡波西肉瘤相关疱疹病毒(KSHV)引起原发性积液性淋巴瘤(PEL)。在这里,我们回顾了人类基因在pel衍生细胞系中的重要性。我们基于改进的人类癌症类型核心必需基因的定义,提供了一个更新的pel特异性人类基因依赖列表。PEL细胞系对干扰素调节因子4 (IRF4)、碱性白细胞拉环atf样转录因子(BATF)、G1/S周期蛋白D2 (CCND2)、CASP8和FADD样细胞凋亡调节剂(CFLAR)、MCL1细胞凋亡调节剂(MCL1)和小鼠双分钟2 (MDM2)的需求已被实验证实。KSHV选择IRF4和BATF来驱动超增强子(SE)介导的IRF4自身、MYC和CCND2的表达。Epstein-Barr病毒转化的淋巴母细胞样细胞系(LCLs)和人t细胞白血病病毒1型转化的成人t细胞白血病/淋巴瘤(ATLL)细胞系以及几种非病毒病因的b细胞淋巴瘤都具有IRF4对se介导的基因表达的依赖性。lcl和ATLL细胞系与PEL相似地共享对CCND2和CFLAR的依赖,但也具有不同的基因依赖性。遗传依赖性可用于前列腺癌和其他癌症的治疗干预。
{"title":"Druggable host gene dependencies in primary effusion lymphoma","authors":"Neil Kuehnle,&nbsp;Eva Gottwein","doi":"10.1016/j.coviro.2022.101270","DOIUrl":"10.1016/j.coviro.2022.101270","url":null,"abstract":"<div><p>Kaposi’s sarcoma-associated herpesvirus (KSHV) causes primary effusion lymphoma (PEL). Here, we review what is known about human gene essentiality in PEL-derived cell lines. We provide an updated list of PEL-specific human gene dependencies, based on the improved definition of core essential genes across human cancer types. The requirements of PEL cell lines for interferon regulatory factor 4 (<em>IRF4</em>), basic leukine zipper ATF-like transcription factor (<em>BATF</em>), G1/S cyclin D2 (<em>CCND2</em>), CASP8 and FADD like apoptosis regulator <em>(CFLAR)</em>, MCL1 apoptosis regulator (<em>MCL1)</em>, and murine double minute 2 (<em>MDM2</em>) have been confirmed experimentally. KSHV co-opts IRF4 and BATF to drive superenhancer (SE)-mediated expression of <em>IRF4</em> itself, <em>MYC</em>, and <em>CCND2</em>. IRF4 dependency of SE-mediated gene expression is shared with Epstein–Barr virus-transformed lymphoblastoid cell lines (LCLs) and human T-cell leukemia virus type 1-transformed adult T-cell leukemia/lymphoma (ATLL) cell lines, as well as several B-cell lymphomas of nonviral etiology. LCLs and ATLL cell lines similarly share dependencies on <em>CCND2</em> and <em>CFLAR</em> with PEL, but also have distinct gene dependencies. Genetic dependencies could be exploited for therapeutic intervention in PEL and other cancers.</p></div>","PeriodicalId":11082,"journal":{"name":"Current opinion in virology","volume":null,"pages":null},"PeriodicalIF":5.9,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"9682098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
期刊
Current opinion in virology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1