首页 > 最新文献

Diagnostics, Resource and Mechanics of materials and structures最新文献

英文 中文
Effect of cryodeformation by high-pressure torsion on the fracture surface of Au-Co alloys 高压扭转低温变形对Au-Co合金断口形貌的影响
Pub Date : 2022-12-01 DOI: 10.17804/2410-9908.2022.6.006-015
T. Tolmachev, V. Pilyugin, N. Nikolayeva, A. I. Ancharov, A. M. Patselov, Yu. V. Solov’eva, T. I. Chashchukhina, L. M. Voronova, M. V. Degtyarev
Au-Co alloys with limited solubility were synthesized by the high-pressure torsion in boiling nitrogen at various anvil revolutions. Au and Co were initially in the state of a powder mixture in an equiatomic ratio. The obtained alloys were subjected to SEM fractography and XRD analysis in transmission X-ray synchrotron radiation, depending on the amount of strain. It is shown that the morphology of the fracture surfaces of the synthesized alloy depends significantly on strain. It is revealed that the mutual mixing of the components increases with strain. The images of the fracture surfaces of the Au-Co alloys testify that, as the strain and the number of anvil revolutions increase, a transition from ductile fracture, with inclusions of brittle intergranular fracture, to uniformly ductile fracture is observed over the entire thickness of the sample. A further increase in the strain and the number of anvil revolutions corresponds to the transition from the ductile type of the fracture surface to the brittle one. In addition, the fractography of the Au-Co alloys has revealed that the relief of the fracture surface becomes more homogeneous and that the size of the structural elements of the fracture surface decreases with increasing strain.
采用高压扭转法在沸腾氮气中以不同转速合成了有限溶解度的金钴合金。Au和Co最初处于等原子比的粉末混合物状态。根据应变量的不同,对合金进行了SEM断口分析和透射x射线同步辐射的XRD分析。结果表明,合成合金的断口形貌与应变有显著的关系。结果表明,各组分的相互混合随应变的增加而增加。Au-Co合金的断口图像表明,随着应变和顶锤转数的增加,在整个试样厚度上观察到从含有脆性晶间断裂的韧性断裂向均匀韧性断裂的转变。应变和砧转数的进一步增加对应于断面从韧性型向脆性型的转变。此外,Au-Co合金的断口形貌表明,随着应变的增加,断口的形貌变得更加均匀,断口组织元素的尺寸减小。
{"title":"Effect of cryodeformation by high-pressure torsion on the fracture surface of Au-Co alloys","authors":"T. Tolmachev, V. Pilyugin, N. Nikolayeva, A. I. Ancharov, A. M. Patselov, Yu. V. Solov’eva, T. I. Chashchukhina, L. M. Voronova, M. V. Degtyarev","doi":"10.17804/2410-9908.2022.6.006-015","DOIUrl":"https://doi.org/10.17804/2410-9908.2022.6.006-015","url":null,"abstract":"Au-Co alloys with limited solubility were synthesized by the high-pressure torsion in boiling nitrogen at various anvil revolutions. Au and Co were initially in the state of a powder mixture in an equiatomic ratio. The obtained alloys were subjected to SEM fractography and XRD analysis in transmission X-ray synchrotron radiation, depending on the amount of strain. It is shown that the morphology of the fracture surfaces of the synthesized alloy depends significantly on strain. It is revealed that the mutual mixing of the components increases with strain. The images of the fracture surfaces of the Au-Co alloys testify that, as the strain and the number of anvil revolutions increase, a transition from ductile fracture, with inclusions of brittle intergranular fracture, to uniformly ductile fracture is observed over the entire thickness of the sample. A further increase in the strain and the number of anvil revolutions corresponds to the transition from the ductile type of the fracture surface to the brittle one. In addition, the fractography of the Au-Co alloys has revealed that the relief of the fracture surface becomes more homogeneous and that the size of the structural elements of the fracture surface decreases with increasing strain.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73284981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of aluminum concentration on the structure evolution and mechanical properties of Cu/Al composites produced by electron-beam additive manufacturing 铝浓度对电子束增材制造Cu/Al复合材料组织演变和力学性能的影响
Pub Date : 2022-12-01 DOI: 10.17804/2410-9908.2022.6.035-045
A. Panfilov, A. Zykova, A. Chumaevsky, V. Beloborodov, S. Nikonov, E. Kolubaev
Electron-beam additive manufacturing with a simultaneous feed of two wires is used to produce Cu/Al composites with different contents of Al-12Si aluminum alloy. The obtained specimens are examined by optical microscopy and X-ray diffraction analysis and tested for uniaxial static tension. The introduction of 25 vol % Al-12Si is found to form a fairly homogeneous structure characterized by Cu dendrites and a small volume fraction of Cu9Al4 and Cu4Al intermetallic compounds on the dendritic cell boundaries. The increase of the volume fraction of Al-12Si in the copper alloy to 33 vol % is accompanied by the formation of Cu9Al4, Cu4Al, and Cu3Al intermetallics and an increase in their volume fraction. In the composite with 33 vol % Al-12Si, the Cu9Al4 phase becomes the main one, thus causing brittle fracture of the specimens without plastic deformation. It is shown that, with an increase in the volume fraction of Al-12Si to 30 %, ultimate strength increases significantly in the copper alloy (up to 695 MPa) and relative elongation decreases (down to 4 %) due to the increasing volume fraction of the brittle CuxAly intermetallic phases. The results of hardness measurements testify that the increase of Al-12Si content in the specimens from 25 to 33 vol % increases their microhardness significantly, namely from 1.38 to 4.35 GPa.
采用电子束增材制造两线同时进给的方法,制备了不同Al- 12si铝合金含量的Cu/Al复合材料。得到的试样经光学显微镜和x射线衍射分析检验,并进行了单轴静张力测试。25体积%的Al-12Si的加入形成了相当均匀的结构,其特征是Cu枝晶和小体积分数的Cu9Al4和Cu4Al金属间化合物在树突细胞边界上。当Al-12Si在铜合金中的体积分数增加到33 vol %时,伴随着Cu9Al4、Cu4Al和Cu3Al金属间化合物的形成和体积分数的增加。在含33 vol % Al-12Si的复合材料中,Cu9Al4相成为主要相,导致试样脆性断裂而无塑性变形。结果表明,当Al-12Si的体积分数增加到30%时,铜合金的极限强度显著提高(可达695 MPa),而相对伸长率则由于脆性CuxAly金属间相体积分数的增加而下降(降至4%)。硬度测试结果表明,当试样中Al-12Si含量从25 vol %增加到33 vol %时,试样的显微硬度从1.38 GPa显著提高到4.35 GPa。
{"title":"The effect of aluminum concentration on the structure evolution and mechanical properties of Cu/Al composites produced by electron-beam additive manufacturing","authors":"A. Panfilov, A. Zykova, A. Chumaevsky, V. Beloborodov, S. Nikonov, E. Kolubaev","doi":"10.17804/2410-9908.2022.6.035-045","DOIUrl":"https://doi.org/10.17804/2410-9908.2022.6.035-045","url":null,"abstract":"Electron-beam additive manufacturing with a simultaneous feed of two wires is used to produce Cu/Al composites with different contents of Al-12Si aluminum alloy. The obtained specimens are examined by optical microscopy and X-ray diffraction analysis and tested for uniaxial static tension. The introduction of 25 vol % Al-12Si is found to form a fairly homogeneous structure characterized by Cu dendrites and a small volume fraction of Cu9Al4 and Cu4Al intermetallic compounds on the dendritic cell boundaries. The increase of the volume fraction of Al-12Si in the copper alloy to 33 vol % is accompanied by the formation of Cu9Al4, Cu4Al, and Cu3Al intermetallics and an increase in their volume fraction. In the composite with 33 vol % Al-12Si, the Cu9Al4 phase becomes the main one, thus causing brittle fracture of the specimens without plastic deformation. It is shown that, with an increase in the volume fraction of Al-12Si to 30 %, ultimate strength increases significantly in the copper alloy (up to 695 MPa) and relative elongation decreases (down to 4 %) due to the increasing volume fraction of the brittle CuxAly intermetallic phases. The results of hardness measurements testify that the increase of Al-12Si content in the specimens from 25 to 33 vol % increases their microhardness significantly, namely from 1.38 to 4.35 GPa.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"89546317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Formation of intermetallic particles in an Fe-Ni-Al alloy during annealing and electron irradiation Fe-Ni-Al合金退火和电子辐照过程中金属间颗粒的形成
Pub Date : 2022-12-01 DOI: 10.17804/2410-9908.2022.6.107-116
S. Danilov
The behavior of intermetallic nanoparticles, such as Ni3Al, and vacancy defects in an fcc Fe-Ni-Al alloy during annealing and electron irradiation is studied by measuring residual resistivity. It is shown that, during annealing at early stages, Ni3Al zones are formed in the quenched Fe-Ni-Al alloy, which increase residual electrical resistance, and during annealing above 700 K, nanosized (~4.5 nm) intermetallic precipitates are formed from them, uniformly distributed in the alloy matrix, whose growth leads to a decrease in residual resistivity. Under irradiation at room temperature, vacancy defects accumulate in the alloy in the form of vacancy complexes. The dissociation of these complexes at about 400 K causes the appearance of freely migrating vacancies and enhances self-diffusion forming Ni3Al bands. At about 600 to 700 K, the solid solution is decomposed thermally. At higher temperatures, the formation of intermetallic particles occurs, which is characterized by a decrease in electrical resistance.
通过测量残余电阻率,研究了Fe-Ni-Al合金在退火和电子辐照过程中Ni3Al等金属间粒子和空位缺陷的行为。结果表明:淬火后的Fe-Ni-Al合金在退火初期形成Ni3Al区,使残余电阻增大;在700 K以上退火时,Ni3Al区形成纳米级(~4.5 nm)的金属间相,均匀分布在合金基体中,其生长导致残余电阻率降低。在室温辐照下,空位缺陷以空位配合物的形式在合金中积累。这些配合物在400k左右解离导致自由迁移空位的出现,并增强了Ni3Al带的自扩散。在约600 ~ 700k时,固溶体发生热分解。在较高的温度下,会形成金属间颗粒,其特征是电阻降低。
{"title":"Formation of intermetallic particles in an Fe-Ni-Al alloy during annealing and electron irradiation","authors":"S. Danilov","doi":"10.17804/2410-9908.2022.6.107-116","DOIUrl":"https://doi.org/10.17804/2410-9908.2022.6.107-116","url":null,"abstract":"The behavior of intermetallic nanoparticles, such as Ni3Al, and vacancy defects in an fcc Fe-Ni-Al alloy during annealing and electron irradiation is studied by measuring residual resistivity. It is shown that, during annealing at early stages, Ni3Al zones are formed in the quenched Fe-Ni-Al alloy, which increase residual electrical resistance, and during annealing above 700 K, nanosized (~4.5 nm) intermetallic precipitates are formed from them, uniformly distributed in the alloy matrix, whose growth leads to a decrease in residual resistivity. Under irradiation at room temperature, vacancy defects accumulate in the alloy in the form of vacancy complexes. The dissociation of these complexes at about 400 K causes the appearance of freely migrating vacancies and enhances self-diffusion forming Ni3Al bands. At about 600 to 700 K, the solid solution is decomposed thermally. At higher temperatures, the formation of intermetallic particles occurs, which is characterized by a decrease in electrical resistance.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81909006","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Obtaining a steel-based metal matrix composite by wire-feed additive electron beam manufacturing with the introduction of tungsten powder 引入钨粉,采用线喂添加剂电子束法制备钢基金属基复合材料
Pub Date : 2022-12-01 DOI: 10.17804/2410-9908.2022.6.076-085
A. Chumaevsky, N. Shamarin, A. Panfilov, A. Zykova, A. Filippov, E. Moskvichev, V. Е. Rubtsov, E. Kolubaev
Wire-feed electron-beam additive technology is used to produce samples of a composite material based on the 40Cr9Si2 steel by additionally introducing tungsten powder during printing. Controlling the feed of wire and powder makes it possible to form composite structures in the surface layers of the samples while maintaining the sample bulks with high strength and plasticity. The content of tungsten in the surface layer increases smoothly. This has a positive effect on the structure of the samples and prevents cracking or delamination at the boundary between the base metal and the surface layer. The tensile strength of the layers decreases with the introduction of tungsten in comparison with the bulk of the sample. In this case, the surface layers are characterized by a multiple increase in wear resistance, especially at elevated test temperatures.
通过在打印过程中额外引入钨粉,采用线馈式电子束添加剂技术制备了基于40Cr9Si2钢的复合材料样品。控制线材和粉末的进给,可以在样品的表层形成复合结构,同时保持样品体的高强度和塑性。表面层中钨的含量平稳增加。这对样品的结构有积极的影响,并防止在母材和表层之间的边界开裂或分层。与样品体相比,随着钨的引入,层的抗拉强度降低。在这种情况下,表面层的特点是耐磨性成倍增加,特别是在升高的测试温度下。
{"title":"Obtaining a steel-based metal matrix composite by wire-feed additive electron beam manufacturing with the introduction of tungsten powder","authors":"A. Chumaevsky, N. Shamarin, A. Panfilov, A. Zykova, A. Filippov, E. Moskvichev, V. Е. Rubtsov, E. Kolubaev","doi":"10.17804/2410-9908.2022.6.076-085","DOIUrl":"https://doi.org/10.17804/2410-9908.2022.6.076-085","url":null,"abstract":"Wire-feed electron-beam additive technology is used to produce samples of a composite material based on the 40Cr9Si2 steel by additionally introducing tungsten powder during printing. Controlling the feed of wire and powder makes it possible to form composite structures in the surface layers of the samples while maintaining the sample bulks with high strength and plasticity. The content of tungsten in the surface layer increases smoothly. This has a positive effect on the structure of the samples and prevents cracking or delamination at the boundary between the base metal and the surface layer. The tensile strength of the layers decreases with the introduction of tungsten in comparison with the bulk of the sample. In this case, the surface layers are characterized by a multiple increase in wear resistance, especially at elevated test temperatures.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78568715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of boron on the protective properties of aluminide coatings 硼对铝化物涂层防护性能的影响
Pub Date : 2022-12-01 DOI: 10.17804/2410-9908.2022.6.025-034
N. B. Pugacheva, P. Polyakov
The effect of the formation, microstructure, phase composition, and protective properties of diffusion aluminide coatings alloyed with boron on the EI69 heat-resistant steel and the EI929 nickel alloy is studied. In the course of saturation, boron easily diffuses over the interstices of the B2 crystal lattice of aluminides, thus forming interstitial solid solutions. In this case, the Al content in the coating decreases, thereby implementing the possibility of increasing the plasticity of the coating while maintaining high protective properties. By binding refractory corrosive elements (Mo, W, Nb, etc.) into corrosion-resistant borides, boron increases the overall resistance of the coating in molten Na2SO4 and NaCl salts at 700 °C by an order of magnitude and improves the resistance of the surface to erosion wear. This makes it possible to recommend Al-Si-B coatings to be used for protecting the surface of the turbine blades of supercharging turbochargers and diesel exhaust valves.
研究了硼合金扩散铝化物涂层对EI69耐热钢和EI929镍合金的形成、组织、相组成和防护性能的影响。在饱和过程中,硼很容易扩散到铝化物B2晶格的间隙上,形成间隙固溶体。在这种情况下,涂层中的Al含量降低,从而实现了在保持高防护性能的同时增加涂层塑性的可能性。硼通过将难熔腐蚀元素(Mo、W、Nb等)结合成耐腐蚀的硼化物,使涂层在700℃熔融Na2SO4和NaCl盐中的整体耐蚀性提高了一个数量级,提高了表面抗冲蚀磨损的能力。这使得推荐Al-Si-B涂层用于保护增压涡轮增压器和柴油排气阀的涡轮叶片表面成为可能。
{"title":"The effect of boron on the protective properties of aluminide coatings","authors":"N. B. Pugacheva, P. Polyakov","doi":"10.17804/2410-9908.2022.6.025-034","DOIUrl":"https://doi.org/10.17804/2410-9908.2022.6.025-034","url":null,"abstract":"The effect of the formation, microstructure, phase composition, and protective properties of diffusion aluminide coatings alloyed with boron on the EI69 heat-resistant steel and the EI929 nickel alloy is studied. In the course of saturation, boron easily diffuses over the interstices of the B2 crystal lattice of aluminides, thus forming interstitial solid solutions. In this case, the Al content in the coating decreases, thereby implementing the possibility of increasing the plasticity of the coating while maintaining high protective properties. By binding refractory corrosive elements (Mo, W, Nb, etc.) into corrosion-resistant borides, boron increases the overall resistance of the coating in molten Na2SO4 and NaCl salts at 700 °C by an order of magnitude and improves the resistance of the surface to erosion wear. This makes it possible to recommend Al-Si-B coatings to be used for protecting the surface of the turbine blades of supercharging turbochargers and diesel exhaust valves.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"85 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76317862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phonon instabilities in a metal on the bain FCC–BCC transformation path 贝恩FCC-BCC转换路径上金属中的声子不稳定性
Pub Date : 2022-12-01 DOI: 10.17804/2410-9908.2022.6.086-094
A. R. Kuznetsov, S. Starikov, V. Sagaradze
In this paper, the energy of the Bain path in Al and the instability of phonons during uniaxial compression deformation along <001> are studied ab initio. It is shown that, at a strain of about 15%, dynamic loss of structure stability is observed due to short-wavelength phonons, which thus determine the theoretical strength of Al. Deformation causes shifts along the {111} planes of the initial fcc cell, leading to the formation of stacking faults. A similar formation of stacking faults was observed in [1] in the framework of simulation of compression along the <001> Ni3Al nanoparticle (L12 superstructure based on the fcc structure). The results obtained can be applied to situations in the experiment, when small defect-free regions are deformed, for example, as in nanostructured materials and during nanoindentation.
本文从头开始研究了铝中贝恩路径的能量和声子沿单轴压缩变形时的不稳定性。结果表明,在约15%的应变下,短波声子导致结构稳定性的动态损失,从而决定了Al的理论强度。变形导致初始fcc胞沿{111}面的位移,导致层错的形成。在模拟Ni3Al纳米颗粒(基于fcc结构的L12超结构)沿压缩的框架下,[1]中也观察到类似的层错形成。得到的结果可以应用于实验中的情况,当小的无缺陷区域变形时,例如,在纳米结构材料和纳米压痕过程中。
{"title":"Phonon instabilities in a metal on the bain FCC–BCC transformation path","authors":"A. R. Kuznetsov, S. Starikov, V. Sagaradze","doi":"10.17804/2410-9908.2022.6.086-094","DOIUrl":"https://doi.org/10.17804/2410-9908.2022.6.086-094","url":null,"abstract":"In this paper, the energy of the Bain path in Al and the instability of phonons during uniaxial compression deformation along <001> are studied ab initio. It is shown that, at a strain of about 15%, dynamic loss of structure stability is observed due to short-wavelength phonons, which thus determine the theoretical strength of Al. Deformation causes shifts along the {111} planes of the initial fcc cell, leading to the formation of stacking faults. A similar formation of stacking faults was observed in [1] in the framework of simulation of compression along the <001> Ni3Al nanoparticle (L12 superstructure based on the fcc structure). The results obtained can be applied to situations in the experiment, when small defect-free regions are deformed, for example, as in nanostructured materials and during nanoindentation.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"75 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77308299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of the multiplicity of frictional action on the micromechanical properties of NiCrBSi-coatings 多重摩擦作用对nicrbsi涂层微观力学性能的影响
Pub Date : 2022-10-01 DOI: 10.17804/2410-9908.2022.5.050-059
N. Soboleva, N. A. Davydova, A. Makarov
The paper investigates the effect of the number of passes (1 or 2) of an indenter made of fine cubic boron nitride during friction treatment of PG-SR2 and PG-10N-01 NiCrBSi-coatings on the micromechanical properties of their surface layers. The friction treatment of the coating surface under all the process conditions studied, in comparison with the initial polished state, increases the strength characteristics of the coating surface layer and the parameters indicating the resistance of the material surface to elastic-plastic deformation. The effect of the number of indenter passes during surface friction treatment on the strength characteristics is found to be more significant for the softer and more ductile PG-SR2 coating than for the PG-10N-01 coating. This is attributed to the higher strain hardenability of the former.
研究了PG-SR2和PG-10N-01 nicrbsi涂层摩擦处理过程中,细立方氮化硼压头的道次(1道次或2道次)对其表层微观力学性能的影响。在所研究的所有工艺条件下,涂层表面的摩擦处理,与初始抛光状态相比,增加了涂层面层的强度特性和表明材料表面抗弹塑性变形的参数。与PG-10N-01涂层相比,在表面摩擦处理过程中压头次数对涂层强度特性的影响更为显著。这是由于前者具有较高的应变淬透性。
{"title":"The effect of the multiplicity of frictional action on the micromechanical properties of NiCrBSi-coatings","authors":"N. Soboleva, N. A. Davydova, A. Makarov","doi":"10.17804/2410-9908.2022.5.050-059","DOIUrl":"https://doi.org/10.17804/2410-9908.2022.5.050-059","url":null,"abstract":"The paper investigates the effect of the number of passes (1 or 2) of an indenter made of fine cubic boron nitride during friction treatment of PG-SR2 and PG-10N-01 NiCrBSi-coatings on the micromechanical properties of their surface layers. The friction treatment of the coating surface under all the process conditions studied, in comparison with the initial polished state, increases the strength characteristics of the coating surface layer and the parameters indicating the resistance of the material surface to elastic-plastic deformation. The effect of the number of indenter passes during surface friction treatment on the strength characteristics is found to be more significant for the softer and more ductile PG-SR2 coating than for the PG-10N-01 coating. This is attributed to the higher strain hardenability of the former.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"18 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72981447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Studying the adhesion strength of plasma powder metal coatings on the surface of graphite 研究了等离子体粉末金属涂层在石墨表面的附着力
Pub Date : 2022-10-01 DOI: 10.17804/2410-9908.2022.5.023-039
Yu. V. Nikolin, D. Vichuzhanin, N. Pugacheva, F. I. Mezin
Coatings applied onto the surface of specimens made of UHP electrode graphite are studied. Coatings are applied by thermal spraying in two stages: spraying of a sublayer (layer I) of the powder materials being tested; spraying of the main layer of the plasma coating, consisting of a mechanical mixture of fine spherical aluminum (Al) and copper (CuCr1) powders in an equal volume ratio. The adhesion strength between the coating and the graphite surface is studied as dependent on the following factors: sublayer thickness; the type of preliminary surface preparation; the chemical composition of the powder material of the sublayer. It has been found that the highest adhesion strength between the coating and the graphite base is achieved when the sublayer thickness is 80 µm, when a thread with a depth of 1.0 mm is cut on the base surface, and when Al powder is used as a sublayer.
研究了超高压电极石墨试样表面涂层的制备方法。涂层通过热喷涂的方式分两个阶段进行:喷涂被测粉末材料的一个子层(第一层);等离子体涂层的主层喷涂,由细球形铝(Al)和铜(CuCr1)粉末按等体积比的机械混合物组成。研究了涂层与石墨表面的结合强度取决于以下因素:层厚度;初步表面处理的类型;亚层粉末材料的化学成分。实验发现,当亚层厚度为80µm、在基体表面切割深度为1.0 mm的螺纹、以Al粉作为亚层时,涂层与石墨基体的粘附强度最高。
{"title":"Studying the adhesion strength of plasma powder metal coatings on the surface of graphite","authors":"Yu. V. Nikolin, D. Vichuzhanin, N. Pugacheva, F. I. Mezin","doi":"10.17804/2410-9908.2022.5.023-039","DOIUrl":"https://doi.org/10.17804/2410-9908.2022.5.023-039","url":null,"abstract":"Coatings applied onto the surface of specimens made of UHP electrode graphite are studied. Coatings are applied by thermal spraying in two stages: spraying of a sublayer (layer I) of the powder materials being tested; spraying of the main layer of the plasma coating, consisting of a mechanical mixture of fine spherical aluminum (Al) and copper (CuCr1) powders in an equal volume ratio. The adhesion strength between the coating and the graphite surface is studied as dependent on the following factors: sublayer thickness; the type of preliminary surface preparation; the chemical composition of the powder material of the sublayer. It has been found that the highest adhesion strength between the coating and the graphite base is achieved when the sublayer thickness is 80 µm, when a thread with a depth of 1.0 mm is cut on the base surface, and when Al powder is used as a sublayer.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"30 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76437171","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of friction treatment of the AISI 321 steel on changes in its hardness and magnetic characteristics AISI 321钢摩擦处理对其硬度和磁性变化的影响
Pub Date : 2022-10-01 DOI: 10.17804/2410-9908.2022.5.040-049
E. Putilova, L. Goruleva, S. Zadvorkin
The friction treatment of corrosion-resistant metastable steels makes it possible to improve the strength properties and operational characteristics of such materials. This is mainly due to the formation of strain-induced martensite, a stronger ferromagnetic phase, in the surface layer. Besides, modification of the phase composition changes the magnetic state of the material. The paper presents the results of the effect of varying the normal load of the indenter during surface friction treatment on the change in the phase composition and the magnetic characteristics of the AISI 321 steel. The amount of the formed ferromagnetic phase and hardness are related to the normal load of the indenter. It is shown that magnetization can be used as an informative parameter for diagnosing the formation of strain-induced martensite during the friction treatment of the AISI 321 steel.
对耐腐蚀亚稳钢进行摩擦处理,可以提高这类材料的强度性能和使用特性。这主要是由于在表层形成了应变诱发马氏体,这是一种较强的铁磁相。此外,相组成的改性改变了材料的磁性状态。本文介绍了在表面摩擦处理过程中,改变压头的法向载荷对AISI 321钢相组成和磁特性变化的影响。形成的铁磁相的数量和硬度与压头的正常负荷有关。结果表明,磁化强度可作为诊断AISI 321钢摩擦处理过程中应变诱发马氏体形成的信息参数。
{"title":"Effect of friction treatment of the AISI 321 steel on changes in its hardness and magnetic characteristics","authors":"E. Putilova, L. Goruleva, S. Zadvorkin","doi":"10.17804/2410-9908.2022.5.040-049","DOIUrl":"https://doi.org/10.17804/2410-9908.2022.5.040-049","url":null,"abstract":"The friction treatment of corrosion-resistant metastable steels makes it possible to improve the strength properties and operational characteristics of such materials. This is mainly due to the formation of strain-induced martensite, a stronger ferromagnetic phase, in the surface layer. Besides, modification of the phase composition changes the magnetic state of the material. The paper presents the results of the effect of varying the normal load of the indenter during surface friction treatment on the change in the phase composition and the magnetic characteristics of the AISI 321 steel. The amount of the formed ferromagnetic phase and hardness are related to the normal load of the indenter. It is shown that magnetization can be used as an informative parameter for diagnosing the formation of strain-induced martensite during the friction treatment of the AISI 321 steel.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"20 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80137124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Magnetically active coatings for electrical materials 电气材料用磁性活性涂层
Pub Date : 2022-10-01 DOI: 10.17804/2410-9908.2022.5.006-014
Yu. N. Dragoshanskii, V. Pudov
The prospects of using nitride-oxide and magnesium phosphate electrical insulating coatings on thin strips of magnetically soft alloys based on silicon iron are considered. X-ray diffraction topography, powder figures, and magnetic measurements have shown that coatings create uniformly distributed tensile stresses in materials, increase uniaxial magnetic anisotropy, and reduce the volume of transversely magnetized domains and the width of longitudinally magnetized ones. This increases magnetic permeability and significantly decreases the coercive force, as well as eddy-current and total (by 20–25 %) magnetic losses. Tensile (magnetically active) coatings enhance the effect of subsequent thermomagnetic treatment of alloys.
展望了氮氧化物和磷酸镁电绝缘涂层在硅铁基磁软合金薄条上的应用前景。x射线衍射形貌、粉末形貌和磁性测量表明,涂层在材料中产生均匀分布的拉伸应力,增加了单轴磁各向异性,减小了横向磁化畴的体积和纵向磁化畴的宽度。这增加了磁导率,显著降低了矫顽力,以及涡流和总磁损失(减少了20 - 25%)。拉伸(磁活性)涂层增强了合金后续热磁处理的效果。
{"title":"Magnetically active coatings for electrical materials","authors":"Yu. N. Dragoshanskii, V. Pudov","doi":"10.17804/2410-9908.2022.5.006-014","DOIUrl":"https://doi.org/10.17804/2410-9908.2022.5.006-014","url":null,"abstract":"The prospects of using nitride-oxide and magnesium phosphate electrical insulating coatings on thin strips of magnetically soft alloys based on silicon iron are considered. X-ray diffraction topography, powder figures, and magnetic measurements have shown that coatings create uniformly distributed tensile stresses in materials, increase uniaxial magnetic anisotropy, and reduce the volume of transversely magnetized domains and the width of longitudinally magnetized ones. This increases magnetic permeability and significantly decreases the coercive force, as well as eddy-current and total (by 20–25 %) magnetic losses. Tensile (magnetically active) coatings enhance the effect of subsequent thermomagnetic treatment of alloys.","PeriodicalId":11165,"journal":{"name":"Diagnostics, Resource and Mechanics of materials and structures","volume":"29 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80920958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Diagnostics, Resource and Mechanics of materials and structures
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1